The application of transparent conducting indium-tin-oxide (ITO) film as full front electrode replacing the conven- tional bus-bar metal electrode in III-V compound GalnP solar cell was proposed. A high-quality, non...The application of transparent conducting indium-tin-oxide (ITO) film as full front electrode replacing the conven- tional bus-bar metal electrode in III-V compound GalnP solar cell was proposed. A high-quality, non-rectifying contact between ITO and 10 nm N+-GaAs contact layer was formed, which is benefiting from a high carrier concentration of the terrilium-doped N+-GaAs layer, up to 2×10^19 cm^-3. A good device performance of the GalnP solar cell with the ITO electrode was observed. This result indicates a great potential of transparent conducting films in the future fabrication of larger area flexible III-V solar cell.展开更多
Microbial cellulose (MC) membranes produced by Acetobacter xylinum NUST4.1,were used as flexible substrates for the fabrication of transparent indium tin oxide (ITO) electrodes.Transparent and conductive ITO thin ...Microbial cellulose (MC) membranes produced by Acetobacter xylinum NUST4.1,were used as flexible substrates for the fabrication of transparent indium tin oxide (ITO) electrodes.Transparent and conductive ITO thin films were deposited on MC membrane at room temperature using radio frequency (RF) magnetron sputtering.The optimum ITO deposition conditions were achieved by examining crystalline structure,surface morphology and op-toelectrical characteristics with X-ray diffraction (XRD),scanning electron microscopy (SEM),atomic force mi-croscopy (AFM),and UV spectroscopy.The sheet resistance of the samples was measured with a four-point probe and the resistivity of the film was calculated.The results reveal that the preferred orientation of the deposited ITO crystals is strongly dependent upon with oxygen content (O2/Ar,volume ratio) in the sputtering chamber.And the ITO crystalline structure directly determines the conductivity of ITO-deposited films.High conductive [sheet resis-tance ~120 Ω·square-1 (Ω·sq-1)] and transparent (above 76%) ITO thin films (240 nm thick) were obtained with a moderate sputtering power (about 60 W) and with an oxygen flow rate of 0.25 ml·min-1 (sccm) during the deposi-tion.These results show that the ITO-MC electrodes can find their potential application in optoelectrical devices.展开更多
Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1:1...Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1:1 at various IR irradiation temperatures T1 (from room temperature to 400℃). The refractive index, deposited ratio, and resistivity are functions of the sputtering Ar gas pressure. The microstructure of ITO thin films is related to IR T1, the crystalline seeds appear at T1= 300℃, and the films are amorphous at the temperature ranging from 27℃ to 400℃. AFM investigation shows that the roughness value of peak-valley of ITO thin film (Rp-v) and the surface microstructure of rio thin films have a close relation with T1. The IR irradiation results in a widening value of band-gap energy due to Burstein-Moss effect and the maximum visible transmittance shifts toward a shorter wavelength along with a decrease in the film's refractive index. The plasma wavelength and the refractive index of ITO thin films are relative to the T1. XPS investigation shows that the photoelectrolytic properties can be deteriorated by the sub-oxides. The deterioration can be decreased by increasing the oxygen flow rote (fo2), and the mole ratio of Sn/In in the samples reduces with an increase info2.展开更多
The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the v...The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film.展开更多
Inorganic buffer layers such as SiO2 or TiO2 and transparent conductive indium-tin-oxide (ITO) films were prepared on polyethylene terephthalate (PET) substrates by ion assisted deposition (IAD) at room temperat...Inorganic buffer layers such as SiO2 or TiO2 and transparent conductive indium-tin-oxide (ITO) films were prepared on polyethylene terephthalate (PET) substrates by ion assisted deposition (IAD) at room temperature, and the effects of SiO2 and TiOzon the bending resistance performance of flexible ITO films were investigated. The results show that ITO films with SiO2 or TiO2 buffer layer have better resistance stabilities compared to ones without the buffer layer when the ITO films are inwards bent at a bending radius more than 1.2 cm and when the ITO films are outwards bent at a bending radius from 0.8 cm to 1.2 cm. 1TO films with SiO2 buffer layer have better resistance sta- bilities compared to ones with TiO2 buffer layer after the ITO fdms are bent several hundreds of cycles at the same bending radius, for the adhesion of SiO2 is stronger than that of TiO2. The compressive stress resulted from inward bending leads to the formation of more defects in the ITO films compared with the tensile stress arising from outward bending. SiO2 and TiO2 buffer layers can effectively improve the crystallinity of ITO films in (400), (440) directions.展开更多
Indium tin oxide (ITO) ultrathin films were prepared on glass substrate by DC (direct current) magnetron sputtering technique with the assistance of H2O vapor to avoid potential surface damage. The film properties...Indium tin oxide (ITO) ultrathin films were prepared on glass substrate by DC (direct current) magnetron sputtering technique with the assistance of H2O vapor to avoid potential surface damage. The film properties were characterized by X-ray diffraction (XRD) technique, four-point probe method and spectrophotometer. The results show that the deposited ITO film with introduced H2O during sputtering process was almost amorphous. The average visible light transmission of 100 nm ITO film was around 85% and square resistivity was below 80 Ω/square. The film was used as the transparent anode to fabricate an inverted top-emitting organic light-emitting diodes (IT-OLEDs) with the structure of glass substrate/Alq3 (40 nm)/NPB (15 nm)/CuPc (x nm)/ITO anode (100 nm), where the film thickness of CuPc was optimized. It was found that the luminance of this IT-OLEDs was improved from 25 cd/m^2 to more than 527 cd/m^2 by increasing the thickness of CuPc, and luminance efficiency of 0.24 lm/W at 100 cd/m^2 was obtained, which indicated that the optimized thickness of CuPc layer was around 15 nm.展开更多
Tin-doped Indium Oxide (ITO) has been successfully prepared via solvothermal method with a mixture of Indium(Ill) acetylacetonate and Tin(IV) bis(acetylacetonate)dichioride in oleyamine solvent under the condi...Tin-doped Indium Oxide (ITO) has been successfully prepared via solvothermal method with a mixture of Indium(Ill) acetylacetonate and Tin(IV) bis(acetylacetonate)dichioride in oleyamine solvent under the condition of the different reaction time from 12 h to 48 h for the first time. The morphology, phase composition and particle size of the ITO powder were characterized by TEM and XRD. Two significant properties required for ITO samples to become noncarbon support for Pt in PEMFCs including specific surface area and electrical conductivity were studied.展开更多
Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1∶1...Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1∶1 at various IR irradiation temperatures T1 (from room temperature to 400?℃). The refractive index,deposited ratio,and resistivity are functions of the sputtering Ar gas pressure. The microstructure of ITO thin films is related to IR T1,the crystalline seeds appear at T1=300?℃,and the films are amorphous at the temperature ranging from 27?℃ to 400?℃. AFM investigation shows that the roughness value of peak-valley of ITO thin film (R p-v ) and the surface microstructure of ITO thin films have a close relation with T1. The IR irradiation results in a widening value of band-gap energy due to Burstein-Moss effect and the maximum visible transmittance shifts toward a shorter wavelength along with a decrease in the film’s refractive index. The plasma wavelength and the refractive index of ITO thin films are relative to the T1. XPS investigation shows that the photoelectrolytic properties can be deteriorated by the sub-oxides. The deterioration can be decreased by increasing the oxygen flow rate (fo2),and the mole ratio of Sn/In in the samples reduces with an increase in fo2.展开更多
The present work mainly describes the technology for preparing indium-tin oxide (ITO) targets by cold isostatic pressing (CIP) and normal pressure sintering process. ITO powders were produced by chemical co-precip...The present work mainly describes the technology for preparing indium-tin oxide (ITO) targets by cold isostatic pressing (CIP) and normal pressure sintering process. ITO powders were produced by chemical co-precipitation and shaped into an ITO green compact with a relative density of 60% by CIP under 300 MPa. Then, an ITO target with a relative density larger than 99.6% was obtained by sintering this green compact at 1550℃ for 8 h. The effects of forming pressure, sintering temperature and sintering time on the density of the target were inves- tigated. Also, a discussion was made on the sintering atmosphere.展开更多
The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage c...The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance.展开更多
Indium tin oxide(ITO)nanopowders were prepared by a modified chemical co-precipitation process.The influence of different SnO2 contents on the decomposition behavior of ITO precursors,and on the phase and morphology o...Indium tin oxide(ITO)nanopowders were prepared by a modified chemical co-precipitation process.The influence of different SnO2 contents on the decomposition behavior of ITO precursors,and on the phase and morphology of ITO precursors and ITO nanopowders were studied by X-ray diffractometry,transmission electron microscopy and differential thermal and thermogravimetry analysis methods.The TG-DSC curves show that the decomposition process of precursor precipitation is completed when the temperature is close to 600 ℃and the end temperature of decompositionis somewhat lower when the doping amount of SnO2 is increased.The XRD patterns indicate that the solubility limit of Sn4+ relates directly to the calcining temperature. When being calcined at 700℃,a single phase ITO powder with 15%SnO2(mass fraction)can be obtained.But,when the calcining temperature is higher than 800℃,the phase of SnO2 will appear in ITO nanopowders which contain more than 10%SnO2.The particle size of the ITO nanopowders is 15-25 nm.The ITO nanoparticles without Sn have a spherical shape,but their morphology moves towards an irregular shape when being doped with Sn4+.展开更多
This paper reports that highly transparent and low resistance tantalum-doped indium tin oxide (Ta-doped ITO) films contacted to p-type GaN have been prepared by the electron-beam evaporation technique. The Ta-doped ...This paper reports that highly transparent and low resistance tantalum-doped indium tin oxide (Ta-doped ITO) films contacted to p-type GaN have been prepared by the electron-beam evaporation technique. The Ta-doped ITO contacts become Ohmic with a specific contact resistance of $/sim 5.65/times 10^{ - 5}$$/Omega /cdot$cm$^{2}$ and show the transmittance of $/sim $98% at a wavelength of 440nm when annealed at 500/du. Blue light emitting diodes (LEDs) fabricated with Ta-doped ITO p-type Ohmic contact layers give a forward-bias voltage of 3.21V at an injection current of 20mA. It further shows that the output power of LEDs with Ta-doped ITO contacts is enhanced 62% at 20mA in comparison with that of LEDs with conventional Ni/Au contacts展开更多
ITO thin films were grown on PC(polycarbonate), PMMA(polymethyl methacrylate) and glass substrates by r.f. magnetron sputtering. The electrical, structural and chemical characteristics of ITO films were analyzed b...ITO thin films were grown on PC(polycarbonate), PMMA(polymethyl methacrylate) and glass substrates by r.f. magnetron sputtering. The electrical, structural and chemical characteristics of ITO films were analyzed by the Hall Technique, X-ray diffraction, and X-ray photoelectron spectroscopy. XPS studies suggest that all the ITO films consist of crystalline and amorphous phases. The degree of crystallinity increases from less than 45% to more than 90% when the substrate temperature increases from 80 to 300 ℃. The In and Sn exist in the chemical state of In^3+ and Sn^4+, respectively, independent of substrate type and temperature. The enrichment of Sn on surface and In in body of ITO films are also revealed. And, the oxygen deficient regions exist both in surface layer and film body. For ITO films deposited under 180 ℃ , the carrier concentration are mainly provided by oxygen vacancies, and the dominant electron carrier scattering mechanism is grain boundary scattering between the crystal and the amorphous grain. For ITO films deposited over 180 ℃, the carrier concentration are provided by tin doping, and the dominant scattering mechanism transforms from grain boundary scattering between the crystal grains to ionized impurity scattering with increasing deposition temperature.展开更多
The Indium tin oxide(ITO) thin film possesses excellent photoelectric properties that enable it to act as an ideal transparent conductor.To obtain high-quality ITO films through sol-gel method, the ionic surfactant ...The Indium tin oxide(ITO) thin film possesses excellent photoelectric properties that enable it to act as an ideal transparent conductor.To obtain high-quality ITO films through sol-gel method, the ionic surfactant monoethanolamine and the non-ionic surfactant polyethylene glycol(PEG) were added to the ITO precursor slurry.The influences of surfactants on the structural and photoelectric properties of ITO film samples were investigated.XRD patterns indicated that surfactant monoethanolamine contributed to film predominant grain orientation along the(400) plane.The high transmittance(over 95%) was attributed to the preferred orientation and the grain size expansion of ITO films.SEM showed that the surface particle size and the morphology of ITO films were strongly dependent on the kind of surfactants used.Moving to the shortwave region, the absorption edge of the films exhibited the Burstein-Moss shift.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61534008,61376081,and 61404157)the Application Foundation of Suzhou,China(Grant No.SYG201437)
文摘The application of transparent conducting indium-tin-oxide (ITO) film as full front electrode replacing the conven- tional bus-bar metal electrode in III-V compound GalnP solar cell was proposed. A high-quality, non-rectifying contact between ITO and 10 nm N+-GaAs contact layer was formed, which is benefiting from a high carrier concentration of the terrilium-doped N+-GaAs layer, up to 2×10^19 cm^-3. A good device performance of the GalnP solar cell with the ITO electrode was observed. This result indicates a great potential of transparent conducting films in the future fabrication of larger area flexible III-V solar cell.
基金Supported by the National Natural Science Foundation of China (10776014) Nanjing University of Science and Technology (NUST) Research Funding
文摘Microbial cellulose (MC) membranes produced by Acetobacter xylinum NUST4.1,were used as flexible substrates for the fabrication of transparent indium tin oxide (ITO) electrodes.Transparent and conductive ITO thin films were deposited on MC membrane at room temperature using radio frequency (RF) magnetron sputtering.The optimum ITO deposition conditions were achieved by examining crystalline structure,surface morphology and op-toelectrical characteristics with X-ray diffraction (XRD),scanning electron microscopy (SEM),atomic force mi-croscopy (AFM),and UV spectroscopy.The sheet resistance of the samples was measured with a four-point probe and the resistivity of the film was calculated.The results reveal that the preferred orientation of the deposited ITO crystals is strongly dependent upon with oxygen content (O2/Ar,volume ratio) in the sputtering chamber.And the ITO crystalline structure directly determines the conductivity of ITO-deposited films.High conductive [sheet resis-tance ~120 Ω·square-1 (Ω·sq-1)] and transparent (above 76%) ITO thin films (240 nm thick) were obtained with a moderate sputtering power (about 60 W) and with an oxygen flow rate of 0.25 ml·min-1 (sccm) during the deposi-tion.These results show that the ITO-MC electrodes can find their potential application in optoelectrical devices.
基金This work was financially supported by the National Defence Science Council of China (NO. 5141002040JW0504) and the Excellent Ph.D Thesis Foundation of Huazhong University of Science and Technology (No. HUST2004-39).
文摘Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1:1 at various IR irradiation temperatures T1 (from room temperature to 400℃). The refractive index, deposited ratio, and resistivity are functions of the sputtering Ar gas pressure. The microstructure of ITO thin films is related to IR T1, the crystalline seeds appear at T1= 300℃, and the films are amorphous at the temperature ranging from 27℃ to 400℃. AFM investigation shows that the roughness value of peak-valley of ITO thin film (Rp-v) and the surface microstructure of rio thin films have a close relation with T1. The IR irradiation results in a widening value of band-gap energy due to Burstein-Moss effect and the maximum visible transmittance shifts toward a shorter wavelength along with a decrease in the film's refractive index. The plasma wavelength and the refractive index of ITO thin films are relative to the T1. XPS investigation shows that the photoelectrolytic properties can be deteriorated by the sub-oxides. The deterioration can be decreased by increasing the oxygen flow rote (fo2), and the mole ratio of Sn/In in the samples reduces with an increase info2.
基金supported by the National Natural Science Foundation of China(Grant Nos.61222501 and 61335004)
文摘The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film.
基金supported by the National Eleventh Five-Year Pre-research Project of China (No.51302060203)
文摘Inorganic buffer layers such as SiO2 or TiO2 and transparent conductive indium-tin-oxide (ITO) films were prepared on polyethylene terephthalate (PET) substrates by ion assisted deposition (IAD) at room temperature, and the effects of SiO2 and TiOzon the bending resistance performance of flexible ITO films were investigated. The results show that ITO films with SiO2 or TiO2 buffer layer have better resistance stabilities compared to ones without the buffer layer when the ITO films are inwards bent at a bending radius more than 1.2 cm and when the ITO films are outwards bent at a bending radius from 0.8 cm to 1.2 cm. 1TO films with SiO2 buffer layer have better resistance sta- bilities compared to ones with TiO2 buffer layer after the ITO fdms are bent several hundreds of cycles at the same bending radius, for the adhesion of SiO2 is stronger than that of TiO2. The compressive stress resulted from inward bending leads to the formation of more defects in the ITO films compared with the tensile stress arising from outward bending. SiO2 and TiO2 buffer layers can effectively improve the crystallinity of ITO films in (400), (440) directions.
基金supported by the National Natural Science Foundation of China under Grants No.60425101Young Excellence Project of University of Electronic Science and Technology of China(UESTC-060206)project.
文摘Indium tin oxide (ITO) ultrathin films were prepared on glass substrate by DC (direct current) magnetron sputtering technique with the assistance of H2O vapor to avoid potential surface damage. The film properties were characterized by X-ray diffraction (XRD) technique, four-point probe method and spectrophotometer. The results show that the deposited ITO film with introduced H2O during sputtering process was almost amorphous. The average visible light transmission of 100 nm ITO film was around 85% and square resistivity was below 80 Ω/square. The film was used as the transparent anode to fabricate an inverted top-emitting organic light-emitting diodes (IT-OLEDs) with the structure of glass substrate/Alq3 (40 nm)/NPB (15 nm)/CuPc (x nm)/ITO anode (100 nm), where the film thickness of CuPc was optimized. It was found that the luminance of this IT-OLEDs was improved from 25 cd/m^2 to more than 527 cd/m^2 by increasing the thickness of CuPc, and luminance efficiency of 0.24 lm/W at 100 cd/m^2 was obtained, which indicated that the optimized thickness of CuPc layer was around 15 nm.
文摘Tin-doped Indium Oxide (ITO) has been successfully prepared via solvothermal method with a mixture of Indium(Ill) acetylacetonate and Tin(IV) bis(acetylacetonate)dichioride in oleyamine solvent under the condition of the different reaction time from 12 h to 48 h for the first time. The morphology, phase composition and particle size of the ITO powder were characterized by TEM and XRD. Two significant properties required for ITO samples to become noncarbon support for Pt in PEMFCs including specific surface area and electrical conductivity were studied.
文摘Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1∶1 at various IR irradiation temperatures T1 (from room temperature to 400?℃). The refractive index,deposited ratio,and resistivity are functions of the sputtering Ar gas pressure. The microstructure of ITO thin films is related to IR T1,the crystalline seeds appear at T1=300?℃,and the films are amorphous at the temperature ranging from 27?℃ to 400?℃. AFM investigation shows that the roughness value of peak-valley of ITO thin film (R p-v ) and the surface microstructure of ITO thin films have a close relation with T1. The IR irradiation results in a widening value of band-gap energy due to Burstein-Moss effect and the maximum visible transmittance shifts toward a shorter wavelength along with a decrease in the film’s refractive index. The plasma wavelength and the refractive index of ITO thin films are relative to the T1. XPS investigation shows that the photoelectrolytic properties can be deteriorated by the sub-oxides. The deterioration can be decreased by increasing the oxygen flow rate (fo2),and the mole ratio of Sn/In in the samples reduces with an increase in fo2.
基金supported by the National High-Tech Research and Development Program of China(No. 2004AA303542)
文摘The present work mainly describes the technology for preparing indium-tin oxide (ITO) targets by cold isostatic pressing (CIP) and normal pressure sintering process. ITO powders were produced by chemical co-precipitation and shaped into an ITO green compact with a relative density of 60% by CIP under 300 MPa. Then, an ITO target with a relative density larger than 99.6% was obtained by sintering this green compact at 1550℃ for 8 h. The effects of forming pressure, sintering temperature and sintering time on the density of the target were inves- tigated. Also, a discussion was made on the sintering atmosphere.
基金Supported by the National Natural Science Foundation of China(No. 20372060), the Key National Natural Science Foundationof China(No. 20131010), the Important National Natural Science Foundation of China(No. 20490210), the"863"Program(Nos.2002AA302105 and 2002AA324080) and Foreign Communion &Cooperation of National Natural Science Foundation of China(No.20340420326).
文摘The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance.
基金Project(U0837604)supported by the Natural Science Foundation of Yunnan Province,ChinaProject(07C40291)supported by Research Fund of Yunnan Education Department,ChinaProject(2007003)supported by Research Fund of Kunming University of Science and Technology,China
文摘Indium tin oxide(ITO)nanopowders were prepared by a modified chemical co-precipitation process.The influence of different SnO2 contents on the decomposition behavior of ITO precursors,and on the phase and morphology of ITO precursors and ITO nanopowders were studied by X-ray diffractometry,transmission electron microscopy and differential thermal and thermogravimetry analysis methods.The TG-DSC curves show that the decomposition process of precursor precipitation is completed when the temperature is close to 600 ℃and the end temperature of decompositionis somewhat lower when the doping amount of SnO2 is increased.The XRD patterns indicate that the solubility limit of Sn4+ relates directly to the calcining temperature. When being calcined at 700℃,a single phase ITO powder with 15%SnO2(mass fraction)can be obtained.But,when the calcining temperature is higher than 800℃,the phase of SnO2 will appear in ITO nanopowders which contain more than 10%SnO2.The particle size of the ITO nanopowders is 15-25 nm.The ITO nanoparticles without Sn have a spherical shape,but their morphology moves towards an irregular shape when being doped with Sn4+.
基金Project supported by Science and Technology Planning Project of Guangdong Province (Grant No. 2007A010501008)the Production and Research Project of Guangdong Province and the Ministry of Education (Grant No. 2009B090300338)
文摘This paper reports that highly transparent and low resistance tantalum-doped indium tin oxide (Ta-doped ITO) films contacted to p-type GaN have been prepared by the electron-beam evaporation technique. The Ta-doped ITO contacts become Ohmic with a specific contact resistance of $/sim 5.65/times 10^{ - 5}$$/Omega /cdot$cm$^{2}$ and show the transmittance of $/sim $98% at a wavelength of 440nm when annealed at 500/du. Blue light emitting diodes (LEDs) fabricated with Ta-doped ITO p-type Ohmic contact layers give a forward-bias voltage of 3.21V at an injection current of 20mA. It further shows that the output power of LEDs with Ta-doped ITO contacts is enhanced 62% at 20mA in comparison with that of LEDs with conventional Ni/Au contacts
文摘ITO thin films were grown on PC(polycarbonate), PMMA(polymethyl methacrylate) and glass substrates by r.f. magnetron sputtering. The electrical, structural and chemical characteristics of ITO films were analyzed by the Hall Technique, X-ray diffraction, and X-ray photoelectron spectroscopy. XPS studies suggest that all the ITO films consist of crystalline and amorphous phases. The degree of crystallinity increases from less than 45% to more than 90% when the substrate temperature increases from 80 to 300 ℃. The In and Sn exist in the chemical state of In^3+ and Sn^4+, respectively, independent of substrate type and temperature. The enrichment of Sn on surface and In in body of ITO films are also revealed. And, the oxygen deficient regions exist both in surface layer and film body. For ITO films deposited under 180 ℃ , the carrier concentration are mainly provided by oxygen vacancies, and the dominant electron carrier scattering mechanism is grain boundary scattering between the crystal and the amorphous grain. For ITO films deposited over 180 ℃, the carrier concentration are provided by tin doping, and the dominant scattering mechanism transforms from grain boundary scattering between the crystal grains to ionized impurity scattering with increasing deposition temperature.
基金supported by the National High-Tech Research and Development Program of China (No. 2004AA303542)
文摘The Indium tin oxide(ITO) thin film possesses excellent photoelectric properties that enable it to act as an ideal transparent conductor.To obtain high-quality ITO films through sol-gel method, the ionic surfactant monoethanolamine and the non-ionic surfactant polyethylene glycol(PEG) were added to the ITO precursor slurry.The influences of surfactants on the structural and photoelectric properties of ITO film samples were investigated.XRD patterns indicated that surfactant monoethanolamine contributed to film predominant grain orientation along the(400) plane.The high transmittance(over 95%) was attributed to the preferred orientation and the grain size expansion of ITO films.SEM showed that the surface particle size and the morphology of ITO films were strongly dependent on the kind of surfactants used.Moving to the shortwave region, the absorption edge of the films exhibited the Burstein-Moss shift.