期刊文献+
共找到936篇文章
< 1 2 47 >
每页显示 20 50 100
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
1
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 Optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
下载PDF
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
2
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
下载PDF
Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
3
作者 王奕涵 章海锋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期352-363,共12页
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p... Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm. 展开更多
关键词 magnetized plasma photonic crystals improved particle swarm optimization algorithm nonreciprocal ultra-wide band absorption angular insensitivity
下载PDF
Speed Control of Motor Based on Improved Glowworm Swarm Optimization
4
作者 Zhenzhou Wang Yan Zhang +2 位作者 Pingping Yu Ning Cao Heiner Dintera 《Computers, Materials & Continua》 SCIE EI 2021年第10期503-519,共17页
To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,an... To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,and low accuracy exhibited by traditional PID controllers.When selecting the glowworm neighborhood set,an optimization scheme based on the growth and competition behavior of weeds is applied to a single glowworm to prevent falling into a local optimal solution.After the glowworm’s position is updated,the league selection operator is introduced to search for the global optimal solution.Combining the local search ability of the invasive weed optimization with the global search ability of the league selection operator enhances the robustness of the algorithm and also accelerates the convergence speed of the algorithm.The mathematical model of the brushless DC motor is established,the PID parameters are tuned and optimized using improved Glowworm Swarm Optimization algorithm,and the speed of the brushless DC motor is adjusted.In a Simulink environment,a double closed-loop speed control model was established to simulate the speed control of a brushless DC motor,and this simulation was compared with a traditional PID control.The simulation results show that the model based on the improved Glowworm Swarm Optimization algorithm has good robustness and a steady-state response speed for motor speed control. 展开更多
关键词 PID speed control improved glowworm swarm optimization brushless DC motor
下载PDF
Study of Direction Probability and Algorithm of Improved Marriage in Honey Bees Optimization for Weapon Network System 被引量:2
5
作者 杨晨光 涂序彦 陈杰 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第2期152-157,共6页
To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damagin... To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damaging probability that changes with the defending angle,the efficiency of the whole weapon network system can be subtly described.With such method,we can avoid the inconformity of the description obtained from the traditional index systems.Three new indexes are also proposed,i.e.join index,overlap index and cover index,which help manage the relationship among several sub-weapon-networks.By normalizing the computation results with the Sigmoid function,the matching problem between the optimization algorithm and indexes is well settled.Also,the algorithm of improved marriage in honey bees optimization that proposed in our previous work is applied to optimize the embattlement problem.Simulation is carried out to show the efficiency of the proposed indexes and the optimization algorithm. 展开更多
关键词 网络系统 优化问题 破坏概率 算法改进 核武器 蜜蜂 婚姻 SIGMOID函数
下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
6
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 improved Particle swarm optimization algorithm Double POPULATIONS MULTI-OBJECTIVE Adaptive Strategy CHAOTIC SEQUENCE
下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
7
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
下载PDF
基于AGSO-BAS混合算法的配电网分布式电源优化配置 被引量:13
8
作者 李军 周冬冬 +4 位作者 张玉琼 郝思鹏 吕干云 陈魏 蒋钰 《电力电容器与无功补偿》 北大核心 2019年第6期87-92,98,共7页
随着分布式发电技术的发展,在配电网中接入一定容量的分布式电源(DG)对于改善配电网负荷供电质量、降低系统网损水平、提高运行经济性等具有显著的作用,本文针对分布式电源配电网中的位置、容量优化配置问题,建立了关于分布式电源建设... 随着分布式发电技术的发展,在配电网中接入一定容量的分布式电源(DG)对于改善配电网负荷供电质量、降低系统网损水平、提高运行经济性等具有显著的作用,本文针对分布式电源配电网中的位置、容量优化配置问题,建立了关于分布式电源建设运行总成本和系统网络损耗的多目标优化配置模型,并提出了一种基于改进萤火虫(AGSO)优化算法和天牛须(BAS)搜索优化算法的混合优化算法对分布式电源优化配置模型进行求解,在计算得到Pareto解集后,利用交互式模糊决策技术从解集中选取最终的电源配置方案。最后以IEEE 33节点配电网系统作为算例进行了仿真分析,验证了模型的合理性和方法的有效性,并分别使用混合算法与基本AGSO算法优化系统网损,对比结果表明,提出的混合算法收敛性和寻优精度更好,能有效地解决配电网中分布式电源的优化配置问题。 展开更多
关键词 配电网 分布式电源 萤火虫(gso)优化算法 天牛须搜索(BAS) 模糊决策 多目标优化
下载PDF
一种改进的变步长自适应GSO算法 被引量:13
9
作者 黄凯 周永权 《计算机工程》 CAS CSCD 2012年第4期185-187,193,共4页
基本萤火虫群优化(GSO)算法在求解全局优化问题时,存在收敛速度慢、求解精度不高等问题。为此,提出一种变步长自适应GSO算法。该算法在一定程度上可以避免GSO算法过早陷入局部最优,且步长随迭代次数的增加而自适应地调整,从而使算法在... 基本萤火虫群优化(GSO)算法在求解全局优化问题时,存在收敛速度慢、求解精度不高等问题。为此,提出一种变步长自适应GSO算法。该算法在一定程度上可以避免GSO算法过早陷入局部最优,且步长随迭代次数的增加而自适应地调整,从而使算法在后期获得精度更高的解。运用6个标准测试函数进行实验,结果表明,与GSO算法相比,该算法的收敛速度及精度均有明显提高。 展开更多
关键词 全局优化 局部最优 萤火虫群优化算法 自适应
下载PDF
基于混沌和自适应搜索策略的GSO算法分析与优化 被引量:5
10
作者 黄宇达 王迤冉 牛四杰 《计算机工程与应用》 CSCD 北大核心 2019年第3期147-153,共7页
针对基本萤火虫群算法在全局优化问题求解过程中存在的求解精度偏低、易陷入局部最优、收敛速度较慢等问题,提出一种基于混沌和自适应搜索策略的萤火虫优化算法(CSAGSO)。利用混沌搜索技术对萤火虫种群进行初始化以得到分布更为均匀、... 针对基本萤火虫群算法在全局优化问题求解过程中存在的求解精度偏低、易陷入局部最优、收敛速度较慢等问题,提出一种基于混沌和自适应搜索策略的萤火虫优化算法(CSAGSO)。利用混沌搜索技术对萤火虫种群进行初始化以得到分布更为均匀、合理的较优初始解;运用混沌扰动优化策略对每一代适应度较差的部分萤火虫个体进行混沌扰动以增强种群多样性和提高全局搜索能力。采用动态步长的自适应搜索策略,并对寻优过程中静止不动的萤火虫个体位置进行更新,加快了算法前期收敛速度,减少了后期震荡现象发生。仿真实验结果表明,优化后的萤火虫算法参数较少并具有较好稳定性,同时在求解精度和收敛速度上都明显优于基本萤火虫群算法。 展开更多
关键词 萤火虫群优化 Chebyshev混沌映射 优化 混沌扰动 动态步长 自适应搜索
下载PDF
基于IGSO优化LM网络的变压器故障诊断方法 被引量:5
11
作者 黄新波 宋桐 +1 位作者 王娅娜 李文君子 《中国电力》 CSCD 北大核心 2014年第9期60-65,共6页
针对现今电力变压器故障诊断方法中存在编码边界区间过于绝对、准确率不高等一系列问题,提出了一种自适应搜索萤火虫算法(IGSO)优化列文伯格·马夸尔特(LevenbergMaquardt,LM)网络的变压器故障诊断方法。该方法采用萤火虫个体代表... 针对现今电力变压器故障诊断方法中存在编码边界区间过于绝对、准确率不高等一系列问题,提出了一种自适应搜索萤火虫算法(IGSO)优化列文伯格·马夸尔特(LevenbergMaquardt,LM)网络的变压器故障诊断方法。该方法采用萤火虫个体代表神经网络的权值和阈值、LM网络的均方误差函数作为萤火虫个体的适应度函数,利用改进萤火虫算法迭代寻优得到LM网络的最优权值和阈值。同时,运用模糊理论对改良三比值法的边界模糊化,将得到的特征气体比值编码作为网络模型的输入,不仅有利于去除冗余信息,并且克服了编码边界区间过于绝对的缺点。然后,建立基于自适应搜索萤火虫算法优化的神经网络模型,并将典型变压器故障数据代入仿真,通过与贝叶斯正则化神经网络模型以及粒子群模型的仿真结果对比,表明该方法具有较好的分类效果,准确率达到88.57%。 展开更多
关键词 电力系统 故障诊断 自适应搜索 萤火虫算法 模糊理论 改进神经网络 贝叶斯正则化 粒子群
下载PDF
基于IAGSO算法的VISSIM模型校正研究与实现 被引量:13
12
作者 唐少虎 刘小明 《交通运输系统工程与信息》 EI CSCD 北大核心 2014年第5期74-80,共7页
微观交通仿真能够再现城市道路交通状况,其关键步骤是建立仿真模型.为使模型最大程度地反映实际道路运行状况,需要对所建立的模型进行校正.首先本文设计了改进的自适应步长的人工萤火虫算法(IAGSO)和以排队长度为指标的目标函数.然后,... 微观交通仿真能够再现城市道路交通状况,其关键步骤是建立仿真模型.为使模型最大程度地反映实际道路运行状况,需要对所建立的模型进行校正.首先本文设计了改进的自适应步长的人工萤火虫算法(IAGSO)和以排队长度为指标的目标函数.然后,设计了基于IAGSO算法的VISSIM模型参数校正的方法.最后,设计和实现了基于B/S结构的交叉口仿真分析系统,应用VISSIM对北京市某交叉口建模,利用系统对此模型进行参数校正,比较模型校正前、校正后和现场调查的四个进口方向的排队长度.通过比较结果验证了基于IAGSO算法的VISSIM模型参数校正的有效性. 展开更多
关键词 城市交通 模型校正 人工萤火虫算法 VISSIM B/S结构
下载PDF
基于GSO与加权质心的DV-Hop定位算法 被引量:4
13
作者 范时平 罗丹 刘艳林 《仪表技术与传感器》 CSCD 北大核心 2017年第1期164-168,共5页
由于经典DV-Hop定位算法中定位精度较低,提出一种改进算法。首先,未知节点计算到各信标节点的距离时,采用不同平均每跳距离。其次,采用GSO(galactic swarm optimization)思想把网络中的信标节点分为不同种群,使用粒子群优化算法估计每... 由于经典DV-Hop定位算法中定位精度较低,提出一种改进算法。首先,未知节点计算到各信标节点的距离时,采用不同平均每跳距离。其次,采用GSO(galactic swarm optimization)思想把网络中的信标节点分为不同种群,使用粒子群优化算法估计每个种群中未知节点的最优位置,其最优位置构成一组次优解集。最后,利用加权质心算法优化次优解集作为未知节点的坐标。实验仿真表明,该方法能有效降低未知节点的定位误差。 展开更多
关键词 无线传感器网络 DV-HOP 跳距选择 粒子群算法 GALACTIC swarm optimization 加权质心算法
下载PDF
基于GSO-BFA算法的PMSM自适应模糊滑模控制 被引量:5
14
作者 刘芳璇 李益民 +1 位作者 崔晶 王桂荣 《微电机》 2015年第7期94-99,共6页
为研究永磁同步电机(PMSM)在无速度传感器工况下的速度跟踪估计,以PMSM的工作原理为基础,建立内埋式PMSM的数学模型。基于自适应模糊微分积分滑模(AFDI-SMC)鲁棒性强的优点,提出了在萤火虫-细菌觅食(GSO-BFA)融合算法优化滑模控制器参... 为研究永磁同步电机(PMSM)在无速度传感器工况下的速度跟踪估计,以PMSM的工作原理为基础,建立内埋式PMSM的数学模型。基于自适应模糊微分积分滑模(AFDI-SMC)鲁棒性强的优点,提出了在萤火虫-细菌觅食(GSO-BFA)融合算法优化滑模控制器参数条件下采用旋转高频电压注入法对电机转速进行估计的无速度传感器控制方案,并分析了电机在高、低速运行时特点。实验结果表明,采用GSO-BFA融合算法优化滑模控制器参数并结合高频电压注入法的自适应模糊滑模控制系统在高速(2000 r/min)负载工况下的绝对误差为60 r/min,转速相对误差为3%,稳定运行时转子位置最大误差约为4°电角度(合2°机械角度);低速(50 r/min)负载工况下的绝对误差为8 r/min,转速相对误差为16%,稳定运行时转子位置最大误差约为5°电角度(合2.5°机械角度)。 展开更多
关键词 自适应模糊微分积分滑模控制 萤火虫-细菌觅食算法 旋转高频电压注入法 无速度传感器
下载PDF
GSO的局部阴影光伏阵列MPPT控制的研究 被引量:1
15
作者 李恒杰 康开岚 +2 位作者 陈伟 裴喜平 曾贤强 《电源技术》 CAS CSCD 北大核心 2018年第5期689-692,共4页
在若干个串联太阳电池两端并联旁路二极管消除光伏阵列处于局部阴影时形成的"热斑效应"的同时,P-U特性输出曲线会呈现出多个峰值。因此,传统最大功率跟踪方法可能会失效。针对多峰值问题,在建立和分析特性输出曲线的基础上,... 在若干个串联太阳电池两端并联旁路二极管消除光伏阵列处于局部阴影时形成的"热斑效应"的同时,P-U特性输出曲线会呈现出多个峰值。因此,传统最大功率跟踪方法可能会失效。针对多峰值问题,在建立和分析特性输出曲线的基础上,将改进的萤火虫群算法应用到局部阴影下光伏阵列最大功率点跟踪中。仿真表明,此方法能够快速准确的跟踪到全局最大功率点,保证了功率的高效利用。并与粒子群算法进行对比,验证了此方法的优越性。 展开更多
关键词 局部阴影 最大功率点跟踪 萤火虫群算法 光伏阵列
下载PDF
基于IGSO计及谐波电压畸变的无功优化 被引量:1
16
作者 洪筱 丁晓群 +1 位作者 杨海东 黄恒硕 《中国电力》 CSCD 北大核心 2013年第2期82-86,共5页
近年来电力电子装置的广泛应用引起了谐波污染。如果直接对电力系统进行无功优化,谐波频率下容易产生系统与电容器之间的谐振或谐波放大,使系统的谐波畸变率大为增加,破坏系统的安全运行。针对这一问题,提出了计及谐波电压畸变的无功优... 近年来电力电子装置的广泛应用引起了谐波污染。如果直接对电力系统进行无功优化,谐波频率下容易产生系统与电容器之间的谐振或谐波放大,使系统的谐波畸变率大为增加,破坏系统的安全运行。针对这一问题,提出了计及谐波电压畸变的无功优化模型;在网损最小的基础上,将各节点基波电压和总谐波畸变率越限情况以惩罚项的形式加入目标函数中,将改进萤火虫算法(IGSO)应用到无功优化中,给出基于IGSO计及谐波电压畸变的无功优化具体步骤。通过对IEEE 30节点算例的仿真分析,验证本方法的可行性和优越性,在减小网损和总谐波畸变率的同时,提高了收敛速度和计算精度。 展开更多
关键词 无功优化 改进萤火虫算法(Igso) 谐波放大 谐波畸变率
下载PDF
基于GSO算法的最小连通支配集问题求解 被引量:3
17
作者 赵学锋 《计算机工程》 CAS CSCD 2013年第2期99-102,107,共5页
经典的最小连通支配集(MCDS)计算是NP难问题。为此,提出一种利用萤火虫优化算法求解该难题的新方法。把网络中的每个节点当作一个萤火虫个体,以节点度为基础构成荧光素,通过概率选择和荧光素调节机制,使个体被吸引向邻接的高亮度个体,... 经典的最小连通支配集(MCDS)计算是NP难问题。为此,提出一种利用萤火虫优化算法求解该难题的新方法。把网络中的每个节点当作一个萤火虫个体,以节点度为基础构成荧光素,通过概率选择和荧光素调节机制,使个体被吸引向邻接的高亮度个体,从而由所选出的个体组成网络的支配集。经连接和修剪处理后,得到MCDS的近似解。在无线传感器网络模型的单位圆盘图上进行模拟实验,结果表明,该算法得到的连通支配集规模较小,更接近集中式算法的结果。 展开更多
关键词 最小连通支配集 萤火虫优化算法 萤光素 节点度 单位圆盘图
下载PDF
基于GSO-BFA的采煤机双滚筒同步调高控制 被引量:1
18
作者 崔晶 李益民 王桂荣 《测控技术》 CSCD 2016年第11期52-56,共5页
为研究采煤机滚筒在煤岩混合复杂工况下的调高连续性,依据液压机构的工作原理建立了滚筒调高机构的动力学模型。基于自适应模糊微分积分滑模(AFDI-SMC)鲁棒性强的优点,采用了萤火虫-细菌觅食(GSO-BFA)算法优化滑模控制器参数条件下的滚... 为研究采煤机滚筒在煤岩混合复杂工况下的调高连续性,依据液压机构的工作原理建立了滚筒调高机构的动力学模型。基于自适应模糊微分积分滑模(AFDI-SMC)鲁棒性强的优点,采用了萤火虫-细菌觅食(GSO-BFA)算法优化滑模控制器参数条件下的滚筒调高控制方案。为保证双滚筒工作时举升高度的一致性,引入偏差-环形耦合同步控制策略补偿位置偏差,同时采用融合算法(CSO-BFA)对外闭环(滚筒高度-电压)控制器参数进行优化,并分析了双滚筒同步调高性能,且与采用遗传算法(GA)优化的系统同步调高精度相比较。仿真结果表明,采用融合算法优化且结合自适应模糊微分积分滑模的滚筒同步调高系统具有良好的鲁棒性及较高的同步精度。 展开更多
关键词 自适应模糊微分积分滑模 萤火虫-细菌觅食算法 偏差-环形耦合 遗传算法
下载PDF
采用小波包ASGSO-RBF的采煤机滚动轴承故障诊断 被引量:1
19
作者 谢国民 张俊男 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2016年第7期701-704,共4页
针对采煤机滚动轴承常见的突发问题诊断准确性不高和速度慢,以小波包和RBF神经网络为基础,提出了由小波包分解提取各个节点特征能量谱与自适应步长萤火虫算法优化的RBF神经网络进行分类辨识的采煤机滚动轴承故障诊断方法.对振动传感器... 针对采煤机滚动轴承常见的突发问题诊断准确性不高和速度慢,以小波包和RBF神经网络为基础,提出了由小波包分解提取各个节点特征能量谱与自适应步长萤火虫算法优化的RBF神经网络进行分类辨识的采煤机滚动轴承故障诊断方法.对振动传感器输出的信号进行小波包分解,运用基于代价函数的局域判别基(LDB)算法对小波包分解进行裁剪,获取最优的特征能量谱,经处理后作为特征向量训练ASGSO-RBF神经网络,建立诊断模型.实验结果表明:所建模型的故障辨识正确率达到95.8%以上,相较于其他算法模型具有更低的误报率和漏报率,诊断精度及诊断效率更高. 展开更多
关键词 采煤机滚动轴承 故障诊断模型 小波包 RBF神经网络 自适应步长萤火虫算法
下载PDF
云计算环境下基于改进GSO的目标主机选择算法
20
作者 陈伟 程家超 张超 《四川理工学院学报(自然科学版)》 CAS 2017年第5期51-56,共6页
目标主机的选择是虚拟机动态迁移过程中的重要阶段,是实现负载均衡的关键。针对基本萤火虫算法存在的精度不高、收敛较慢的问题,提出了一种改进的萤火虫优化算法,用于解决虚拟机迁移时虚拟机和目标物理主机的映射问题,实现多目标最优求... 目标主机的选择是虚拟机动态迁移过程中的重要阶段,是实现负载均衡的关键。针对基本萤火虫算法存在的精度不高、收敛较慢的问题,提出了一种改进的萤火虫优化算法,用于解决虚拟机迁移时虚拟机和目标物理主机的映射问题,实现多目标最优求解。该算法通过引入步长调整因子,能够动态调整移动步长,克服了步长过大或过小导致的精度不高、后期收敛较慢的缺点。全面考虑物理主机负载指标,建立负载均衡模型,将萤火虫算法中个体与节点资源相对应,利用萤火虫发光机制寻优求解,以实现目标主机的优化选择。仿真实验表明,该算法能够快速完成目标主机的选择,有效平衡系统资源,实现数据中心负载均衡。 展开更多
关键词 云计算 萤火虫群优化算法 动态步长 负载均衡 目标主机选择 虚拟机
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部