To determine the solubility of CO_(2)in n-dodecane at T=303.15-353.15 K,P≤11.00 MPa,an integrated fused silica capillary and in-situ Raman spectroscopy system was built.The Raman peak intensity ratio(I_(CO_(2))/IC-H)...To determine the solubility of CO_(2)in n-dodecane at T=303.15-353.15 K,P≤11.00 MPa,an integrated fused silica capillary and in-situ Raman spectroscopy system was built.The Raman peak intensity ratio(I_(CO_(2))/IC-H)between the upper band of CO_(2)Fermi diad(I_(CO_(2)))and the C-H stretching band of n-dodecane(IC-H)was employed to determine the solubility of CO_(2)in n-dodecane based on the calibrated correlation equation between the known CO_(2)molality in n-dodecane and the I_(CO_(2))/IC-Hratio with R^(2)=0.9998.The results indicated that the solubility of CO_(2)decreased with increasing temperature and increased with increasing pressure.The maximum CO_(2)molality(30.7314 mol/kg)was obtained at 303.15 K and7.00 MPa.Finally,a solubility prediction model(lnS=(P-A)/B)based on the relationship with temperature(T in K)and pressure(P in MPa)was developed,where S is CO_(2)molality,A=-8×10^(-6)T^(2)+0.0354T-8.1605,and B=0.0405T-10.756.The results indicated that the solubilities of CO_(2)derived from this model were in good agreement with the experimental data.展开更多
Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely use...Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER.展开更多
The interaction of proteins with salt ions plays an important role in life activities.We used butyramide as a model molecule to investigate the interaction of protein backbones with cations.The experiment was performe...The interaction of proteins with salt ions plays an important role in life activities.We used butyramide as a model molecule to investigate the interaction of protein backbones with cations.The experiment was performed in an aqueous solution of metal chloride using UV Raman spectroscopy.It was found that well-hydrated metal cations(Ca^(2+),Mg^(2+))tend to bind to C=O in the amide bond,resulting in redistribution of the amide I band peaks.Specifically,the peak intensity ratio of 1655 cm^(-1)to 1610 cm^(-1)increases significantly with increasing concentrations.However,this phenomenon is not obviously observed in NaCl solution.Furthermore,we studied the effect of salt ions on the water structures.The addition of Ca^(2+)and Mg^(2+)is beneficial to the enhancement of the water signal at the 3400 cm^(-1)position,while the Na^(+)at the same concentration is not obvious.The results have shown that the interaction between cations and amides satisfies the following order:Ca^(2+)>Mg^(2+)>Na^(+),which conforms to the Hofmeister series.展开更多
Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement e...Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 μl·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater.展开更多
Polyelectrolyte becomes more and more popular in electrocatalysis.The understanding of electrode/polyelectrolyte interfaces at the molecular level is important for guiding further the polyelectrolyte-based electrocata...Polyelectrolyte becomes more and more popular in electrocatalysis.The understanding of electrode/polyelectrolyte interfaces at the molecular level is important for guiding further the polyelectrolyte-based electrocatalysis.Herein,we demonstrate an in-situ surface-enhanced Raman spectroscopic method by using a three-electrode spectroelectrochemical cell towards characterizing the electrode/polyelectrolyte interfaces.The Ag/AgCl and Ag/Ag_(2)O electrodes are used as the reference electrode in the acidic and the alkaline systems,respectively.The working electrode is made of a transparent carbon thin film which loads the electrocatalysts.The applications of this method are demonstrated through the in-situ characterizations of the p-methylthiophenol adsorbed on the Au and Pt and the electrochemical oxidation of Au on polyelectrolyte membranes.The potential-dependent spectral features of these two systems show that this method is a powerful tool for investigating the electrode/polyelectrolyte interfaces in electrocatalysis.展开更多
Vickers indentation was introduced into the originally in-plane and out-of-plane poled PLZT ceramics.The Raman spectra were in-situ recorded at selected crack tips before and after the indentations,as well as after th...Vickers indentation was introduced into the originally in-plane and out-of-plane poled PLZT ceramics.The Raman spectra were in-situ recorded at selected crack tips before and after the indentations,as well as after the applications of external electric field.The results show that the changes in Raman intensities of optical modes could be sensitively related to 90° domain switching around the crack tips which are strongly dependent on the directions of original polarization and geometric locations.When the direction of electric field was perpendicular to the direction of original polarization,the 90° domain switching at crack tips of the Vickers indentation on the originally in-plane poled PLZT ceramics caused most significant change in the Raman intensity,which inhibited the crack growth.However,when the direction of electric field was parallel to the direction of original polarization,the growth of crack tips became predominantly without the 90° domain switching,which led to the crack growth.展开更多
Staling is an important issue that Chinese steamed bread(CSB)may encounter during storage,which significantly affects their taste,flavor,and nutritional value.The monitoring technology for rapid aging is particularly ...Staling is an important issue that Chinese steamed bread(CSB)may encounter during storage,which significantly affects their taste,flavor,and nutritional value.The monitoring technology for rapid aging is particularly important to effectively control the aging process of CSB,reduce quality deterioration,and promote the industrial production of CSB.Raman spectroscopy has been widely used in the study of food structure and properties due to its non-destructive and high-sensitivity characteristics,particularly demonstrating unique advantages in the analysis of starch structure.This study explored the possibility of analyzing the staling of CSB using Raman spectroscopy based on hardness and moisture content.Analysis of the correlation between the hardness of CSB and the full width at half maximum(FWHM)at 480 cm^(−1)during storage was conducted,and a significant positive correlation between them was found,with R^(2)above 0.8.Besides,nine characteristic peaks of CSB samples related to starch were selected for analysis.As the moisture content of CSB decreased,the peak intensities and areas of showed an upward trend during storage,with the best correlation coefficient above 0.8 revealed by linear regression analysis.Therefore,Raman spectra could be used as a potential method for the fast prediction of CSB staling.展开更多
In-situ time-resolved Raman spectroscopy(TRRS)has been applied on studies of electrochemical adsorption of thiocyanate at silver electrode during potential cycles and potential step.It is shown that some dynamic infor...In-situ time-resolved Raman spectroscopy(TRRS)has been applied on studies of electrochemical adsorption of thiocyanate at silver electrode during potential cycles and potential step.It is shown that some dynamic information about the adsorption and desorption processes can be obtained.展开更多
The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited o...The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.展开更多
Raman spectrum of molten cryolite was recorded. Based on the new understanding of the scattering coefficients, contents of various structural entities in acidic NaF-AlF3 melts at 942-1 024 ℃ in previous research were...Raman spectrum of molten cryolite was recorded. Based on the new understanding of the scattering coefficients, contents of various structural entities in acidic NaF-AlF3 melts at 942-1 024 ℃ in previous research were reanalyzed. The new quantitative analysis results show that when cryolite ratio(CR) is less than 2, AlF4- is the dominant anion in the melts, and its mole fraction is about 0.70 for melts with CR=1.5 and 0.50 for melts with CR=2. When CR is more than 2.5, the mole fraction of AlF6^3- is relatively large, which is around 0.45 for melts with CR=2.5. Ionic structure of Na3AlF6-Al2O3 melts was investigated by UV-Raman spectroscopy. Octahedral AlF6^3- and tetrahedral AlF4- are proved to exist with possible partial replacement of F- by O^2-. Al2O2F4^2- with a large scattering coefficient also exists in the melts in which alumina concentration is more than 4% (mass fraction). The increase of temperature causes blue-shift of the bands in the Raman spectra.展开更多
Nitrogen hydrate samples were synthesized using liquid nitrogen and powder ice at 16 MPa and 253 K. Confocal laser Raman spectroscopy was used to investigate the characteristics of nitrogen clathrate hydrates. The res...Nitrogen hydrate samples were synthesized using liquid nitrogen and powder ice at 16 MPa and 253 K. Confocal laser Raman spectroscopy was used to investigate the characteristics of nitrogen clathrate hydrates. The results show that the Raman peaks of N-N and O-H stretching vibration in nitrogen hydrates are observed at 2322.4 and 3092.1 cm^-1, respectively, which are very similar to those in natural air clathrate hydrates. For comparison, we measured the Raman peaks of N-N stretching vibration both in liquid nitrogen and nitrogen molecules saturated water, which appear at 2326.6 and 2325.0 cm^-1, respectively. The Raman spectroscopic observations on the dissociation process suggest that nitrogen molecules occupy both the large and small cages in nitrogen clathrate hydrates. However, only one Raman peak is observed for N N stretching vibration because the difference of the environment of nitrogen molecules between large and small cages is too small to be differentiated by Raman spectroscopy.展开更多
We re-evaluate the Raman spectroscopic quantification of the molar ratio and pressure for CH4–CO2 mixtures.Firstly,the Raman quantification factors of CH4 and CO2 increase with rising pressure at room temperature,ind...We re-evaluate the Raman spectroscopic quantification of the molar ratio and pressure for CH4–CO2 mixtures.Firstly,the Raman quantification factors of CH4 and CO2 increase with rising pressure at room temperature,indicating that Raman quantification of CH4/CO2 molar ratio can be applied to those fluid inclusions(FIs)with high internal pressure(i.e.,>15 MPa).Secondly,the v1(CH4)peak position shifts to lower wavenumber with increasing pressure at constant temperature,confirming that the v1(CH4)peak position can be used to calculate the fluid pressure.However,this method should be carefully calibrated before applying to FI analyses because large discrepancies exist among the reported v1(CH4)-P curves,especially in the highpressure range.These calibrations are applied to CH4-rich FIs in quartz veins of the Silurian Longmaxi black shales in southern Sichuan Basin.The vapor phases of these FIs are mainly composed of CH4 and minor CO2,with CO2 molar fractions from4.4%to 7.4%.The pressure of single-phase gas FI ranges from 103.65 to 128.35 MPa at room temperature,which is higher than previously reported.Thermodynamic calculations supported the presence of extremely high-pressure CH4-saturated fluid(218.03–256.82 MPa at 200°C),which may be responsible for the expulsion of CH4 to adjacent reservoirs.展开更多
Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropi...Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropic materials.However, polarized Raman measurements can be implemented by several different configurations and thus lead to different results. In this work, we systematically analyze three typical polarization configurations: 1) to change the polarization of the incident laser, 2) to rotate the sample, and 3) to set a half-wave plate in the common optical path of incident laser and scattered Raman signal to simultaneously vary their polarization directions. We provide a general approach of polarization analysis on the Raman intensity under the three polarization configurations and demonstrate that the latter two cases are equivalent to each other. Because the basal plane of highly ordered pyrolytic graphite(HOPG) exhibits isotropic feature and its edge plane is highly anisotropic, HOPG can be treated as a modelling system to study ARPR spectroscopy of twodimensional materials on their basal and edge planes. Therefore, we verify the ARPR behaviors of HOPG on its basal and edge planes at three different polarization configurations. The orientation direction of HOPG edge plane can be accurately determined by the angle-resolved polarization-dependent G mode intensity without rotating sample, which shows potential application for orientation determination of other anisotropic and vertically standing two-dimensional materials and other materials.展开更多
Oxidative stress is implicated in male infertility and significantly higher reactive oxygen species are detected in 25% of infertile males. Although different agents of various alternative medicines, including traditi...Oxidative stress is implicated in male infertility and significantly higher reactive oxygen species are detected in 25% of infertile males. Although different agents of various alternative medicines, including traditional Chinese medicine, have been tried with varying success, evidence remains limited on whether and how much herbs or supplements might help increase the anti-oxidant ability of the sperm. This study examined the anti-oxidative effects of icariin, a flavonoid isolated from Herba Epimedii, on the human sperm. We prepared the FeSO4/H202-damaged human sperms, which were co-cultured with icariin in vitro, and then observed the changes of the sperm by employing Raman mi- cro-spectroscopy. The results showed that Raman mapping with a 514 nm excitation laser allowed clear differentiation of the nucleus, neck, and, in particular, the mitochondria-rich middle piece of a human sperm cell. The effect oficariin on different organelles of the sperm was quantified by localized spectral Raman signatures obtained within milli-seconds, and icariin could keep the "Raman fingerprint" of the human sperm the same as the control groups, suggesting that icariin could protect the human sperm from being damaged by FeSO4/H202. Icariin may serve as a tonifying and replenishing agent of herbal origin for enhancing reproductive fimctions.展开更多
The molten mixtures of alkali metal fluorides and aluminum fluoride are applied as aluminum electrolytes or brazing fluxes.However,the presence of Al2F-7^-in such molten systems is disputed.In the present study,MF-AlF...The molten mixtures of alkali metal fluorides and aluminum fluoride are applied as aluminum electrolytes or brazing fluxes.However,the presence of Al2F-7^-in such molten systems is disputed.In the present study,MF-AlF3(M=K,Cs)systems with molar ratios<1 were studied by in-situ Raman spectroscopy and molecular simulation.The results show that,in addition to AlF6^(3-),AlF5^(2-),and AlF4^-,the systems also contained Al2F-7^-.The characteristic bands in the Raman spectra belonging to Al2F-7^-were located at about 225 cm^-1,315 cm^-1,479 cm^-1,and 720 cm^-1.There are two possible structures of Al2F-7^-,which belong to the D3d and D3hpoint groups.Both of these structures are linear,and their single-point energies were found to differ by only 0.31 kcal/mol.展开更多
The limited penetration of photons in biological tissue restricts the deep-tissue detection and imaging application.The micro-scale spatially offset Raman spectroscopy(micro-SORS)with an optical fiber probe,colleting ...The limited penetration of photons in biological tissue restricts the deep-tissue detection and imaging application.The micro-scale spatially offset Raman spectroscopy(micro-SORS)with an optical fiber probe,colleting photons from deeper regions by offsetting the position of laser excitation from the collection optics in a range of hundreds of microns,shows great potential to be integrated with endoscopy for inside-body noninvasive detection by circumventing this restric-tion,particularly with the combination of surface-enhanced Raman spectroscopy(SERS).However,a detailed tissue penetration study of micro-SORS in combination with SERS is still lacking.Herein,we compared the signal decay of enhanced Raman nanotags through the tissue phantom of agarose gel and the biological tissue of porcine muscle in the near-infrared(NIR)region using a portable Raman spectrometer with a micro-SORS probe(2.1 mm in diameter)and a conventional hand-held probe(9.7mm in diameter).Two kinds of Raman nanotags were prepared from gold nanorods decorated with the nonresonant(4-nitrobenzenethiol)or resonant Raman reporter molecules(IR-780 iodide).The SERS measurements show that the penetration depths of two Raman nanotags are both over 2 cm in agarose gel and 3 mm in porcine muscle.The depth could be improved to over 4 cm in agarose gel and 5 mm in porcine tissue when using the micro-SORS system.This demonstrates the superiority of optical-fiber micro-SORS system over the conventional Raman detection for the detection of nanotags in deeper layers in the turbid medium and biological tissue,offering the possibility of combining the micro-SORS technique with SERS for noninvasive in vivo endoscopy-integrated clinical application.展开更多
Using a Diamond Anvil Cell combined with micro Raman spectroscopy, the quantitative relations among Raman shifts, pressure and temperature were obtained for the vibration of O-H in H2O-NaCl, C-O in CO3^2-, S-O in SO4^...Using a Diamond Anvil Cell combined with micro Raman spectroscopy, the quantitative relations among Raman shifts, pressure and temperature were obtained for the vibration of O-H in H2O-NaCl, C-O in CO3^2-, S-O in SO4^2- and C-H in n-heptane-cyclohexane. Based on the quantitative relationships obtained, it is possible to determine the inner pressure for single fluid inclusions and to further determine the isochore of the systems. It is not only helpful to obtain the forming temperatures and pressures of the enclosing minerals, but also to be able to provide information concerning the chemical compositions of the fluid inclusions.展开更多
A newly developed Deep Ocean Compact Autonomous Raman Spectrometer (DOCARS) system is introduced and used for in-situ detection of acid radical ions in this paper. To evaluate the feasibility and capability of DOCAR...A newly developed Deep Ocean Compact Autonomous Raman Spectrometer (DOCARS) system is introduced and used for in-situ detection of acid radical ions in this paper. To evaluate the feasibility and capability of DOCARS for quantitative analysis of the acid radical ions in the deep ocean, extensive investigations have been carried out both in laboratory and sea trials during the development phase. In the laboratory investigations, Raman spectra of the prepared samples (acid radical ions solutions) were obtained, and analyzed using the method of internal standard normalization in data processing. The Raman signal of acid radical ions was normalized by that of water molecules. The calibration curve showed that the normalized Raman signal intensity of SO4^2-, NO3^-, and HCO^-3 increases linearly as the concentration rises with correlation coefficient R^2 of 0.99, 0.99, and 0.98 respectively. The linear function obtained from the calibration curve was then used for the analysis of the spectra ,data acquired in the sea trial under a simulating chemical field in the deep-sea environment. It was found that the detected concentration of NO3 according to the linear function can reflect the concentration changes of NO~ after the sample was released, and the detection accuracy of the DOCARS system for SO^2-_4 is 8%. All the results showed that the DOCARS system has great potential in quantitative detection of acid radical ions under the deep-sea environment, while the sensitivity of the DOCARS system is expected to be improved.展开更多
基金supported by the National Key Research and Development Program of China(2019YFE0117200)the Natural Science Foundation of China(41977304)
文摘To determine the solubility of CO_(2)in n-dodecane at T=303.15-353.15 K,P≤11.00 MPa,an integrated fused silica capillary and in-situ Raman spectroscopy system was built.The Raman peak intensity ratio(I_(CO_(2))/IC-H)between the upper band of CO_(2)Fermi diad(I_(CO_(2)))and the C-H stretching band of n-dodecane(IC-H)was employed to determine the solubility of CO_(2)in n-dodecane based on the calibrated correlation equation between the known CO_(2)molality in n-dodecane and the I_(CO_(2))/IC-Hratio with R^(2)=0.9998.The results indicated that the solubility of CO_(2)decreased with increasing temperature and increased with increasing pressure.The maximum CO_(2)molality(30.7314 mol/kg)was obtained at 303.15 K and7.00 MPa.Finally,a solubility prediction model(lnS=(P-A)/B)based on the relationship with temperature(T in K)and pressure(P in MPa)was developed,where S is CO_(2)molality,A=-8×10^(-6)T^(2)+0.0354T-8.1605,and B=0.0405T-10.756.The results indicated that the solubilities of CO_(2)derived from this model were in good agreement with the experimental data.
基金the immense support provided by the National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(RS-2023–00210114)the National R&D Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(2021M3D1A2051636)。
文摘Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER.
基金supported by the National Natural Science Foundation of China(No.62005108,No.62205134)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(No.21KJB140008)the Graduate Research and Practice Innovation Program of Jiangsu Normal University(No.2021XKT1201,No.2021XKT1204).
文摘The interaction of proteins with salt ions plays an important role in life activities.We used butyramide as a model molecule to investigate the interaction of protein backbones with cations.The experiment was performed in an aqueous solution of metal chloride using UV Raman spectroscopy.It was found that well-hydrated metal cations(Ca^(2+),Mg^(2+))tend to bind to C=O in the amide bond,resulting in redistribution of the amide I band peaks.Specifically,the peak intensity ratio of 1655 cm^(-1)to 1610 cm^(-1)increases significantly with increasing concentrations.However,this phenomenon is not obviously observed in NaCl solution.Furthermore,we studied the effect of salt ions on the water structures.The addition of Ca^(2+)and Mg^(2+)is beneficial to the enhancement of the water signal at the 3400 cm^(-1)position,while the Na^(+)at the same concentration is not obvious.The results have shown that the interaction between cations and amides satisfies the following order:Ca^(2+)>Mg^(2+)>Na^(+),which conforms to the Hofmeister series.
基金the National Natural Science Foundation of China(52304236)the Natural Science Foundation of Shandong Province(ZR2021QE076)for the financial support to this research extracted from the project.
文摘Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 μl·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater.
文摘Polyelectrolyte becomes more and more popular in electrocatalysis.The understanding of electrode/polyelectrolyte interfaces at the molecular level is important for guiding further the polyelectrolyte-based electrocatalysis.Herein,we demonstrate an in-situ surface-enhanced Raman spectroscopic method by using a three-electrode spectroelectrochemical cell towards characterizing the electrode/polyelectrolyte interfaces.The Ag/AgCl and Ag/Ag_(2)O electrodes are used as the reference electrode in the acidic and the alkaline systems,respectively.The working electrode is made of a transparent carbon thin film which loads the electrocatalysts.The applications of this method are demonstrated through the in-situ characterizations of the p-methylthiophenol adsorbed on the Au and Pt and the electrochemical oxidation of Au on polyelectrolyte membranes.The potential-dependent spectral features of these two systems show that this method is a powerful tool for investigating the electrode/polyelectrolyte interfaces in electrocatalysis.
基金Project(2006L2003)supported by the Fujian Key Laboratory of Advanced Materials,ChinaProject(10802070)supported by the National Natural Science Foundation of China
文摘Vickers indentation was introduced into the originally in-plane and out-of-plane poled PLZT ceramics.The Raman spectra were in-situ recorded at selected crack tips before and after the indentations,as well as after the applications of external electric field.The results show that the changes in Raman intensities of optical modes could be sensitively related to 90° domain switching around the crack tips which are strongly dependent on the directions of original polarization and geometric locations.When the direction of electric field was perpendicular to the direction of original polarization,the 90° domain switching at crack tips of the Vickers indentation on the originally in-plane poled PLZT ceramics caused most significant change in the Raman intensity,which inhibited the crack growth.However,when the direction of electric field was parallel to the direction of original polarization,the growth of crack tips became predominantly without the 90° domain switching,which led to the crack growth.
基金the support from Scientific Research Project of Wuhan Polytechnic University(532100308).
文摘Staling is an important issue that Chinese steamed bread(CSB)may encounter during storage,which significantly affects their taste,flavor,and nutritional value.The monitoring technology for rapid aging is particularly important to effectively control the aging process of CSB,reduce quality deterioration,and promote the industrial production of CSB.Raman spectroscopy has been widely used in the study of food structure and properties due to its non-destructive and high-sensitivity characteristics,particularly demonstrating unique advantages in the analysis of starch structure.This study explored the possibility of analyzing the staling of CSB using Raman spectroscopy based on hardness and moisture content.Analysis of the correlation between the hardness of CSB and the full width at half maximum(FWHM)at 480 cm^(−1)during storage was conducted,and a significant positive correlation between them was found,with R^(2)above 0.8.Besides,nine characteristic peaks of CSB samples related to starch were selected for analysis.As the moisture content of CSB decreased,the peak intensities and areas of showed an upward trend during storage,with the best correlation coefficient above 0.8 revealed by linear regression analysis.Therefore,Raman spectra could be used as a potential method for the fast prediction of CSB staling.
文摘In-situ time-resolved Raman spectroscopy(TRRS)has been applied on studies of electrochemical adsorption of thiocyanate at silver electrode during potential cycles and potential step.It is shown that some dynamic information about the adsorption and desorption processes can be obtained.
基金Project (51005154) supported by the National Natural Science Foundation of ChinaProject (12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission, ChinaProject (201104271) supported by the China Postdoctoral Science Foundation
文摘The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.
基金Project (51004034) supported by the National Natural Science, ChinaProject(N090302009) supported by the Fundamental Research Funds for the Central Universities, China
文摘Raman spectrum of molten cryolite was recorded. Based on the new understanding of the scattering coefficients, contents of various structural entities in acidic NaF-AlF3 melts at 942-1 024 ℃ in previous research were reanalyzed. The new quantitative analysis results show that when cryolite ratio(CR) is less than 2, AlF4- is the dominant anion in the melts, and its mole fraction is about 0.70 for melts with CR=1.5 and 0.50 for melts with CR=2. When CR is more than 2.5, the mole fraction of AlF6^3- is relatively large, which is around 0.45 for melts with CR=2.5. Ionic structure of Na3AlF6-Al2O3 melts was investigated by UV-Raman spectroscopy. Octahedral AlF6^3- and tetrahedral AlF4- are proved to exist with possible partial replacement of F- by O^2-. Al2O2F4^2- with a large scattering coefficient also exists in the melts in which alumina concentration is more than 4% (mass fraction). The increase of temperature causes blue-shift of the bands in the Raman spectra.
文摘Nitrogen hydrate samples were synthesized using liquid nitrogen and powder ice at 16 MPa and 253 K. Confocal laser Raman spectroscopy was used to investigate the characteristics of nitrogen clathrate hydrates. The results show that the Raman peaks of N-N and O-H stretching vibration in nitrogen hydrates are observed at 2322.4 and 3092.1 cm^-1, respectively, which are very similar to those in natural air clathrate hydrates. For comparison, we measured the Raman peaks of N-N stretching vibration both in liquid nitrogen and nitrogen molecules saturated water, which appear at 2326.6 and 2325.0 cm^-1, respectively. The Raman spectroscopic observations on the dissociation process suggest that nitrogen molecules occupy both the large and small cages in nitrogen clathrate hydrates. However, only one Raman peak is observed for N N stretching vibration because the difference of the environment of nitrogen molecules between large and small cages is too small to be differentiated by Raman spectroscopy.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41922023 and 41830425)the Fundamental Research Funds for the Central Universities(Grant Nos.020614380056 and 020614380078).
文摘We re-evaluate the Raman spectroscopic quantification of the molar ratio and pressure for CH4–CO2 mixtures.Firstly,the Raman quantification factors of CH4 and CO2 increase with rising pressure at room temperature,indicating that Raman quantification of CH4/CO2 molar ratio can be applied to those fluid inclusions(FIs)with high internal pressure(i.e.,>15 MPa).Secondly,the v1(CH4)peak position shifts to lower wavenumber with increasing pressure at constant temperature,confirming that the v1(CH4)peak position can be used to calculate the fluid pressure.However,this method should be carefully calibrated before applying to FI analyses because large discrepancies exist among the reported v1(CH4)-P curves,especially in the highpressure range.These calibrations are applied to CH4-rich FIs in quartz veins of the Silurian Longmaxi black shales in southern Sichuan Basin.The vapor phases of these FIs are mainly composed of CH4 and minor CO2,with CO2 molar fractions from4.4%to 7.4%.The pressure of single-phase gas FI ranges from 103.65 to 128.35 MPa at room temperature,which is higher than previously reported.Thermodynamic calculations supported the presence of extremely high-pressure CH4-saturated fluid(218.03–256.82 MPa at 200°C),which may be responsible for the expulsion of CH4 to adjacent reservoirs.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFA0301204)the National Natural Science Foundation of China(Grant Nos.11604326,11434010,11474277,and 11225421)
文摘Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropic materials.However, polarized Raman measurements can be implemented by several different configurations and thus lead to different results. In this work, we systematically analyze three typical polarization configurations: 1) to change the polarization of the incident laser, 2) to rotate the sample, and 3) to set a half-wave plate in the common optical path of incident laser and scattered Raman signal to simultaneously vary their polarization directions. We provide a general approach of polarization analysis on the Raman intensity under the three polarization configurations and demonstrate that the latter two cases are equivalent to each other. Because the basal plane of highly ordered pyrolytic graphite(HOPG) exhibits isotropic feature and its edge plane is highly anisotropic, HOPG can be treated as a modelling system to study ARPR spectroscopy of twodimensional materials on their basal and edge planes. Therefore, we verify the ARPR behaviors of HOPG on its basal and edge planes at three different polarization configurations. The orientation direction of HOPG edge plane can be accurately determined by the angle-resolved polarization-dependent G mode intensity without rotating sample, which shows potential application for orientation determination of other anisotropic and vertically standing two-dimensional materials and other materials.
基金supported partially by grants from the National Natural Sciences Foundation of China(Nos.81370705 and 81070487)China Postdoctoral Science Foundation(No.2013M542191)the Natural Science Foundation of Guangdong Province,China(Nos.S2012010009140 and S2013040016159)
文摘Oxidative stress is implicated in male infertility and significantly higher reactive oxygen species are detected in 25% of infertile males. Although different agents of various alternative medicines, including traditional Chinese medicine, have been tried with varying success, evidence remains limited on whether and how much herbs or supplements might help increase the anti-oxidant ability of the sperm. This study examined the anti-oxidative effects of icariin, a flavonoid isolated from Herba Epimedii, on the human sperm. We prepared the FeSO4/H202-damaged human sperms, which were co-cultured with icariin in vitro, and then observed the changes of the sperm by employing Raman mi- cro-spectroscopy. The results showed that Raman mapping with a 514 nm excitation laser allowed clear differentiation of the nucleus, neck, and, in particular, the mitochondria-rich middle piece of a human sperm cell. The effect oficariin on different organelles of the sperm was quantified by localized spectral Raman signatures obtained within milli-seconds, and icariin could keep the "Raman fingerprint" of the human sperm the same as the control groups, suggesting that icariin could protect the human sperm from being damaged by FeSO4/H202. Icariin may serve as a tonifying and replenishing agent of herbal origin for enhancing reproductive fimctions.
基金the National Natural Science Foundation of China(grant no.51474060)the National Key R&D Program of China(grant no.2017 YFC0805100)+1 种基金the National Natural Science Foundation of Liaoning Province(China)(grant no.2019-MS-129)the Fundamental Research Funds for the Central Universities of China(grant no.N162502002).
文摘The molten mixtures of alkali metal fluorides and aluminum fluoride are applied as aluminum electrolytes or brazing fluxes.However,the presence of Al2F-7^-in such molten systems is disputed.In the present study,MF-AlF3(M=K,Cs)systems with molar ratios<1 were studied by in-situ Raman spectroscopy and molecular simulation.The results show that,in addition to AlF6^(3-),AlF5^(2-),and AlF4^-,the systems also contained Al2F-7^-.The characteristic bands in the Raman spectra belonging to Al2F-7^-were located at about 225 cm^-1,315 cm^-1,479 cm^-1,and 720 cm^-1.There are two possible structures of Al2F-7^-,which belong to the D3d and D3hpoint groups.Both of these structures are linear,and their single-point energies were found to differ by only 0.31 kcal/mol.
基金This work was financially supported by National Natural Science Foundation of China(Nos.81871401 and 81901786)China Postdoctoral Science Foundation(Nos.2018M640395 and 2019T120343)+3 种基金the Science and Technology Commission of Shanghai Municipality(No.19441905300)Innovation Research Plan supported by Shanghai Municipal Education Commission(No.ZXWF082101)Shanghai Jiao Tong University(Nos.YG2017MS54 and YG2019QNA28)the Shanghai Key Laboratory of Gynecologic Oncology.
文摘The limited penetration of photons in biological tissue restricts the deep-tissue detection and imaging application.The micro-scale spatially offset Raman spectroscopy(micro-SORS)with an optical fiber probe,colleting photons from deeper regions by offsetting the position of laser excitation from the collection optics in a range of hundreds of microns,shows great potential to be integrated with endoscopy for inside-body noninvasive detection by circumventing this restric-tion,particularly with the combination of surface-enhanced Raman spectroscopy(SERS).However,a detailed tissue penetration study of micro-SORS in combination with SERS is still lacking.Herein,we compared the signal decay of enhanced Raman nanotags through the tissue phantom of agarose gel and the biological tissue of porcine muscle in the near-infrared(NIR)region using a portable Raman spectrometer with a micro-SORS probe(2.1 mm in diameter)and a conventional hand-held probe(9.7mm in diameter).Two kinds of Raman nanotags were prepared from gold nanorods decorated with the nonresonant(4-nitrobenzenethiol)or resonant Raman reporter molecules(IR-780 iodide).The SERS measurements show that the penetration depths of two Raman nanotags are both over 2 cm in agarose gel and 3 mm in porcine muscle.The depth could be improved to over 4 cm in agarose gel and 5 mm in porcine tissue when using the micro-SORS system.This demonstrates the superiority of optical-fiber micro-SORS system over the conventional Raman detection for the detection of nanotags in deeper layers in the turbid medium and biological tissue,offering the possibility of combining the micro-SORS technique with SERS for noninvasive in vivo endoscopy-integrated clinical application.
基金supported by Chinese Natural Science Foundation (No.40873047)
文摘Using a Diamond Anvil Cell combined with micro Raman spectroscopy, the quantitative relations among Raman shifts, pressure and temperature were obtained for the vibration of O-H in H2O-NaCl, C-O in CO3^2-, S-O in SO4^2- and C-H in n-heptane-cyclohexane. Based on the quantitative relationships obtained, it is possible to determine the inner pressure for single fluid inclusions and to further determine the isochore of the systems. It is not only helpful to obtain the forming temperatures and pressures of the enclosing minerals, but also to be able to provide information concerning the chemical compositions of the fluid inclusions.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(Nos.2006AA09Z243,2012AA09A405)
文摘A newly developed Deep Ocean Compact Autonomous Raman Spectrometer (DOCARS) system is introduced and used for in-situ detection of acid radical ions in this paper. To evaluate the feasibility and capability of DOCARS for quantitative analysis of the acid radical ions in the deep ocean, extensive investigations have been carried out both in laboratory and sea trials during the development phase. In the laboratory investigations, Raman spectra of the prepared samples (acid radical ions solutions) were obtained, and analyzed using the method of internal standard normalization in data processing. The Raman signal of acid radical ions was normalized by that of water molecules. The calibration curve showed that the normalized Raman signal intensity of SO4^2-, NO3^-, and HCO^-3 increases linearly as the concentration rises with correlation coefficient R^2 of 0.99, 0.99, and 0.98 respectively. The linear function obtained from the calibration curve was then used for the analysis of the spectra ,data acquired in the sea trial under a simulating chemical field in the deep-sea environment. It was found that the detected concentration of NO3 according to the linear function can reflect the concentration changes of NO~ after the sample was released, and the detection accuracy of the DOCARS system for SO^2-_4 is 8%. All the results showed that the DOCARS system has great potential in quantitative detection of acid radical ions under the deep-sea environment, while the sensitivity of the DOCARS system is expected to be improved.