The observation vectors in traditional coarse alignment contain random noise caused by the errors of inertial instruments,which will slow down the convergence rate.To solve the above problem,a real-time noise reductio...The observation vectors in traditional coarse alignment contain random noise caused by the errors of inertial instruments,which will slow down the convergence rate.To solve the above problem,a real-time noise reduction method,sliding fixed-interval least squares(SFI-LS),is devised to depress the noise in the observation vectors.In this paper,the least square method,improved by a sliding fixed-interval approach,is applied for the real-time noise reduction.In order to achieve a better-performed coarse alignment,the proposed method is utilized to de-noise the random noise in observation vectors.First,the principles of proposed SFI-LS algorithm and coarse alignment are devised.A simulation test and turntable experiment were executed to demonstrate the availability of the designed method.It is indicated that,from the results of the simulation and turntable tests,the designed algorithm can effectively reduce the random noise in observation vectors.Therefore,the proposed method can enhance the performance of coarse alignment availably.展开更多
基金This work was supported in part by the Inertial Technology Key Lab Fund 614250607011709in part by the Fundamental Research Funds for the Central Universities 2242018K40065,2242018K40066in part by the Foundation of Shanghai Key Laboratory of Navigation and Location Based Services,Key Laboratory Fund for Underwater Information and Control 614221805051809.
文摘The observation vectors in traditional coarse alignment contain random noise caused by the errors of inertial instruments,which will slow down the convergence rate.To solve the above problem,a real-time noise reduction method,sliding fixed-interval least squares(SFI-LS),is devised to depress the noise in the observation vectors.In this paper,the least square method,improved by a sliding fixed-interval approach,is applied for the real-time noise reduction.In order to achieve a better-performed coarse alignment,the proposed method is utilized to de-noise the random noise in observation vectors.First,the principles of proposed SFI-LS algorithm and coarse alignment are devised.A simulation test and turntable experiment were executed to demonstrate the availability of the designed method.It is indicated that,from the results of the simulation and turntable tests,the designed algorithm can effectively reduce the random noise in observation vectors.Therefore,the proposed method can enhance the performance of coarse alignment availably.