Aiming at the problem that the positioning accuracy of WiFi indoor positioning technology based on location fingerprint has not reached the requirements of practical application, a WiFi indoor positioning and tracking...Aiming at the problem that the positioning accuracy of WiFi indoor positioning technology based on location fingerprint has not reached the requirements of practical application, a WiFi indoor positioning and tracking algorithm combining adaptive affine propagation (AAPC), compressed sensing (CS) and Kalman filter is proposed. In the off-line phase, AAPC algorithm is used to generate clustering fingerprints with optimal clustering effect performance;In the online phase, CS and nearest neighbor algorithm are used for position estimation;Finally, the Kalman filter and physical constraints are combined to perform positioning and tracking. By collecting a large number of real experimental data, it is proved that the developed algorithm has higher positioning accuracy and more accurate trajectory tracking effect.展开更多
In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even ped...In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even pedestrians may block wireless signals and produce non-line-of-sight(NLOS)deviations,resulting in decreased positioning accuracy and the inability to provide people with real-time continuous indoor positioning.This work proposed a strong tracking particle filter based on the chi-square test(SPFC)for indoor positioning.SPFC can fuse indoor wireless signals and the information of the inertial sensing unit(IMU)in the smartphone and detect the NLOS deviation through the chi-square test to avoid the influence of the NLOS deviation on the final positioning result.Simulation experiment results show that the proposed SPFC can reduce the positioning error by 15.1%and 12.3% compared with existing fusion positioning systems in the LOS and NLOS environment.展开更多
With the development of urbanization,the problem of neurological diseases brought about by population aging has gradually become a social problem of worldwide concern.Aging leads to gradual degeneration of the central...With the development of urbanization,the problem of neurological diseases brought about by population aging has gradually become a social problem of worldwide concern.Aging leads to gradual degeneration of the central nervous system,shrinkage of brain tissue,and decline in physical function in many elderlies,making them susceptible to neurological diseases such as Alzheimer’s disease(AD),stroke,Parkinson’s and major depressive disorder(MDD).Due to the influence of these neurological diseases,the elderly have troubles such as memory loss,inability to move,falling,and getting lost,which seriously affect their quality of life.Tracking and positioning of elderly with neurological diseases and keeping track of their location in real-time are necessary and crucial in order to detect and treat dangerous and unexpected situations in time.Considering that the elderly with neurological diseases forget to wear a positioning device or have mobility problems due to carrying a positioning device,device-free positioning as a passive positioning technology that detects device-free individuals is more suitable than traditional active positioning for the home-based care of the elderly with neurological diseases.This paper provides an extensive and in-depth survey of device-free indoor positioning technology for home-based care and an in-depth analysis of the main features of current positioning systems,as well as the techniques,technologies andmethods they employ,fromthe perspective of the needs of the elderly with neurological conditions.Moreover,evaluation criteria and possible solutions of positioning techniques for the home-based care of the elderly with neurological conditions are proposed.Finally,the opportunities and challenges for the development of indoor positioning technology in 6G mobile networks for home-based care of the elderly with neurological diseases are discussed.This review has provided comprehensive and effective tracking and positioning techniques,technologies and methods for the elderly,by which we can obtain the location information of the elderly in real-time and make home-based care more comfortable and safer for the elderly with neurological diseases.展开更多
As an essential component of future comprehensive Positioning,Navigation,and Timing(PNT)system,indoor positioning technology has extensive application demands,making it a focal point of attention in both academia and ...As an essential component of future comprehensive Positioning,Navigation,and Timing(PNT)system,indoor positioning technology has extensive application demands,making it a focal point of attention in both academia and industry.This article comprehensively reviews the research status of indoor positioning technology in China,with a focus on highlighting representative achievements and application validations from major research institutions in recent years.It addresses the challenges and issues faced in promotion and application of large-scale,high-precision indoor positioning.Furthermore,a universal and seamless indoor-outdoor positioning system architecture is proposed,along with a technical roadmap and key technologies to achieve this architecture.Finally,an analysis and outlook on future technological trends are presented.展开更多
This paper introduces the significance of indoor positioning and analyzes the related problems. The latest research on indoor positioning is introduced. Further, the positioning accuracy and the cost of typical local ...This paper introduces the significance of indoor positioning and analyzes the related problems. The latest research on indoor positioning is introduced. Further, the positioning accuracy and the cost of typical local and wide area indoor positioning systems are compared. The results of the comparison show that Time & Code Division-Orthogonal Frequency Division Multiplexing (TC-OFDM) is a system that can achieve real-time meter-accuracy of indoor positioning in a wide area. Finally, in this paper, we indicate that the seamless high-accuracy indoor positioning in a wide area is the development trend of indoor positioning. The seamless Location Based Services (LBS) architecture based on a heterogeneous network, key technologies in indoor positioning for decimeter-accuracy and seamless outdoor and indoor Geographic Information System (GIS) are elaborated as the most important research fields of future indoor positioning.展开更多
The key techniques in indoor positioning based on visible light communication and the state of the art of this research were surveyed. First, the significance of indoor positioning based on visible light communication...The key techniques in indoor positioning based on visible light communication and the state of the art of this research were surveyed. First, the significance of indoor positioning based on visible light communication from two aspects of the limitations of current indoor positioning technology and the advantages of visible light communication was discussed; And then, the main four technology of indoor positioning based on visible light communication were summarized and the triangulation of RSS method and the principle of image positioning were introduced in detail; Next, the performance characteristics of various typical algorithms were compared and analyzed; In the end, several suggestions on future research of indoor positioning based on visible light communication were given.展开更多
Indoor positioning systems have been sufficiently researched to provide location information of persons and devices.This paper is focused on the current research and further development of indoor positioning.The stand...Indoor positioning systems have been sufficiently researched to provide location information of persons and devices.This paper is focused on the current research and further development of indoor positioning.The standard evolution and industry development are summarized.There are various positioning systems according to the scenarios,cost and accuracy.However,there is a basic positioning system framework including information extraction,measurement and calculation.In particular,the detailed positioning technologies mainly including cellular positioning and Local Area Network(LAN) positioning are listed and compared to provide a reference for practical applications.Finally,we summarize the challenges of indoor positioning and give a3-phase evolution route.展开更多
We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(AP...We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(APs) used in positioning via Maximum Mutual Information(MMI) criterion.Second,we propose Orthogonal Locality Preserving Projection(OLPP) to reduce the redundancy among selected APs.OLPP effectively extracts the intrinsic location features in situations where previous linear signal projection techniques failed to do,while maintaining computational efficiency.Third,we show that the combination of AP selection and OLPP simultaneously exploits their complementary advantages while avoiding the drawbacks.Experimental results indicate that,compared with the widely used weighted K-nearest neighbor and maximum likelihood estimation method,the proposed method leads to 21.8%(0.49 m) positioning accuracy improvement,while decreasing the computation cost by 65.4%.展开更多
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to i...Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.展开更多
Current positioning systems are primarily based on the Global Positioning System(GPS).Although the GPS is accurate within 10 m,it is mainly used for outdoor positioning services(Location-Based Service;LBS).However,sin...Current positioning systems are primarily based on the Global Positioning System(GPS).Although the GPS is accurate within 10 m,it is mainly used for outdoor positioning services(Location-Based Service;LBS).However,since satellite signals cannot penetrate buildings,indoor positioning has always been a blind spot for satellite signals.As indoor positioning applications are extensive with high commercial values,they have created a competitive niche in themarket.Existing indoor positioning technologies are unable to achieve less than 10 cmaccuracy except for the UltraWide Band(UWB)technology.On the other hand,the Bluetooth protocol achieves an accuracy of 1 to 2m.In this work,we use Bluetooth wireless signals to build a novel indoor positioning framework to avoid the high manufacturing costs involved in the UWB technology.The Bluetooth signals are combined with the results from artificial intelligence algorithms to improve accuracy.During laboratory indoor location tracking,the accuracy rate is 96%,which provides effective indoor tracking for the movement of people.展开更多
With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the ou...With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the outdoor environment,the lack of line-of-sight propagation in an indoor environment keeps the interest of the researchers to develop efcient and precise positioning systems that can later be incorporated in numerous applications involving Internet of Things(IoTs)and green computing.In this paper,we have proposed a technique that combines the capabilities of multiple algorithms to overcome the complexities experienced indoors.Initially,in the database development phase,Motley Kennan propagation model is used with Hough transformation to classify,detect,and assign different attenuation factors related to the types of walls.Furthermore,important parameters for system accuracy,such as,placement and geometry of Access Points(APs)in the coverage area are also considered.New algorithm for deployment of an additional AP to an already existing infrastructure is proposed by using Genetic Algorithm(GA)coupled with Enhanced Dilution of Precision(EDOP).Moreover,classication algorithm based on k-Nearest Neighbors(k-NN)is used to nd the position of a stationary or mobile user inside the given coverage area.For k-NN to provide low localization error and reduced space dimensionality,three APs are required to be selected optimally.In this paper,we have suggested an idea to select APs based on Position Vectors(PV)as an input to the localization algorithm.Deducing from our comprehensive investigations,it is revealed that the accuracy of indoor positioning system using the proposed technique unblemished the existing solutions with signicant improvements.展开更多
An indoor positioning system( IPS) is designed to realize positioning and tracking of mobile targets,by taking advantages of both the visible light communication( VLC) and inertial measurement unit( IMU). The platform...An indoor positioning system( IPS) is designed to realize positioning and tracking of mobile targets,by taking advantages of both the visible light communication( VLC) and inertial measurement unit( IMU). The platform of the IPS is designed,which consists of the light-emitting diode( LED)based transmitter,the receiver and the positioning server. To reduce the impact caused by measurement errors,both inertial sensing data and the received signal strength( RSS) from the VLC are calibrated. Then,a practical propagation model is established to obtain the distance between the transmitter and the receiver from the RSS measurements. Furthermore,a hybrid positioning algorithm is proposed by using the adaptive Kalman filter( AKF) and the weighted least squares( WLS)trilateration to estimate the positions of the mobile targets.Experimental results show that the developed IPS using the proposed hybrid positioning algorithm can extend the localization area of VLC,mitigate the IMU drifts and improve the positioning accuracy of mobile targets.展开更多
To tackle challenges such as interference and poor accuracy of indoor positioning systems,a novel scheme based on ultra-wide bandwidth(UWB)technology is proposed.First,we illustrate a distance measuring method between...To tackle challenges such as interference and poor accuracy of indoor positioning systems,a novel scheme based on ultra-wide bandwidth(UWB)technology is proposed.First,we illustrate a distance measuring method between two UWB devices.Then,a Taylor series expansion algorithm is developed to detect coordinates of the mobile node using the location of anchor nodes and the distance between them.Simulation results show that the observation error under our strategy is within 15 cm,which is superior to existing algorithms.The final experimental data in the hardware system mainly composed of STM32 and DW1000 also confirms the performance of the proposed scheme.展开更多
The mobility of the targets asks for high requirements of the locating speed in indoor positioning systems.The standard medium access control(MAC)algorithm will often cause lots of packet conflicts and high transmissi...The mobility of the targets asks for high requirements of the locating speed in indoor positioning systems.The standard medium access control(MAC)algorithm will often cause lots of packet conflicts and high transmission delay if multiple users communicate with one beacon at the same time,which will severely limit the speed of the system.Therefore,an optimized MAC algorithm is proposed based on channel reservation to enable users to reserve beacons.A frame threshold is set to ensure the users with shorter data frames do not depend on the reservation mechanism,and multiple users can achieve packets switching with relative beacon in a fixed sequence by using frequency division multiplexing technology.The simulation results show that the optimized MAC algorithm proposed in this paper can improve the positioning speed significantly while maintaining the positioning accuracy.Moreover,the positioning accuracy can be increased to a certain extent if more channel resources can be obtained,so as to provide effective technical support for the location and tracking applications of indoor moving targets.展开更多
A differential barometric altimetry technology based on the digital pressure sensors is put forward by using the existing mobile phone base station as reference. The height of known base sta- tion is precise. The pres...A differential barometric altimetry technology based on the digital pressure sensors is put forward by using the existing mobile phone base station as reference. The height of known base sta- tion is precise. The pressure and temperature of the known base station is measured by sensors and transmitted to users. The absolute height value of user will be calculated by combining the baromet- ric pressure values and temperature values from the base station with the locally measured values. In order to decrease system errors caused by inconsistency between the measured pressure value at base station and the locally measured pressure value, weights correction is applied based on multiple reference stations. The calculated height value is accurate due to eliminating the measured errors caused by irregular changes of atmospheric pressure, with the error less than 1 m. Resolution of ele- vation positioning depends upon the resolution of the pressure sensor, the relationship between which is approximately linear. When the resolution of sensor is 0.01 hPa, the resolution of elevation positioning is about 0. 1 m. In addition, the data frame format at base station is designed in this arti- cle. Experimental results show that the method is accurate, reliable, stable and has the ability to distinguish floors and stair steps.展开更多
Due to the inability of the Global Positioning System(GPS)signals to penetrate through surfaces like roofs,walls,and other objects in indoor environments,numerous alternative methods for user positioning have been pre...Due to the inability of the Global Positioning System(GPS)signals to penetrate through surfaces like roofs,walls,and other objects in indoor environments,numerous alternative methods for user positioning have been presented.Amongst those,the Wi-Fi fingerprinting method has gained considerable interest in Indoor Positioning Systems(IPS)as the need for lineof-sight measurements is minimal,and it achieves better efficiency in even complex indoor environments.Offline and online are the two phases of the fingerprinting method.Many researchers have highlighted the problems in the offline phase as it deals with huge datasets and validation of Fingerprints without pre-processing of data becomes a concern.Machine learning is used for the model training in the offline phase while the locations are estimated in the online phase.Many researchers have considered the concerns in the offline phase as it deals with huge datasets and validation of Fingerprints becomes an issue.Machine learning algorithms are a natural solution for winnowing through large datasets and determining the significant fragments of information for localization,creating precise models to predict an indoor location.Large training sets are a key for obtaining better results in machine learning problems.Therefore,an existing WLAN fingerprinting-based multistory building location database has been used with 21049 samples including 19938 training and 1111 testing samples.The proposed model consists of mean and median filtering as pre-processing techniques applied to the database for enhancing the accuracy by mitigating the impact of environmental dispersion and investigated machine learning algorithms(kNN,WkNN,FSkNN,and SVM)for estimating the location.The proposed SVM with median filtering algorithm gives a reduced mean positioning error of 0.7959 m and an improved efficiency of 92.84%as compared to all variants of the proposed method for 108703 m^(2) area.展开更多
Wi-Fi indoor positioning system has received increasing interest in pervasive computing applications due to its low cost and satisfactory accuracy. To obtain high positioning accuracy based on source limited devices, ...Wi-Fi indoor positioning system has received increasing interest in pervasive computing applications due to its low cost and satisfactory accuracy. To obtain high positioning accuracy based on source limited devices, various AP selection strategies have been proposed to select the most discriminant APs for positioning. In this paper, we propose a spatially localized AP selection method based on joint location information gain. In contrast to traditional AP selection methods which measure the discriminant ability of APs independently, we consider choosing APs jointly. By considering the correlation of the discriminant ability between different APs, more accurate measure of the discriminant ability of APs can be taken. Furthermore, since the optimal AP selection solution varies spatially, we incorporate a location clustering method to localize AP selection and subsequent positioning process. Finally, support vector regression (SVR) algorithm is combined to estimate the location. Experiments are carried in a realistic Wi-Fi indoor environment. Experimental results show that, by using the localized joint AP selection strategy, the proposed positioning method achieves a high-level accuracy while reducing the energy consumption on client devices significantly.展开更多
Indoor positioning and localization have emerged as a potential research area during the last few years owing to the wide proliferation of smartphones and the inception of location-attached services for the consumer i...Indoor positioning and localization have emerged as a potential research area during the last few years owing to the wide proliferation of smartphones and the inception of location-attached services for the consumer industry.Due to the importance of precise location information,several positioning technologies are adopted such as Wi-Fi,ultrawideband,infrared,radio frequency identification,Bluetooth beacons,pedestrian dead reckoning,and magnetic field,etc.Although Wi-Fi and magnetic field-based positioning are more attractive concerning the deployment of Wi-Fi access points and ubiquity of magnetic field data,the latter is preferred as it does not require any additional infrastructure as other approaches do.Despite the advantages of magnetic field positioning,comparing the performance of positioning and localization algorithms is very difficult due to the lack of good public datasets that cover various aspects of the magnetic field data.Available datasets do not provide the data to analyze the impact of device heterogeneity,user heights,and time-specific magnetic field mutation.Moreover,multi-floor and multibuilding data are available for the evaluation of state-of-the-art approaches.To overcome the above-mentioned issues,this study presents multi-user,multidevice,multi-building magnetic field data which is collected over a longer period.The dataset contains the data from five different smartphones including Samsung Galaxy S8,S9,A8,LG G6,and LG G7 for three geographically separated buildings.Three users including one female and two males collected the data for various path geometry and data collection scenarios.Moreover,the data contains the magnetic field samples collected on stairs to test multifloor localization.Besides the magnetic field data,the data from inertial measurement unit sensors like the accelerometer,motion sensors,and barometer is provided as well.展开更多
Wireless local area network(WLAN) is developing to a ubiquitous technique in daily life.As a related product,WLAN based indoor positioning system is attracting more and more concern.Fingerprint is a mainstream method ...Wireless local area network(WLAN) is developing to a ubiquitous technique in daily life.As a related product,WLAN based indoor positioning system is attracting more and more concern.Fingerprint is a mainstream method of wireless indoor positioning.However,it still has some shortcomings of that received signal strength(RSS) is multi-modal and sensitive to environmental factors.These characters would have a negative effect on the performance of positioning system.In this paper,a filtering algorithm based on multi-cluster-center is proposed.We make full use of this algorithm to optimize the training samples at off-line phase to improve the performance of non-linear fitting with the fingerprint feature,and further enhance the positioning accuracy.Finally,we use multiple sets of original WLAN signal samples and signal samples after filtering as the training input of positioning system respectively.After that,the results analysis is demonstrated.Simulation results show that it is a reliable algorithm to enhance the performance of WLAN indoor positioning.展开更多
In the fingerprint matching-based wireless local area network(WLAN) indoor positioning system,Kalman filter(KF) is usually applied after fingerprint matching algorithms to make positioning results more accurate and co...In the fingerprint matching-based wireless local area network(WLAN) indoor positioning system,Kalman filter(KF) is usually applied after fingerprint matching algorithms to make positioning results more accurate and consecutive.But this method,like most methods in WLAN indoor positioning field,fails to consider and make use of users' moving speed information.In order to make the positioning results more accurate through using the users' moving speed information,a coordinate correction algorithm(CCA) is proposed in this paper.It predicts a reasonable range for positioning coordinates by using the moving speed information.If the real positioning coordinates are not in the predicted range,it means that the positioning coordinates are not reasonable to a moving user in indoor environment,so the proposed CCA is used to correct this kind of positioning coordinates.The simulation results prove that the positioning results by the CCA are more accurate than those calculated by the KF and the CCA is effective to improve the positioning performance.展开更多
文摘Aiming at the problem that the positioning accuracy of WiFi indoor positioning technology based on location fingerprint has not reached the requirements of practical application, a WiFi indoor positioning and tracking algorithm combining adaptive affine propagation (AAPC), compressed sensing (CS) and Kalman filter is proposed. In the off-line phase, AAPC algorithm is used to generate clustering fingerprints with optimal clustering effect performance;In the online phase, CS and nearest neighbor algorithm are used for position estimation;Finally, the Kalman filter and physical constraints are combined to perform positioning and tracking. By collecting a large number of real experimental data, it is proved that the developed algorithm has higher positioning accuracy and more accurate trajectory tracking effect.
基金funded by the project“Design of System Integration Construction Scheme Based on Functions of Each Module” (No.XDHT2020169A)the project“Development of Indoor Inspection Robot System for Substation” (No.XDHT2019501A).
文摘In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even pedestrians may block wireless signals and produce non-line-of-sight(NLOS)deviations,resulting in decreased positioning accuracy and the inability to provide people with real-time continuous indoor positioning.This work proposed a strong tracking particle filter based on the chi-square test(SPFC)for indoor positioning.SPFC can fuse indoor wireless signals and the information of the inertial sensing unit(IMU)in the smartphone and detect the NLOS deviation through the chi-square test to avoid the influence of the NLOS deviation on the final positioning result.Simulation experiment results show that the proposed SPFC can reduce the positioning error by 15.1%and 12.3% compared with existing fusion positioning systems in the LOS and NLOS environment.
基金supported by the National Natural Science Foundation of China under Grant No.61701284the Innovative Research Foundation of Qingdao under Grant No.19-6-2-1-CG+5 种基金the Elite Plan Project of Shandong University of Science and Technology under Grant No.skr21-3-B-048the Sci.&Tech.Development Fund of Shandong Province of China under Grant Nos.ZR202102230289,ZR202102250695,and ZR2019LZH001the Humanities and Social Science Research Project of the Ministry of Education under Grant No.18YJAZH017the Taishan Scholar Program of Shandong Province,the Shandong Chongqing Science and Technology Cooperation Project under Grant No.cstc2020jscx-lyjsAX0008the Sci.&Tech.Development Fund of Qingdao under Grant No.21-1-5-zlyj-1-zc,SDUST Research Fund under Grant No.2015TDJH102the Science and Technology Support Plan of Youth Innovation Team of Shandong higher School under Grant No.2019KJN024.
文摘With the development of urbanization,the problem of neurological diseases brought about by population aging has gradually become a social problem of worldwide concern.Aging leads to gradual degeneration of the central nervous system,shrinkage of brain tissue,and decline in physical function in many elderlies,making them susceptible to neurological diseases such as Alzheimer’s disease(AD),stroke,Parkinson’s and major depressive disorder(MDD).Due to the influence of these neurological diseases,the elderly have troubles such as memory loss,inability to move,falling,and getting lost,which seriously affect their quality of life.Tracking and positioning of elderly with neurological diseases and keeping track of their location in real-time are necessary and crucial in order to detect and treat dangerous and unexpected situations in time.Considering that the elderly with neurological diseases forget to wear a positioning device or have mobility problems due to carrying a positioning device,device-free positioning as a passive positioning technology that detects device-free individuals is more suitable than traditional active positioning for the home-based care of the elderly with neurological diseases.This paper provides an extensive and in-depth survey of device-free indoor positioning technology for home-based care and an in-depth analysis of the main features of current positioning systems,as well as the techniques,technologies andmethods they employ,fromthe perspective of the needs of the elderly with neurological conditions.Moreover,evaluation criteria and possible solutions of positioning techniques for the home-based care of the elderly with neurological conditions are proposed.Finally,the opportunities and challenges for the development of indoor positioning technology in 6G mobile networks for home-based care of the elderly with neurological diseases are discussed.This review has provided comprehensive and effective tracking and positioning techniques,technologies and methods for the elderly,by which we can obtain the location information of the elderly in real-time and make home-based care more comfortable and safer for the elderly with neurological diseases.
基金National Key Research and Development Plan Project:High-precision Positioning Navigation and Control Technology for Large Underground Spaces(No.2021YFB3900800)。
文摘As an essential component of future comprehensive Positioning,Navigation,and Timing(PNT)system,indoor positioning technology has extensive application demands,making it a focal point of attention in both academia and industry.This article comprehensively reviews the research status of indoor positioning technology in China,with a focus on highlighting representative achievements and application validations from major research institutions in recent years.It addresses the challenges and issues faced in promotion and application of large-scale,high-precision indoor positioning.Furthermore,a universal and seamless indoor-outdoor positioning system architecture is proposed,along with a technical roadmap and key technologies to achieve this architecture.Finally,an analysis and outlook on future technological trends are presented.
基金This work was supported by the National High Technology Research and Development Program (863 Program) of China under Grant No.2012AA120801the National High Technology Research and Development Program (863 Program) of China under Grant No.2012AA120802
文摘This paper introduces the significance of indoor positioning and analyzes the related problems. The latest research on indoor positioning is introduced. Further, the positioning accuracy and the cost of typical local and wide area indoor positioning systems are compared. The results of the comparison show that Time & Code Division-Orthogonal Frequency Division Multiplexing (TC-OFDM) is a system that can achieve real-time meter-accuracy of indoor positioning in a wide area. Finally, in this paper, we indicate that the seamless high-accuracy indoor positioning in a wide area is the development trend of indoor positioning. The seamless Location Based Services (LBS) architecture based on a heterogeneous network, key technologies in indoor positioning for decimeter-accuracy and seamless outdoor and indoor Geographic Information System (GIS) are elaborated as the most important research fields of future indoor positioning.
基金supported by National Nature Science Foundation of China (No. 61373124)supported by China Scholarship Funds (2014CB3033)
文摘The key techniques in indoor positioning based on visible light communication and the state of the art of this research were surveyed. First, the significance of indoor positioning based on visible light communication from two aspects of the limitations of current indoor positioning technology and the advantages of visible light communication was discussed; And then, the main four technology of indoor positioning based on visible light communication were summarized and the triangulation of RSS method and the principle of image positioning were introduced in detail; Next, the performance characteristics of various typical algorithms were compared and analyzed; In the end, several suggestions on future research of indoor positioning based on visible light communication were given.
基金supported by the National Key Research and Development Plan under grant No. 2016YFB0502000
文摘Indoor positioning systems have been sufficiently researched to provide location information of persons and devices.This paper is focused on the current research and further development of indoor positioning.The standard evolution and industry development are summarized.There are various positioning systems according to the scenarios,cost and accuracy.However,there is a basic positioning system framework including information extraction,measurement and calculation.In particular,the detailed positioning technologies mainly including cellular positioning and Local Area Network(LAN) positioning are listed and compared to provide a reference for practical applications.Finally,we summarize the challenges of indoor positioning and give a3-phase evolution route.
基金the High-Tech Research and Development Program of China,the National Seience Foundation for Young Scientists of China,the China Postdoctoral Science Foundation funded project
文摘We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(APs) used in positioning via Maximum Mutual Information(MMI) criterion.Second,we propose Orthogonal Locality Preserving Projection(OLPP) to reduce the redundancy among selected APs.OLPP effectively extracts the intrinsic location features in situations where previous linear signal projection techniques failed to do,while maintaining computational efficiency.Third,we show that the combination of AP selection and OLPP simultaneously exploits their complementary advantages while avoiding the drawbacks.Experimental results indicate that,compared with the widely used weighted K-nearest neighbor and maximum likelihood estimation method,the proposed method leads to 21.8%(0.49 m) positioning accuracy improvement,while decreasing the computation cost by 65.4%.
文摘Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.
文摘Current positioning systems are primarily based on the Global Positioning System(GPS).Although the GPS is accurate within 10 m,it is mainly used for outdoor positioning services(Location-Based Service;LBS).However,since satellite signals cannot penetrate buildings,indoor positioning has always been a blind spot for satellite signals.As indoor positioning applications are extensive with high commercial values,they have created a competitive niche in themarket.Existing indoor positioning technologies are unable to achieve less than 10 cmaccuracy except for the UltraWide Band(UWB)technology.On the other hand,the Bluetooth protocol achieves an accuracy of 1 to 2m.In this work,we use Bluetooth wireless signals to build a novel indoor positioning framework to avoid the high manufacturing costs involved in the UWB technology.The Bluetooth signals are combined with the results from artificial intelligence algorithms to improve accuracy.During laboratory indoor location tracking,the accuracy rate is 96%,which provides effective indoor tracking for the movement of people.
基金The authors extend their appreciation to National University of Sciences and Technology for funding this work through Researchers Supporting Grant,National University of Sciences and Technology,Islamabad,Pakistan.
文摘With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the outdoor environment,the lack of line-of-sight propagation in an indoor environment keeps the interest of the researchers to develop efcient and precise positioning systems that can later be incorporated in numerous applications involving Internet of Things(IoTs)and green computing.In this paper,we have proposed a technique that combines the capabilities of multiple algorithms to overcome the complexities experienced indoors.Initially,in the database development phase,Motley Kennan propagation model is used with Hough transformation to classify,detect,and assign different attenuation factors related to the types of walls.Furthermore,important parameters for system accuracy,such as,placement and geometry of Access Points(APs)in the coverage area are also considered.New algorithm for deployment of an additional AP to an already existing infrastructure is proposed by using Genetic Algorithm(GA)coupled with Enhanced Dilution of Precision(EDOP).Moreover,classication algorithm based on k-Nearest Neighbors(k-NN)is used to nd the position of a stationary or mobile user inside the given coverage area.For k-NN to provide low localization error and reduced space dimensionality,three APs are required to be selected optimally.In this paper,we have suggested an idea to select APs based on Position Vectors(PV)as an input to the localization algorithm.Deducing from our comprehensive investigations,it is revealed that the accuracy of indoor positioning system using the proposed technique unblemished the existing solutions with signicant improvements.
基金The National Natural Science Foundation of China(No.61741102,61471164,61601122)the Fundamental Research Funds for the Central Universities(No.SJLX_160040)
文摘An indoor positioning system( IPS) is designed to realize positioning and tracking of mobile targets,by taking advantages of both the visible light communication( VLC) and inertial measurement unit( IMU). The platform of the IPS is designed,which consists of the light-emitting diode( LED)based transmitter,the receiver and the positioning server. To reduce the impact caused by measurement errors,both inertial sensing data and the received signal strength( RSS) from the VLC are calibrated. Then,a practical propagation model is established to obtain the distance between the transmitter and the receiver from the RSS measurements. Furthermore,a hybrid positioning algorithm is proposed by using the adaptive Kalman filter( AKF) and the weighted least squares( WLS)trilateration to estimate the positions of the mobile targets.Experimental results show that the developed IPS using the proposed hybrid positioning algorithm can extend the localization area of VLC,mitigate the IMU drifts and improve the positioning accuracy of mobile targets.
基金National Key Research and Development Program of China,No.2018YFC0604404.
文摘To tackle challenges such as interference and poor accuracy of indoor positioning systems,a novel scheme based on ultra-wide bandwidth(UWB)technology is proposed.First,we illustrate a distance measuring method between two UWB devices.Then,a Taylor series expansion algorithm is developed to detect coordinates of the mobile node using the location of anchor nodes and the distance between them.Simulation results show that the observation error under our strategy is within 15 cm,which is superior to existing algorithms.The final experimental data in the hardware system mainly composed of STM32 and DW1000 also confirms the performance of the proposed scheme.
基金Supported by the National Natural Science Foundation of China(No.61771186)Outstanding Youth Project of Heilongjiang Natural Science Foundation(No.YQ2020F012)Undergraduate University Project of Young Scientist Creative Talent of Heilongjiang Province(No.UNPYSCT-2017125)。
文摘The mobility of the targets asks for high requirements of the locating speed in indoor positioning systems.The standard medium access control(MAC)algorithm will often cause lots of packet conflicts and high transmission delay if multiple users communicate with one beacon at the same time,which will severely limit the speed of the system.Therefore,an optimized MAC algorithm is proposed based on channel reservation to enable users to reserve beacons.A frame threshold is set to ensure the users with shorter data frames do not depend on the reservation mechanism,and multiple users can achieve packets switching with relative beacon in a fixed sequence by using frequency division multiplexing technology.The simulation results show that the optimized MAC algorithm proposed in this paper can improve the positioning speed significantly while maintaining the positioning accuracy.Moreover,the positioning accuracy can be increased to a certain extent if more channel resources can be obtained,so as to provide effective technical support for the location and tracking applications of indoor moving targets.
基金Supported by the National Natural Science Foundation of China(61001109)the Pilot Program for the New and Interdisciplinary Subjects of the Chinese Academy of Sciences(KJCX2-EWJ01)the Knowledge Innovation Program of the Chinese Academy of Sciences(KGCX2-EW-4071)
文摘A differential barometric altimetry technology based on the digital pressure sensors is put forward by using the existing mobile phone base station as reference. The height of known base sta- tion is precise. The pressure and temperature of the known base station is measured by sensors and transmitted to users. The absolute height value of user will be calculated by combining the baromet- ric pressure values and temperature values from the base station with the locally measured values. In order to decrease system errors caused by inconsistency between the measured pressure value at base station and the locally measured pressure value, weights correction is applied based on multiple reference stations. The calculated height value is accurate due to eliminating the measured errors caused by irregular changes of atmospheric pressure, with the error less than 1 m. Resolution of ele- vation positioning depends upon the resolution of the pressure sensor, the relationship between which is approximately linear. When the resolution of sensor is 0.01 hPa, the resolution of elevation positioning is about 0. 1 m. In addition, the data frame format at base station is designed in this arti- cle. Experimental results show that the method is accurate, reliable, stable and has the ability to distinguish floors and stair steps.
基金The authors extend their appreciation to the National University of Sciences and Technology for funding this work through the Researchers Supporting Grant,National University of Sciences and Technology,Islamabad,Pakistan.
文摘Due to the inability of the Global Positioning System(GPS)signals to penetrate through surfaces like roofs,walls,and other objects in indoor environments,numerous alternative methods for user positioning have been presented.Amongst those,the Wi-Fi fingerprinting method has gained considerable interest in Indoor Positioning Systems(IPS)as the need for lineof-sight measurements is minimal,and it achieves better efficiency in even complex indoor environments.Offline and online are the two phases of the fingerprinting method.Many researchers have highlighted the problems in the offline phase as it deals with huge datasets and validation of Fingerprints without pre-processing of data becomes a concern.Machine learning is used for the model training in the offline phase while the locations are estimated in the online phase.Many researchers have considered the concerns in the offline phase as it deals with huge datasets and validation of Fingerprints becomes an issue.Machine learning algorithms are a natural solution for winnowing through large datasets and determining the significant fragments of information for localization,creating precise models to predict an indoor location.Large training sets are a key for obtaining better results in machine learning problems.Therefore,an existing WLAN fingerprinting-based multistory building location database has been used with 21049 samples including 19938 training and 1111 testing samples.The proposed model consists of mean and median filtering as pre-processing techniques applied to the database for enhancing the accuracy by mitigating the impact of environmental dispersion and investigated machine learning algorithms(kNN,WkNN,FSkNN,and SVM)for estimating the location.The proposed SVM with median filtering algorithm gives a reduced mean positioning error of 0.7959 m and an improved efficiency of 92.84%as compared to all variants of the proposed method for 108703 m^(2) area.
基金Sponsored by the National High Technology Research and Development Program of China (Grant No. 2008AA12Z305)the China Postdoctoral ScienceFoundation Funded Project (Grant No. 20100471057)the Heilongjiang Province Postdoctoral Science Foundation Funded Project (Grant No. LRB09-464)
文摘Wi-Fi indoor positioning system has received increasing interest in pervasive computing applications due to its low cost and satisfactory accuracy. To obtain high positioning accuracy based on source limited devices, various AP selection strategies have been proposed to select the most discriminant APs for positioning. In this paper, we propose a spatially localized AP selection method based on joint location information gain. In contrast to traditional AP selection methods which measure the discriminant ability of APs independently, we consider choosing APs jointly. By considering the correlation of the discriminant ability between different APs, more accurate measure of the discriminant ability of APs can be taken. Furthermore, since the optimal AP selection solution varies spatially, we incorporate a location clustering method to localize AP selection and subsequent positioning process. Finally, support vector regression (SVR) algorithm is combined to estimate the location. Experiments are carried in a realistic Wi-Fi indoor environment. Experimental results show that, by using the localized joint AP selection strategy, the proposed positioning method achieves a high-level accuracy while reducing the energy consumption on client devices significantly.
基金This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2020-2016-0-00313)supervised by the IITP(Institute for Information&communications Technology Planning&Evaluation)This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(2017R1E1A1A01074345).
文摘Indoor positioning and localization have emerged as a potential research area during the last few years owing to the wide proliferation of smartphones and the inception of location-attached services for the consumer industry.Due to the importance of precise location information,several positioning technologies are adopted such as Wi-Fi,ultrawideband,infrared,radio frequency identification,Bluetooth beacons,pedestrian dead reckoning,and magnetic field,etc.Although Wi-Fi and magnetic field-based positioning are more attractive concerning the deployment of Wi-Fi access points and ubiquity of magnetic field data,the latter is preferred as it does not require any additional infrastructure as other approaches do.Despite the advantages of magnetic field positioning,comparing the performance of positioning and localization algorithms is very difficult due to the lack of good public datasets that cover various aspects of the magnetic field data.Available datasets do not provide the data to analyze the impact of device heterogeneity,user heights,and time-specific magnetic field mutation.Moreover,multi-floor and multibuilding data are available for the evaluation of state-of-the-art approaches.To overcome the above-mentioned issues,this study presents multi-user,multidevice,multi-building magnetic field data which is collected over a longer period.The dataset contains the data from five different smartphones including Samsung Galaxy S8,S9,A8,LG G6,and LG G7 for three geographically separated buildings.Three users including one female and two males collected the data for various path geometry and data collection scenarios.Moreover,the data contains the magnetic field samples collected on stairs to test multifloor localization.Besides the magnetic field data,the data from inertial measurement unit sensors like the accelerometer,motion sensors,and barometer is provided as well.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 61071105 and 61101122)the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2010090)
文摘Wireless local area network(WLAN) is developing to a ubiquitous technique in daily life.As a related product,WLAN based indoor positioning system is attracting more and more concern.Fingerprint is a mainstream method of wireless indoor positioning.However,it still has some shortcomings of that received signal strength(RSS) is multi-modal and sensitive to environmental factors.These characters would have a negative effect on the performance of positioning system.In this paper,a filtering algorithm based on multi-cluster-center is proposed.We make full use of this algorithm to optimize the training samples at off-line phase to improve the performance of non-linear fitting with the fingerprint feature,and further enhance the positioning accuracy.Finally,we use multiple sets of original WLAN signal samples and signal samples after filtering as the training input of positioning system respectively.After that,the results analysis is demonstrated.Simulation results show that it is a reliable algorithm to enhance the performance of WLAN indoor positioning.
基金Sponsored by the High Technology Research and Development Program of China (Grant No. 2008AA12Z305)
文摘In the fingerprint matching-based wireless local area network(WLAN) indoor positioning system,Kalman filter(KF) is usually applied after fingerprint matching algorithms to make positioning results more accurate and consecutive.But this method,like most methods in WLAN indoor positioning field,fails to consider and make use of users' moving speed information.In order to make the positioning results more accurate through using the users' moving speed information,a coordinate correction algorithm(CCA) is proposed in this paper.It predicts a reasonable range for positioning coordinates by using the moving speed information.If the real positioning coordinates are not in the predicted range,it means that the positioning coordinates are not reasonable to a moving user in indoor environment,so the proposed CCA is used to correct this kind of positioning coordinates.The simulation results prove that the positioning results by the CCA are more accurate than those calculated by the KF and the CCA is effective to improve the positioning performance.