期刊文献+
共找到348篇文章
< 1 2 18 >
每页显示 20 50 100
Numerical parametric study on the influence of location and inclination of large-scale asperities on the shear strength of concreterock interfaces of small buttress dams 被引量:1
1
作者 Dipen Bista Adrian Ulfberg +3 位作者 Leif Lia Jaime Gonzalez-Libreros Fredrik Johansson Gabriel Sas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4319-4329,共11页
When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by curre... When assessing the sliding stability of a concrete dam,the influence of large-scale asperities in the sliding plane is often ignored due to limitations of the analytical rigid body assessment methods provided by current dam assessment guidelines.However,these asperities can potentially improve the load capacity of a concrete dam in terms of sliding stability.Although their influence in a sliding plane has been thoroughly studied for direct shear,their influence under eccentric loading,as in the case of dams,is unknown.This paper presents the results of a parametric study that used finite element analysis(FEA)to investigate the influence of large-scale asperities on the load capacity of small buttress dams.By varying the inclination and location of an asperity located in the concrete-rock interface along with the strength of the rock foundation material,transitions between different failure modes and correlations between the load capacity and the varied parameters were observed.The results indicated that the inclination of the asperity had a significant impact on the failure mode.When the inclinationwas 30and greater,interlocking occurred between the dam and foundation and the governing failure modes were either rupture of the dam body or asperity.When the asperity inclination was significant enough to provide interlocking,the load capacity of the dam was impacted by the strength of the rock in the foundation through influencing the load capacity of the asperity.The location of the asperity along the concrete-rock interface did not affect the failure mode,except for when the asperity was located at the toe of the dam,but had an influence on the load capacity when the failure occurred by rupture of the buttress or by sliding.By accounting for a single large-scale asperity in the concrete-rock interface of the analysed dam,a horizontal load capacity increase of 30%e160%was obtained,depending on the inclination and location of the asperity and the strength of the foundation material. 展开更多
关键词 Concrete dam Buttress dam SLIDING Shear strength Concrete-rock interface Asperity inclination Asperity location
下载PDF
Effect of Bogie Cavity End Wall Inclination on Flow Field and Aerodynamic Noise in the Bogie Region of High-Speed Trains
2
作者 Jiawei Shi Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2175-2195,共21页
Combining the detached eddy simulation(DES)method and Ffowcs Williams-Hawkings(FW-H)equation,the effect of bogie cavity end wall inclination on the flow field and aerodynamic noise in the bogie region is numerically s... Combining the detached eddy simulation(DES)method and Ffowcs Williams-Hawkings(FW-H)equation,the effect of bogie cavity end wall inclination on the flow field and aerodynamic noise in the bogie region is numerically studied.First,the simulation is conducted based on a simplified cavity-bogie model,including five cases with different inclination angles of the front and rear walls of the cavity.By comparing and analyzing the flow field and acoustic results of the five cases,the influence of the regularity and mechanism of the bogie cavity end wall inclination on the flow field and the aerodynamic noise of the bogie region are revealed.Then,the noise reduction strategy determined by the results of the simplified cavity-bogie model is applied to a three-car marshaling train model to verify its effectiveness when applied to the real train.The results reveal that the forward inclination of the cavity front wall enlarges the influence area of shear vortex structures formed at the leading edge of the cavity and intensifies the interaction between the vortex structures and the front wheelset,frontmotor,and front gearbox,resulting in the increase of the aerodynamic noise generated by the bogie itself.The backward inclination of the cavity rear wall is conducive to guiding the vortex structures flow out of the cavity and weakening the interaction between the shear vortex structures and the cavity rear wall,leading to the reduction of the aerodynamic noise generated by the bogie cavity.Inclining the rear end wall of the foremost bogie cavity of the head car is a feasible aerodynamic noise reduction measure for high-speed trains. 展开更多
关键词 BOGIE cavity flow aerodynamic noise end wall inclination
下载PDF
Effect of Nozzle Inclination Angle on Fuel-Air Mixing and Combustion in a Heavy Fuel Engine
3
作者 Zhigang Wang Bin Zheng +4 位作者 Peidong Zhao Baoli Wang Fanyan Meng Wenke Xu Jian Meng 《Fluid Dynamics & Materials Processing》 EI 2024年第2期365-382,共18页
Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-me... Heavy-fuel engines are widely used in UAVs(Unmanned Autonomous Vehicles)because of their reliability and high-power density.In this study,a combustion model for an in-cylinder direct injection engine has been imple-mented using the AVL FIRE software.The effects of the angle of nozzle inclination on fuel evaporation,mixture distribution,and combustion in the engine cylinder have been systematically studied at 5500 r/min and consider-ing full load cruise conditions.According to the results,as the angle of nozzle inclination increases,the maximum combustion explosion pressure in the cylinderfirst increases and then it decreases.When the angle of nozzle incli-nation is less than 45°,the quality of the mixture in the cylinder and the combustion performance can be improved by increasing the angle.When the angle of nozzle inclination is greater than 45°,however,the mixture unevenness increases slightly with the angle,leading to a deterioration of the combustion performances.When the angle of nozzle inclination is between 35°and 55°,the overall combustion performance of the engine is rela-tively good.When the angle of nozzle inclination is 45°,the combustion chamber’s geometry and the cylinder’s airflow are well matched with the fuel spray,and the mixture quality is the best.Compared with 25°,the peak heat release rate increases by 20%,and the maximum combustion burst pressure increases by 5.5%. 展开更多
关键词 Aviation heavy fuel piston engine nozzle inclination angle COMBUSTION fuel-air mixing
下载PDF
Experimental Study on Effect of Inclination Angle on Bubble Collapse near Attached Air Bubble
4
作者 WANG Jia-xia WU Shi-zeng +2 位作者 LIU Kun JIANG Ming-zuo WANG Zi-li 《China Ocean Engineering》 SCIE EI CSCD 2023年第5期753-767,共15页
Experiments were conducted to investigate the dynamics of an oscillating bubble generated by a spark in the presence of an inclined attached air bubble.The study primarily focused on the influence of the inclination a... Experiments were conducted to investigate the dynamics of an oscillating bubble generated by a spark in the presence of an inclined attached air bubble.The study primarily focused on the influence of the inclination angle on the behavior of bubble jetting orientation,air bubble shape modes,and motion characteristics of the interaction between the two bubbles.Various complex bubble jetting behaviors were observed,including the presence of multiple types of bubble jetting directions,bubble splitting,and multidirectional jets.Four types of air bubble shapes were defined,namely inclined cup cover-shaped(with and without splitting),double-peaked cup cover-shaped,and inclined L-shaped air bubbles.The formation of different types of bubble jets was analyzed using the vector synthesis principle of the Bjerknes force exerted by the inclined attached air bubble and a steel plate.To describe the diverse orientations of bubble jetting and air bubble shapes,new parameters namely the dimensionless spark bubble oscillation time T^(*)and volume ratio V^(*)that consider the inclination angle are proposed.The findings of this investigation contribute to the existing knowledge and have the potential to further enhance methods for mitigating cavitation damage in marine,hydraulic machinery systems,and medical fields.l fields. 展开更多
关键词 spark-generated bubble experiment inclination angle bubble jet air bubble shape bubble dynamics
下载PDF
Influence of the Inclination Angle on Mixed Convection and Heat Transfer in a“T”Shaped Double Enclosure
5
作者 M’Barka Mourabit Meryam Meknassi +3 位作者 Soukaina Fekkar Soumia Mordane Hicham Rouijaa El Alami Semma 《Fluid Dynamics & Materials Processing》 EI 2023年第7期1753-1774,共22页
The effect of the tilt angle on mixed convection and related heat transfer in a“T”shaped double enclosure with four heated obstacles on the bottom surface is numerically investigated.The considered obstacles are con... The effect of the tilt angle on mixed convection and related heat transfer in a“T”shaped double enclosure with four heated obstacles on the bottom surface is numerically investigated.The considered obstacles are constantly kept at a relatively high(fixed)temperature,while the cavity’s upper wall is cooled.The finite volume approach is used to solve the mass,momentum,and energy equations with the SIMPLEC algorithm being exploited to deal with the pressure-velocity coupling.Emphasis is put on the influence of the tilt angle on the solution symmetry,flow structure,and heat exchange through the walls.The following parameters and related ranges are considered:Rayleigh number 104≤Ra≤5.105,tilt angle 0°≤φ≤90°,Reynolds number 100≤Re≤1000,Prandtl number Pr=0.72,block height B=0.5,opening width C=0.15,and distance between blocks D=0.5.The results reveal different branches of solutions on varying Re andφ.They also show that the symmetry of the solution regarding the P_(2)axis is retained for all cases with no tilt and for values of Re between 100 and 1000. 展开更多
关键词 Mixed convection heat transfer inclination angle “T”shaped double cavity
下载PDF
Inclination Towards Good——An Analysis of and Comparison Between the Characters in the Scarlet Letter
6
作者 高芬 《陕西师范大学学报(哲学社会科学版)》 CSSCI 北大核心 2002年第S3期276-280,共5页
Nathaniel Hawthorne not only strongly condemns the belief that men are more evil than good, but also conveys the inclination towards good through the Scarlet Letter. The characters like Hester Prynne, Dimmesdale, ... Nathaniel Hawthorne not only strongly condemns the belief that men are more evil than good, but also conveys the inclination towards good through the Scarlet Letter. The characters like Hester Prynne, Dimmesdale, Chillingworth and even the community are the specific examples. Despite the fact that good and evil coexist in human nature, human beings are liable to be strongly affected and controlled by the striving towards good. 展开更多
关键词 inclination GOOD sin HESTER DIMMESDALE CHILLINGWORTH Community
下载PDF
Rice leaf inclination2, a VIN3-1ike protein, regulates leaf angle through modulating cell division of the collar 被引量:36
7
作者 Shu-Qing Zhao Jiang Hu +2 位作者 Long-Biao Guo Qian Qian Hong-Wei Xue 《Cell Research》 SCIE CAS CSCD 2010年第8期935-947,共13页
As an important agronomic trait, inclination of leaves is crucial Ior crop architecture and grain yields. 10 understand the molecular mechanism controlling rice leaf angles, one rice leaf inclination2 (1c2, three all... As an important agronomic trait, inclination of leaves is crucial Ior crop architecture and grain yields. 10 understand the molecular mechanism controlling rice leaf angles, one rice leaf inclination2 (1c2, three alleles) mutant was identified and functionally characterized. Compared to wild-type plants, lc2 mutants have enlarged leaf angles due to increased cell division in the adaxial epidermis of lamina joint. The LC2 gene was isolated through positional cloning, and encodes a vernalization insensitive 3-like protein. Complementary expression of LC2 reversed the enlarged leaf angles of lc2 plants, confirming its role in controlling leaf inclination. LC2 is mainly expressed in the lamina joint during leaf development, and particularly, is induced by the phytohormones abscisic acid, gibberellic acid, auxin, and brassinosteroids. LC2 is localized in the nucleus and defects of LC2 result in altered expression of cell division and hormone-responsive genes, indicating an important role of LC2 in regulating leaf inclination and mediating hormone effects. 展开更多
关键词 leaf inclination RICE VIN3-1ike protein cell division LC2
下载PDF
Effect of bolt inclination angle on shear behavior ofbolted joints under CNL and CNS conditions 被引量:14
8
作者 CUI Guo-jian ZHANG Chuan-qing +3 位作者 CHEN Jian-lin YANG Fan-jie ZHOU Hui LU Jing-jing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期937-950,共14页
Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting perfo... Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting performance.In this study,a new artificial molding method based on 3D scanning and printing technology was first proposed to prepare bolted joints with an inclined bolt.Then,the effects of the bolt inclination angle and boundary conditions on the shear behavior and failure characteristic of bolted joints were addressed by conducting direct shear tests under both CNL and CNS conditions.Results indicated that rock bolt could significantly improve the shear behavior of rock joints,especially in the post-yield deformation region.With the increase of bolt inclination angle,both the maximum shear stress and the maximum friction coefficient increased first and then decreased,while the maximum normal displacement decreased monotonously.Compared with CNL conditions,the maximum shear stress was larger,whereas the maximum normal displacement and friction coefficient were smaller under the CNS conditions.Furthermore,more asperity damage was observed under the CNS conditions due to the increased normal stress on the shear plane. 展开更多
关键词 bolted joints bolt inclination angle constant normal load(CNL)boundary conditions constant normal stiffness(CNS)boundary conditions direct shear test asperity damage
下载PDF
An efficient algorithm to compute transient pressure responses of slanted wells with arbitrary inclination in reservoirs 被引量:3
9
作者 Wang Haitao Zhang Liehui +2 位作者 Guo Jingjing Liu Qiguo He Xinming 《Petroleum Science》 SCIE CAS CSCD 2012年第2期212-222,共11页
Compared with vertical and horizontal wells, the solution and computation of transient pressure responses of slanted wells are more complex. Vertical and horizontal wells are both simplified cases of slanted wells at ... Compared with vertical and horizontal wells, the solution and computation of transient pressure responses of slanted wells are more complex. Vertical and horizontal wells are both simplified cases of slanted wells at particular inclination, so the model for slanted wells is more general and more complex than other models for vertical and horizontal wells. Many authors have studied unsteady-state flow of fluids in slanted wells and various solutions have been proposed. However, until now, few of the published results pertain to the computational efficiency. Whether in the time domain or in the Laplace domain, the computation of integration of complex functions is necessary in obtaining pressure responses of slanted wells, while the computation of the integration is complex and time-consuming. To obtain a perfect type curve the computation time is unacceptable even with an aid of high-speed computers. The purpose of this paper is to present an efficient algorithm to compute transient pressure distributions caused by slanted wells in reservoirs. Based on rigorous derivation, the transient pressure solution for slanted wells of any inclination angle is presented. Assuming an infinite-conductivity wellbore, the location of the equivalent-pressure point is determined. More importantly, according to the characteristics of the integrand in a transient pressure solution for slanted wells, the whole integral interval is partitioned into several small integral intervals, and then the method of variable substitution and the variable step-size piecewise numerical integration are employed. The amount of computation is significantly reduced and the computational efficiency is greatly improved. The algorithm proposed in this paper thoroughly solved the difficulty in the efficient and high-speed computation of transient pressure distribution of slanted wells with any inclination angle. 展开更多
关键词 Arbitrary inclination slanted well transient pressure behavior efficient algorithm variable step-size piecewise integration
下载PDF
Rice OsIAA6 interacts with OsARF1 and regulates leaf inclination 被引量:2
10
作者 Meiqing Xing Wei Wang +1 位作者 Xing Fang Hongwei Xue 《The Crop Journal》 SCIE CSCD 2022年第6期1580-1588,共9页
Leaf inclination,a component of crop architecture,influences photosynthetic efficiency and planting density.Various factors,particularly the phytohormones auxin and brassinosteroids(BRs),function in regulating lamina ... Leaf inclination,a component of crop architecture,influences photosynthetic efficiency and planting density.Various factors,particularly the phytohormones auxin and brassinosteroids(BRs),function in regulating lamina joint bending,and understanding of the genetic control of leaf inclination will help to elucidate the relevant regulatory network.Screening a rice T-DNA insertion population revealed a mutant that was insensitive to auxin and displayed an enlarged leaf angle due to increased cell length on the adaxial side of the lamina joint.Genetic analysis revealed that the increased leaf inclination was caused by T-DNA insertion in the promoter region of OsIAA6,resulting in elevated OsIAA6 expression.Further study showed that OsIAA6 interacts with OsARF1 to suppress auxin signaling and regulates leaf inclination.OsIAA6 mediates the BR effects on lamina joint development,and OsBZR1,the key transcription factor in BR signaling,binds directly to the promoter of OsIAA6 to stimulate its transcription.These results indicate the roles of the OsIAA6-OsARF1 module in regulating rice leaf inclination and suggest the synergistic effects of the phytohormones auxin and BR. 展开更多
关键词 RICE OsARF1 OsIAA6 Leaf inclination AUXIN BRASSINOSTEROIDS
下载PDF
Parametric Study on the Effects of Pile Inclination Angle on the Response of Batter Piles in Offshore Jacket Platforms 被引量:2
11
作者 Ali Aminfar Hamid Ahmadi Mohammad Hossein Aminfar 《Journal of Marine Science and Application》 CSCD 2016年第2期193-200,共8页
Offshore jacket-type platforms are attached to the seabed by long batter piles. In this paper, results from a finite element analysis, verified against experimental data, are used to study the effect of the pile's in... Offshore jacket-type platforms are attached to the seabed by long batter piles. In this paper, results from a finite element analysis, verified against experimental data, are used to study the effect of the pile's inclination angle, and its interaction with the geometrical properties of the pile and the geotechnical characteristics of the surrounding soil on the behavior of the inclined piles supporting the jacket platforms. Results show that the inclination angle is one of the main parameters affecting the behavior of an offshore pile. We investigated the effect of the inclination angle on the maximum von Mises stress, maximum von Mises elastic strain, maximum displacement vector sum, maximum displacement in the horizontal direction, and maximum displacement in the vertical direction. Results indicate that the pile's operationally optimal degree of inclination is approximately 5°. By exceeding this value, the instability in the surrounding soil under applied loads grows extensively in all the geotechnical properties considered. Cohesive soils tend to display poorer results compared to grained soils. 展开更多
关键词 PILE batter pile inclination angle finite element analysis offshore jacket platform pile-soil interaction SETTLEMENT offshore piles
下载PDF
Simulation of Canopy Leaf Inclination Angle in Rice 被引量:1
12
作者 ZHANG Xiao-cui LU Chuan-gen +3 位作者 HU Ning YAO Ke-min ZHANG Qi-jun DAI Qi-gen 《Rice science》 SCIE 2013年第6期434-441,共8页
A leaf inclination angle distribution model, which is applicable to simulate leaf inclination angle distribution in six heights of layered canopy at different growth stages, was established by component factors affect... A leaf inclination angle distribution model, which is applicable to simulate leaf inclination angle distribution in six heights of layered canopy at different growth stages, was established by component factors affecting plant type in rice. The accuracy of the simulation results was validated by measured values from a field experiment. The coefficient of determination (R2) and the root mean square error (RMSE) between the simulated and measured values were 0.9472 and 3.93%, respectively. The simulation results showed that the distribution of leaf inclination angles differed among the three plant types. The leaf inclination angles were larger in the compact variety Liangyoupeijiu with erect leaves than in the loose variety Shanyou 63 with droopy leaves and the intermediate variety Liangyou Y06. The leaf inclination angles were distributed in the lower range in Shanyou 63, which matched up with field measurements. The distribution of leaf inclination angles in the same variety changed throughout the seven growth stages. The leaf inclination angles enlarged gradually from transplanting to booting. During the post-booting period, the leaf inclination angle increased in Shanyou 63 and Liangyou Y06, but changed little in Liangyoupeijiu. At every growth stage of each variety, canopy leaf inclination angle distribution on the six heights of canopy layers was variable. As canopy height increased, the layered leaf area index (LAI) decreased in all the three plant types. However, while the leaf inclination angles showed little change in Liangyoupeijiu, they became larger in Shanyou 63 but smaller in Liangyou Y06. The simulation results used in the constructed model were very similar to the actual measurement values. The model provides a method for estimating canopy leaf inclination angle distribution in rice production. 展开更多
关键词 RICE leaf inclination angle SIMULATION plant type CANOPY
下载PDF
Lubrication characteristics of external return spherical hinge pair of axial piston pump or motor under combined action of inclination and offset distance 被引量:1
13
作者 WANG Lei DENG Hai-shun +2 位作者 GUO Yong-chun WANG Chuan-li HU Cong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2375-2393,共19页
External return mechanism is a mechanical structure applied to axial piston pumps.To study its lubrication characteristics,the Reynolds equation applied to an external return spherical hinge pair was deduced based on ... External return mechanism is a mechanical structure applied to axial piston pumps.To study its lubrication characteristics,the Reynolds equation applied to an external return spherical hinge pair was deduced based on the vector equation of relative-motion velocity of the external return spherical hinge pair under the influence of external swash plate inclination and offset distance.The results show that the total friction,axial leakage flow,and maximum value of the maximum oil-film pressure increase with increasing pump-shaft speed and decrease with increasing offset distance in one working cycle when the external-swash-plate inclination is constant.However,the varying offset distance has little effect on the axial leakage flow.The maximum value of the maximum oil-film pressure decreases with increasing external-swash-plate inclination and the total leakage flow increases with increasing external-swash-plate inclination in one working cycle when the offset distance is constant.It can be seen that the abovementioned parameters are important factors that affect the lubrication characteristics of external return spherical hinge pairs.Therefore,the complex effects of different coupling parameters should be comprehensively considered in the design of the external return mechanism. 展开更多
关键词 axial piston motor or pump external return mechanism external swash plate inclination offset distance lubrication performance
下载PDF
Simulation of earth gravity field using satellite constellation with variable inclination configuration 被引量:1
14
作者 Qian Zhao Weiping Jiang +1 位作者 Xinyu Xu Xiancai Zou 《Geodesy and Geodynamics》 CSCD 2021年第5期323-328,共6页
Based on a satellite constellation composed of two GRACE-type satellite formations with different inclinations(near polar orbit + low inclination) and the theory of repeat orbit cycle, we discuss the methods for selec... Based on a satellite constellation composed of two GRACE-type satellite formations with different inclinations(near polar orbit + low inclination) and the theory of repeat orbit cycle, we discuss the methods for selecting medium-low inclinations for global and local gravity fields. The effects of this constellation configuration on gravity field inversion are comparatively analyzed using a whole-course dynamics simulation. The results show that compared with the single GRACE-type satellite formation,the use of satellite constellations with different inclination configurations improves the gravity solution precision by 34%. The inclusion of multi-directional observations can improve the spatio-temporal resolution of the satellite missions, and yield gravity field solutions with higher isotropic sensitivity.Furthermore, it is necessary to select the optimal low inclination according to the study area, which will have a significant influence on the gravity field solution. 展开更多
关键词 Satellite constellation Low inclination Multi-directional observations Inversion of gravity field
下载PDF
Effect of single dead end entry inclination on DPM plume dispersion 被引量:3
15
作者 Zheng Yi Lan Hai +2 位作者 Thiruvengadam Magesh Tien Jerry C. Li Ying 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期401-406,共6页
Diesel particulate matter(DPM) is a by-product from operating diesel engines. Since diesel powers are one of the major sources of energy for mobile underground mining equipment, the adverse health effects of DPM are o... Diesel particulate matter(DPM) is a by-product from operating diesel engines. Since diesel powers are one of the major sources of energy for mobile underground mining equipment, the adverse health effects of DPM are of a great concern. This paper used computational fluid dynamics(CFD) method to study the effect of entry inclination on DPM plume distribution in a dead end entry. An upward mining face and a downward mining face were built with a truck and a loader in loading operation close to the face area. A species transport model with incorporated buoyancy effect was used to examine the DPM dispersion pattern for the above steady-state scenarios. High DPM and temperature regions were identified for the two different faces. The model was used to assess the role of auxiliary ventilation in reducing DPM exposures of underground miners working in those entries. In this study, it is suggested to provide local ventilation at least three times of the diesel exhaust rate to be able to lower the average DPM level for the mining upward face. The requirement for local ventilation is much less for the mining downward face. This can provide guidelines for good working practices and selection of diesel emission reduction technologies underground. 展开更多
关键词 Entry inclination Diesel particulate matter Computational fluid dynamics Ventilation
下载PDF
Experimental Study on the Effect of the Inclination Angle on the Scouring Efficiency of Submerged Water Jets 被引量:1
16
作者 Zhibin Zhang Yongjun Gong +2 位作者 Liping Zhang Min Xv Gaofeng Shang 《Fluid Dynamics & Materials Processing》 EI 2022年第5期1363-1371,共9页
The effects of oblique submerged scouring jets on sand beds with various particle sizes have been studied experimentally.In particular,a total of 25 experiments have been carried out to explore the influences of the j... The effects of oblique submerged scouring jets on sand beds with various particle sizes have been studied experimentally.In particular,a total of 25 experiments have been carried out to explore the influences of the jet angle and application time on the considered submerged sand beds.Test results conducted with a specially-designed device have shown that the scouring efficiency attains a maximum when the inclination angle is in the range between 15°and 20°and then it decreases when the inclination angle becomes higher. 展开更多
关键词 Water jet scour angle of inclination scouring efficiency experimental study
下载PDF
Deflection Measurement for Bridges Based on Secant Inclination 被引量:1
17
作者 Yi Wu Jing Li 《Open Journal of Civil Engineering》 2021年第4期427-433,共7页
Deflection is a significant indicator of bridge’s strength and its whole stiffness, so the research on deflection measurement is an important aspect of bridge health monitoring. There have existed many measurement me... Deflection is a significant indicator of bridge’s strength and its whole stiffness, so the research on deflection measurement is an important aspect of bridge health monitoring. There have existed many measurement methods of bridge deflection so far, while inclination method is gradually catching more and more attention for its fair obviously comprehensive advantages. However, the inclination method at present focuses on measuring the rotation of bridge’s section at testing point, that is, the tangent angle of deflection curve. With the tangent angle, the deflection curve can be determined by the methods of curve fitting or (and) integration or conjugate beam. The methods mentioned above, are not only complicated in calculation, but also bad in accuracy. The deflection measurement method proposed by this paper is based on measuring the inclination of two points initiatively in horizontal line, that is, the secant angle of the deflection curve, and on the simple triangle function operation. The proposed method is simple in theory, but good in accuracy for either static or dynamic load. The numerical simulation suggests that the error of the proposed method is less than 1%. 展开更多
关键词 BRIDGE DEFLECTION inclination SECANT MEASUREMENT
下载PDF
Inclination Deepening of Paleogene Red Beds in the Qiangtang Terrane,the Hinterland of the Qinghai-Tibet Plateau
18
作者 Bo Ran,Zhifei Liu,Chengshan Wang,Xixi Zhao,Yalin Li 1.College of Earth Sciences,Chengdu University of Technology,Chengdu 610059,China. 2.Laboratory of Marine Geology,Tongji University,Shanghai 200092,China 3.State Key Laboratory of Geological Processes and Mineral Resources,Research Center for Tibetan Plateau Geology,China University of Geosciences,Beijing 100083,China 4.Institute of Tectonics and Earth Sciences Department,University of California,Santa Cruz,CA 95064,USA 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期94-95,共2页
In this research,one hundred and ten samples(ten sampling localities)were drilled by a portable petrol-driven drill in the Tongtianhe area along the highway where developes Yaxicuo Group,Oligocene. Complete demagnet... In this research,one hundred and ten samples(ten sampling localities)were drilled by a portable petrol-driven drill in the Tongtianhe area along the highway where developes Yaxicuo Group,Oligocene. Complete demagnetization were finished in University of California,Santa Cruz(UCSC).These remanence data were collected:Dg=334.2,Ig=52.3,α<sub>95</sub>=7.1,k=7.3(before structural correction);Ds=27.2, Is=66.6,α<sub>95</sub>=7.3,k=7.0(after structural correction). 展开更多
关键词 inclination DEEPENING red beds Yaxicuo Group REMAGNETIZATION
下载PDF
Influence of melt pouring temperature and plate inclination on solidification and microstructure of A356 aluminum alloy produced using oblique plate
19
作者 N.K.KUND 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3465-3476,共12页
The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by cou... The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by counter flowing water. It results in continuous formation of columnar dendrites on plate wall. Due to forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously to produce semisolid slurry at plate exit. Melt pouring temperature provides required condition of solidification whereas plate inclination enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained was solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets were heat treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets were analyzed. Effects of melt pouring temperature and plate inclination on solidification and microstructure of billets produced using oblique plate were described. The investigations involved four different melt pouring temperatures (620, 625, 630 and 635 &deg;C) associated with four different plate inclinations (30&deg;, 45&deg;, 60&deg; and 75&deg;). Melt pouring temperature of 625 &deg;C with plate inclination of 60&deg; shows fine and globular microstructures and it is the optimum. 展开更多
关键词 A356 aluminum alloy SEMISOLID oblique plate SLURRY melt pouring temperature plate inclination
下载PDF
Influence of Wind Speed, Stay Cable Inclination Angle and Wind Yaw Angle on Formation of Rivulets
20
作者 毕继红 武骥 +1 位作者 关键 王剑 《Transactions of Tianjin University》 EI CAS 2016年第6期508-515,共8页
Combining lubrication theory and CFD technology, a finite element model is established to simulate the rain-wind-induced vibration(RWIV). Based on Spalart-Allmaras(S-A)turbulence type, COMSOL software is adopted to ca... Combining lubrication theory and CFD technology, a finite element model is established to simulate the rain-wind-induced vibration(RWIV). Based on Spalart-Allmaras(S-A)turbulence type, COMSOL software is adopted to calculate the wind pressure coefficient and wind friction coefficient that vary with the location and time. To verify the veracity and rationality of this method, the formation and evolution of rivulets at different wind speeds are studied and compared with the existing experimental results. Furthermore, the time, location, height and width of the initial formation of rivulets are analyzed at different wind speeds, cable inclination angles and wind yaw angles. The results show that the three influencing factors mentioned above have great effect on the formation of rivulet, and the influencing tendency, range and degree are different from each other. 展开更多
关键词 rain-wind-induced vibration RIVULET wind speed wind yaw angle cable inclination angle
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部