Perinatal complications,such as asphyxia,can cause brain injuries that are often associated with subsequent neurological deficits,such as cerebral palsy or mental retardation.The mechanisms of perinatal brain injury a...Perinatal complications,such as asphyxia,can cause brain injuries that are often associated with subsequent neurological deficits,such as cerebral palsy or mental retardation.The mechanisms of perinatal brain injury are not fully understood,but mitochondria play a prominent role not only due to their central function in metabolism but also because many proteins with apoptosis-related functions are located in the mitochondrion.Among these proteins,apoptosis-inducing factor has already been shown to be an important factor involved in neuronal cell death upon hypoxia-ischemia,but a better understanding of the mechanisms behind these processes is required for the development of more effective treatments during the early stages of perinatal brain injury.In this review,we focus on the molecular mechanisms of hypoxic-ischemic encephalopathy,specifically on the importance of apoptosis-inducing factor.The relevance of apoptosis-inducing factor is based not only because it participates in the caspase-independent apoptotic pathway but also because it plays a crucial role in mitochondrial energetic functionality,especially with regard to the maintenance of electron transport during oxidative phosphorylation and in oxidative stress,acting as a free radical scavenger.We also discuss all the different apoptosis-inducing factor isoforms discovered,focusing especially on apoptosis-inducing factor 2,which is only expressed in the brain and the functions of which are starting now to be clarified.Finally,we summarized the interaction of apoptosis-inducing factor with several proteins that are crucial for both apoptosis-inducing factor functions(prosurvival and pro-apoptotic)and that are highly important in order to develop promising therapeutic targets for improving outcomes after perinatal brain injury.展开更多
Objective To investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1 α (HIF- 1α) and erythropoietin ...Objective To investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1 α (HIF- 1α) and erythropoietin (EPO) in vivo and in vitro. Methods Rat model of cerebral ischemia was established by middle cerebral artery occlusion with or without DFO administration. Infarct size was examined by TTC staining, and the neurological severity score was evaluated according to published method. Cortical neurons were cultured under ischemia stress which was mimicked by oxygen-glucose deprivation (OGD), and the neuron damage was assessed by MTT assay. Immunofluorescent staining was employed to detect the expressions of HIF-1 and EPO. Results The protective effect induced by DFO (decreasing the infarction volume and ameliorating the neurological function) appeared at 2 d after administration ofDFO (post-DFO), lasted until 7 d and disappeared at 14 d (P 〈 0.05); the most effective action was observed at 3 d post-DFO. DFO induced tolerance of cultured neurons against OGD: neuronal viability was increased 23%, 34%, 40%, 48% and 56% at 8 h, 12 h, 24 h, 36 h, and 48 h, respectively, post-DFO (P 〈 0.05). Immunofluorescent staining found that HIF-1 α and EPO were upregulated in the neurons of rat brain at 3 d and 7 d post-DFO; increase of HIF-1 α and EPO appeared in cultured cortex neurons at 36 h and 48 h post-DFO. Conclusion DFO induced tolerance against focal cerebral ischemia in rats, and exerted protective effect on OGD cultured cortical neurons. DFO significant induced the expression of HIF- 1 α and EPO both in vivo and in vitro. DFO preconditioning can protect against cerebral ischemia, which may be associated with the synthesis of HIF- 1 α and EPO.展开更多
Background Poly(ADP-ribose) polymerase (PARP) plays an important role in cell survival and death. However, the mechanisms involved are not fully understood. Therefore, we investigated the effect of inhibition of P...Background Poly(ADP-ribose) polymerase (PARP) plays an important role in cell survival and death. However, the mechanisms involved are not fully understood. Therefore, we investigated the effect of inhibition of PARP on acute myocardial infarction (AMI) at different time points in rats. Methods AMI was induced in rats by ligating the left anterior descending coronary artery. One group received 3-aminobenzamide (3-AB, a kind of PARP inhibitor) (30 mg/kg) by intraperitoneal injection. The changes of ultramicrostructure of cardiocytes in infarction region were noted, PARP cleavage was measured by Western blotting, and expressions of protein of PARP and apoptosis inducing factor (AIF) were measured by immunohistochemical staining after treatment with 3-AB for 2 hours, 4 hours, 6 hours, 1 week, 4 weeks and 8 weeks. Results Few damages to the ultramicrostructure of cardiocytes were observed after treatment with 3-AB. PARP cleavage was detected as early as 4 hours and markedly increased by 6 hours following AMI without 3-AB, but was not found until 6 hours following AMI treated with 3-AB. There were significant differences between 3-AB and AMI groups at the same time points. The expression of PARP was observed gradually increased, but that of AIF was suppressed for 6 hours after treatment of 3-AB, compared with AMI groups in positive cells at the same time points. There was significantly less cleavage of PARP and more PARP expression in 3-AB treated group compared with AMI and control groups at all matched time points. Conclusions Our results suggest that 3-AB inhibits degradation of PARP, increases the expression of PARP protein, and suppresses the expression of AIF protein. Inhibition of PARP activity may protect cardiocytes in rats with AMI and reduce apoptosis.展开更多
OBJECTIVE:To observe the effects of moxibustion at bilateral Feishu(BL13)and Xinshu(BL15)combined with benazepril on myocardial cells apoptosis index,the expression levels of apoptosis-related proteins cytochrome c(Cy...OBJECTIVE:To observe the effects of moxibustion at bilateral Feishu(BL13)and Xinshu(BL15)combined with benazepril on myocardial cells apoptosis index,the expression levels of apoptosis-related proteins cytochrome c(Cyt-C)and apoptosis-inducing factor(AIF)in chronic heart failure(CHF)rats.METHODS:Sixty-five rats were randomly divided into normal group(n=10)and model-I group(n=55).After modeling,CHF rats in model-I group were divided into model group,moxibustion group,benazepril group,moxibustion plus benazepril group(abbreviated as aibei group,the same below),10 rats in each group.Echocardiogram index was examined by echocardiography.Hemodynamic indices were measured by rat cardiac function meter.Serum B-type brain natriuretic peptide(BNP)was detected by enzymelinked immunosorbent assay.Myocardial cells apoptosis index was detected by terminal-deoxynucleoitidyl transferase mediated nick end labeling staining.Pathological changes of myocardial tissues were observed by hematoxylin and eosin staining.The expression levels of Cyt-C and AIF in myocardial tissues were detected by Western blot.RESULTS:Compared with normal group,ejection fraction and left ventricular diameter shortening rate in model-Ⅰgroup were significantly reduced,myocardial cells of rats in model group exhibited unclear transverse striations,cells swellings and vacuoles,cardiac functions were deteriorated,serum BNP level,myocardial cells apoptosis index,and the expression levels of Cyt-C and AIF were significantly increased.Compared with model group,myocardial cells of rats in moxibustion group,benazepril group,and aibei group were dyed more evenly,muscle fibers were arranged relatively neatly,cardiac functions were improved,serum BNP level,myocardial cells apoptosis index,and the expression levels of Cyt-C and AIF were significantly decreased.Compared with aibei group,cardiac functions were worsened,myocardial cells apoptosis index,and the expression levels of Cyt-C and AIF were increased.CONCLUSION:Moxibustion at bilateral Feishu(BL13)and Xinshu(BL15)combined with benazepril could improve CHF better than moxibustion at bilateral Feishu(BL13)and Xinshu(BL15)or benazepril alone.The mechanisms might be that they can inhibit the expressions of Cyt-C and AIF,and inhibit the apoptosis of cardiomyocytes.展开更多
BACKGROUND: Receptors for tumor necrosis factor related apoptosis inducing ligand (TRAIL) include death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2. Activation of death receptor 4 and 5 sel...BACKGROUND: Receptors for tumor necrosis factor related apoptosis inducing ligand (TRAIL) include death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2. Activation of death receptor 4 and 5 selectively kills tumor cells. OBJECTIVE: To detect TRAIL receptor expression in glioblastoma by immunohistochemistry and RT-PCR, and to compare this expression to that in normal brain tissue. DESIGN: Observational analysis. SETTING: Department of Pathology, the First Affiliated Hospital of Zhengzhou University; Henan Tumor Pathology Key Laboratory. PARTICIPANTS: Twenty-five patients (17 males and 8 females) who received glioblastoma resection were selected from the Fifth Affiliated Hospital of Zhengzhou University, between September 2003 to June 2004. All glioblastoma samples were diagnosed pathologically. Twenty patients (12 males and 8 females) with craniocerebral injury who received normal brain tissue resection were selected in the same time period. There were no significant differences in sex and age between glioblastoma patients or between craniocerebral injury patients (P 〉 0.05). All patients and appropriate relatives provided informed consent, and this study was approved by the local research ethics committee. METHODS: Polyclonal antibody against TRAIL receptors and an immunohistochemical kit (batch number: 200502) were purchased from Boster Company, Wuhan. Immunohistochemistry: Expression of death receptor 4, death receptor 5, decoy receptor l, and decoy receptor 2 were observed in both glioblastoma and normal brain tissue. The experiment was performed according to the kit instructions, and positive staining was brown-yellow. Assessment: There were no positive signals (-); weakly positive signals, positive cells 〈 25% (+); weakly positive signals, positive cells 25%-50% (++); strongly positive signals, positive cells 50%-75% (+++); strongly positive signals, positive cells 〉 75% (++++). Evaluation: Expression levels of TRAIL receptors were estimated in both normal brain tissue and glioblastoma. Expression of decoy receptor 1 and decoy receptor 2 mRNA in glioblastoma were detected by reverse transcription polymerase chain reaction, and expression of decoy receptor in glioblastoma was estimated. MAIN OUTCOME MEASURES: Comparison of death receptor and decoy receptor protein expression between glioblastoma and normal brain tissue; decoy receptor mRNA expression in glioblastoma. RESULTS: Death receptor protein expression was strongly positive (+++) in glioblastoma, while it was weakly positive (+, ++) in normal brain tissue. Therefore, expression rate of death receptor protein in the glioblastoma was significantly higher than that in the normal brain tissue (.~ 2 = 18.48, 23.03, P 〈 0.01). Decoy receptor protein expression in the glioblastoma was significantly lower than that in the normal brain tissue ( x2 = 6.65, 18.76, P 〈 0.01). The level of decoy receptor mRNA expression in glioblastoma was significantly higher than those of protein expression ( x 2 = 9.82, 10.09, P〈 0.01). CONCLUSION: High expression of death receptor and low expression of decoy receptor are frequently observed in glioblastoma, suggesting that TRAIL receptor genes show an anti-tumor and expressive response during the initiation and development of the tumor. There are significant differences in decoy receptor expression between normal brain tissue and glioblastoma, suggesting that the restricted expression of decoy receptor in glioblastoma is regulated at the post-transcriptional level.展开更多
BACKGROUND: Under induction of retinoic acid (RA), bone marrow stromal cells (BMSCs) can differentiate into nerve cells or neuron-like cells, which do not survive for a long time, so those are restricted to an ap...BACKGROUND: Under induction of retinoic acid (RA), bone marrow stromal cells (BMSCs) can differentiate into nerve cells or neuron-like cells, which do not survive for a long time, so those are restricted to an application. Other neurotrophic factors can also differentiate into neuronal cells through inducing BMSCs; especially, brain-derived neurotrophic factor (BDNF) can delay natural death of neurons and play a key role in survival and growth of neurons. The combination of them is beneficial for differentiation of BMSCs. OBJECTIVE: To investigate the effects of BDNF combining with RA on inducing differentiation of BMSCs to nerve cells of adult rats and compare the results between common medium group and single BDNF group. DESIGN: Randomized controlled animal study SETTING: Department of Neurology, Affiliated Hospital of Xuzhou Medical College MATERIALS: The experiment was carried out in the Clinical Neurological Laboratory of Xuzhou Medical College from September 2003 to April 2005. A total of 24 SD rats, of either gender, 2 months old, weighing 130-150 g, were provided by Experimental Animal Center of Xuzhou Medical College [certification: SYXK (su) 2002-0038]. Materials and reagents: low-glucose DMEM medium, bovine serum, BDNF, RA, trypsin, separating medium of lymphocyte, monoclonal antibody of mouse-anti-nestin, neuro-specific enolase, glial fibrillary acidic protein (GFAP) antibody, SABC kit, and diaminobenzidine (DAB) color agent. All these mentioned above were mainly provided by SIGMA Company, GIBCO Company and Boshide Company. METHODS: Bone marrow of SD rats was selected for density gradient centrifugation. BMSCs were undertaken primary culture and subculture; and then, those cells were induced respectively in various mediums in total of 3 groups, including control group (primary culture), BDNF group (20 μg/L BDNF) and BDNF+RA group (20 μg/L BDNF plus 20 μg/L RA). On the 3^rd and the 7^th days after induction, BMSCs were stained immunocytochemically with nestin (sign of nerve stem cells), neuron-specific enolase (NSE, sign of diagnosing neurons) and GFAP (diagnosing astrocyte), and evaluated cellular property. MAIN OUTCOME MEASURES : Induction and differentiation in vitro of BMSCs in 3 groups RESULTS: (1) Induction and differentiation of BMSCs: Seven days after induction, cells having 2 or more apophyses were observed. Soma shaped like angle or erose form, which were similar to neurons and glial cells having strong refraction. (2) Results of immunocytochemical detection: Three days after induction, rate of positive cells in BDNF+RA group was higher than that in BDNF group and control group [(86.15±4.58)%, (65.43±4.23)%, (4.18±1.09)%, P 〈 0.01]. Seven days after induction, rate of positive cells was lower in BDNF group and BDNF+RA group than that in both groups at 3 days after induction [(31.12±3.18)%, (29.35±2.69)%, P 〈 0.01]; however, amounts of positive cells of NSE and GFAP were higher than those at 3 days after induction (P 〈 0.01); meanwhile, the amount in BDNF+RA group was remarkably higher than that in BDNF group (P 〈 0.01). CONCLUSION: Combination of BDNF and RA can cooperate differentiation of BMSCs into neurons and astrocyte, and the effect is superior to single usage of BDNF.展开更多
The role of the hypoxia-inducible factor(HIF)subunits 1α and 2α in response to hypoxia is well established in lungepithelial cells,whereas little is known about HIF-3α with respect to transcriptional and translatio...The role of the hypoxia-inducible factor(HIF)subunits 1α and 2α in response to hypoxia is well established in lungepithelial cells,whereas little is known about HIF-3α with respect to transcriptional and translational regulation by hy-poxia.HIF-3α and HIF-1α are two similar but distinct basic helix-loop-helix-PAS proteins,which have been postulatedto activate hypoxia responsive genes in response to hypoxia.Here,we used quantitative real time RT-PCR and immu-noblotting to determine the activation of HIF-3α vs.HIF-1α by hypoxia.HIF-3α was strongly induced by hypoxia(1%O_2)both at the level of protein and mRNA due to an increase in protein stability and transcriptional activation,whereasHIF-1α protein and mRNA levels enhanced transiently and then decreased because of a reduction in its mRNA stabilityin A549 cells,as measured on mRNA and protein levels.Interestingly,HIF-3α and HIF-1α exhibited strikingly similarresponses to a variety of activating or inhibitory pharmacological agents.These results demonstrate that HIF-3α is ex-pressed abundantly in lung epithelial cells,and that the transcriptional induction of HIF-3α plays an important role in theresponse to hypoxia in vitro.Our findings suggest that HIF-3α,as a member of the HIF system,is complementary ratherthan redundant to HIF-1α induction in protection against hypoxic damage in alveolar epithelial cells.展开更多
DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-bu...DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is a malignant tumor that occurs in the liver.Its onset is latent,and it shows high heterogeneity and can readily experience intrahepatic metastasis or systemic metastasis,which...BACKGROUND Hepatocellular carcinoma(HCC)is a malignant tumor that occurs in the liver.Its onset is latent,and it shows high heterogeneity and can readily experience intrahepatic metastasis or systemic metastasis,which seriously affects patients’quality of life.Numerous studies have shown that hypoxia inducible factor1α(HIF-1α)plays a significant role in the occurrence and development of tumors,as it promotes the formation of intratumoral vessels and plays a key role in their metastasis and invasion.Some studies have reported that caspase-3,which is induced by various factors,is involved in the apoptosis of tumor cells.AIM To investigate the expression of caspase-3 and HIF-1αand their relationship to the prognosis of patients with primary HCC complicated by pathological changes of hemorrhage and necrosis.METHODS A total of 88 patients with HCC complicated by pathological changes of hemorrhage and necrosis who were treated at our hospital from January 2017 to December 2019 were selected.The expression of caspase-3 and HIF-1αin HCC and paracancerous tissues from these patients was assessed.RESULTS The positive expression rate of caspase-3 in HCC tissues was 27.27%,which was significantly lower than that in the paracancerous tissues(P<0.05),while the positive expression rate of HIF-1αwas 72.73%,which was significantly higher than that in the paracancerous tissues(P<0.05).The positive expression rates for caspase-3 in tumor node metastasis(TNM)stage III and lymph node metastasis tissues were 2.78%and 2.50%,respectively,which were significantly lower than those in TNM stage I-II and non-lymph node metastasis tissues(P<0.05).The positive expression rates of HIF-1αin TNM stage III,lymph node metastasis,and portal vein tumor thrombus tissues were 86.11%,87.50%,and 88.00%,respectively,and these values were significantly higher than those in TNM stage I-II,non-lymph node metastasis,and portal vein tumor thrombus tissues(P<0.05).The expression of caspase-3 and HIF-1αin HCC tissues were negatively correlated(rs=−0.426,P<0.05).The median overall survival time of HCC patients was 18.90 mo(95%CI:17.20–19.91).The results of the Cox proportional risk regression model analysis showed that TNM stage,portal vein tumor thrombus,lymph node metastasis,caspase-3 expression,and HIF-1αexpression were the factors influencing patient prognosis(P<0.05).CONCLUSION The expression of caspase-3 decreases and HIF-1αincreases in HCC tissues complicated by pathological changes of hemorrhage and necrosis,and these are related to clinicopathological features and prognosis.展开更多
Objective:To evaluate whether hypoxia inducible factor(HIF-1α) targeting pharmacological drugs,echinomycin,resveratrol and CdCl_2 which inhibit HIF-1α stimulation,and mimosine,which enhances the stability of HIF-1α...Objective:To evaluate whether hypoxia inducible factor(HIF-1α) targeting pharmacological drugs,echinomycin,resveratrol and CdCl_2 which inhibit HIF-1α stimulation,and mimosine,which enhances the stability of HIF-1α present antileishmanial properties.Methods:The leishmanicidal effect of drugs was evaluated in mouse macrophages and Balb/c mouse model for cutaneous leishmaniosis.Results:Resveratrol and CdCl_2 reduced the parasite load [IC50,(27.3±2.25) μM and(24.8±0.95) μM,respectively].The IC50 value of echinomycin was(22.7±7.36) nM and mimosine did not alter the parasite load in primary macrophages.The macrophage viability IC50 values for resveratrol,echinomycin and CdCl_2 and mimosine were >40 μM,>100 nM,> 200 μM and>2 000 μM,respectively.In vivo no differences between cutaneous lesions from control,resveratrol-and echinomycin-treated Balb/c mice were detected.Conclusions:Resveratrol,echinomycin and CdCl_2 reduce parasite survival in vitro.The HIF-1α targeting pharmacological drugs require further study to more fully determine their anti-Leishmania potential and their role in therapeutic strategies.展开更多
BACKGROUND The occurrence and development of acute liver failure(ALF)is closely related to a series of inflammatory reactions,such as the production of reactive oxygen species(ROS).Hypoxia inducible factor 1α(HIF-1α...BACKGROUND The occurrence and development of acute liver failure(ALF)is closely related to a series of inflammatory reactions,such as the production of reactive oxygen species(ROS).Hypoxia inducible factor 1α(HIF-1α)is a key factor that regulates oxygen homeostasis and redox,and the stability of HIF-1αis related to the ROS level regulated by Sirtuin(Sirt)family.The activation of Sirt1 will lead to a powerful antioxidant defense system and therapeutic effects in liver disease.However,little is known about the relationship between HIF-1αand Sirt1 in the process of ALF and the molecular mechanism.AIM To investigate whether HIF-1αmay be a target of Sirt1 deacetylation and what the effects on ALF are.METHODS Mice were administrated lipopolysaccharide(LPS)/D-gal and exposed to hypoxic conditions as animal model,and resveratrol was used as an activator of Sirt1.The cellular model was established with L02 cells stimulated by LPS.N-acetyl-Lcysteine was used to remove ROS,and the expression of Sirt1 was inhibited by nicotinamide.Western blotting was used to detect Sirt1 and HIF-1αactivity and related protein expression.The possible signaling pathways involved were analyzed by immunofluorescent staining,co-immunoprecipitation,dihydroethidium staining,and Western blotting.RESULTS Compared with mice stimulated with LPS alone,the expression of Sirt1 decreased,the level of HIF-1αacetylation increased in hypoxic mice,and the levels of carbonic anhydrase 9 and Bcl-2-adenovirus E1B interacting protein 3 increased significantly,which was regulated by HIF-1α,indicating an increase of HIF-1αactivity.Under hypoxia,the down-regulation of Sirt1 activated and acetylated HIF-1αin L02 cells.The inhibition of Sirt1 significantly aggravated this effect and the massive production of ROS.The regulation of ROS was partly through peroxisome proliferatoractivated receptor alpha or AMP-activated protein kinase.Resveratrol,a Sirt1 activator,effectively relieved ALF aggravated by hypoxia,the production of ROS,and cell apoptosis.It also induced the deacetylation of HIF-1αand inhibited the activity of HIF-1α.CONCLUSION Sirt1 may have a protective effect on ALF by inducing HIF-1α deacetylation to reduce ROS.展开更多
BACKGROUND Ischemia-reperfusion injury(IRI) is a major risk associated with liver surgery and transplantation,and its pathological mechanism is complex.Interleukin-1 receptor antagonist(IL-1ra) can protect the liver f...BACKGROUND Ischemia-reperfusion injury(IRI) is a major risk associated with liver surgery and transplantation,and its pathological mechanism is complex.Interleukin-1 receptor antagonist(IL-1ra) can protect the liver from IRI.However,the regulatory mechanism of IL-1ra expression is still unclear.AIM To identify the mechanism that could protect the liver in the early stage of IRI.METHODS To screen the key genes in hepatic IRI,we performed RNA sequencing and gene enrichment analysis on liver tissue from mice with hepatic IRI.Subsequently,we verified the expression and effect of IL-1ra in hepatic IRI.We also used promoter mutagenesis and chromatin immunoprecipitation assay to search for the transcriptional regulatory sites of hypoxia-inducible factor(HIF)-1α.Finally,to explore the protective mechanism of ischemic preconditioning(IP),we examined the expression of HIF-1α and IL-1ra after IP.RESULTS We identified IL-1ra as a key regulator in hepatic IRI.The expression of IL-1ra was significantly upregulated after hepatic IRI both in vivo and in vitro.Furthermore,we found that HIF-1αregulated Il-1ra transcription in response to hypoxia.Increased HIF-1α accumulation promoted IL-1ra expression,whereas inhibition of HIF-1α exhibited the opposite effect.We also confirmed a predominant role for hypoxia response element in the regulation of Il1ra transcription by HIF-1αactivation.Of note,we demonstrated that IP protects against hepatic IRI by inducing IL-1ra expression,which is mediated through HIF-1α.CONCLUSION We demonstrated that ischemia or hypoxia leads to increased expression of IL-1ra through HIF-1α.Importantly,IP protects the liver from IRI via the HIF-1α–IL-1ra pathway.展开更多
BACKGROUND: Therapeutic angiogenesis has opened up new pathway for the treatment of ischemic cerebrovascular disease in recent years. The exploration of the effect of vascular endothelial growth factor (VEGF) on in...BACKGROUND: Therapeutic angiogenesis has opened up new pathway for the treatment of ischemic cerebrovascular disease in recent years. The exploration of the effect of vascular endothelial growth factor (VEGF) on inducing angiogenesis following ischemia/reperfusion injury can provide better help for the long-term treatment of cerebrovascular disease in clinic. OBJECTIVE: To observe the effect of VEGF on inducing angiogenesis following focal cerebral ischemia /reperfusion injury in rabbits through the angiogenesis of microvessels reflected by the expression of the factors of vascular pseudohemophilia. DESIGN: A randomized controlled animal tria SETTNG: Department of Medical Imaging, Second Hospital of Hebei Medical University MATERIALS: Sixty-five healthy male New Zealand rabbits of clean degree, weighing (2.6±0.2) kg, aged 4.5-5 months, were used. The polyclonal antibody against vascular pseudohemophilia (Beijing Zhongshan Company), recombinant VEGF165 (Peprotech Company, USA), biotinylated second antibody and ABC compound (Wuhan Boster Company) were applied. METHODS: The experiments were carried out in the Laboratory of Neuromolecular Imaging and Neuropathy, Second Hospital of Hebei Medical University from May to August in 2005. (1) The rabbits were randomly divided into three groups: sham-operated group (n=15), control group (n=25) and VEGF-treated group (n=-25). In the control group and VEGF-treated group, models were established by middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia/reperfusion. In the VEGF-treated group, VEGF165 (2.5 mg/L) was stereotactically injected into the surrounding regions of the infarcted sites immediately after the 2-hour ischemia/reperfusion; Saline of the same dosage was injected in the control group. But the rabbits in the sham-operated group were only drilled but not administrated. (2) The experimental indexes were observed on the 3^rd 7^th, 14^th, 28^th and 70^th days of the experiment respectively, 3 rabbits in the sham-operated group and 5 in the control group and VEGF-treated group were observed at each time point. The brain tissues in the surrounding regions of the infarcted sites were collected. The positive expressions of the factors of vascular pseudohemophilia in vascular endothelial cells were analyzed with immunohistochemical method. The microvessels in unit statistical field were counted with the imaging analytical software. MAIN OUTCOME MEASURES: The changes of microvascular density in the brain tissue and the positive expressions of the factors of vascular pseudohemophilia in the surrounding regions of the infarcted sites were observed on the 3^rd 7^th, 14^th, 28^th and 70^th days of the experiment. RESULTS: All the 65 New Zealand rabbits were involved in the analysis of results without deletion. Changes of the number of microvessels at different time points in each group: There were no obvious changes at different time points in the sham-operated group. The numbers of microvessels at 7 and 14 days were obviously more in the control group than in the sham-operated group [(6.0±1.1), (9.0±0.9) microvessels; (3.0±1.1), (3.0±1.1) microvessels; P〈 0.05-0.01], and those at 3, 7, 14 and 28 days were obviously more in the VEGF-treated group than in the control group [(8.3±2.0), (13.4±1.4), (15.5±2.3), (6.8± 1.0) microvessels; (3.4±0.6), (6.0±1.1), (9.0±0.9), (3.2±0.8) microvessels; P 〈 0.01]. (2) Positive expressions of the factors of vascular pseudohemophilia in the surrounding regions of infarcted sites: There were no obvious changes at different time points in the sham-operated group. In the control group, the changing law of the expressions was the same as that for the number of microvessels that the expression began to mildly increase at 7 days, reached the peak value at 14 days, and began to reduce at 28 days. In the VEGF-treated group, the expression was obviously increased at 3 days, also reached the peak value at 14 days, and reduced to the normal level at 70 days, but the expressions were obviously stronger than those in the control group at the same time points. CONCLUSION: Angiogenesis can be obviously induced in rabbits after the focal cerebral ischemia/reperfusion injury is treated with VEGF for 18 days.展开更多
The defining neuropathological feature of Parkinson's disease (PD) is the loss of nigrostriatal dopaminergic (DA) projections. This results in striatal dopamine levels and a biochemical reduction of movement diso...The defining neuropathological feature of Parkinson's disease (PD) is the loss of nigrostriatal dopaminergic (DA) projections. This results in striatal dopamine levels and a biochemical reduction of movement disorders, such as a tremor at rest, rigidity of the limbs, bradykinesia, and postural instability (Kim et al., 2011; Kim et al., 2012; Burke and O'Malley, 2013; Leem et al., 2014; Namet al., 2014).展开更多
Introduction Thrombosis is the formation of a blood clot in a blood vessel. When thrombosis happens in the brain,it would cause stroke; when happens in the heart,it would cause heart attack. If a thrombus breaks and t...Introduction Thrombosis is the formation of a blood clot in a blood vessel. When thrombosis happens in the brain,it would cause stroke; when happens in the heart,it would cause heart attack. If a thrombus breaks and travels to the lung,it would展开更多
Objective: To study the role of the expression of nerve growth factor inducible protein B gene (NGFI-B) in striatum in the pathogenesis of levodopa-induced dyskinesias (LID). Methods: The rat model of LID was tr...Objective: To study the role of the expression of nerve growth factor inducible protein B gene (NGFI-B) in striatum in the pathogenesis of levodopa-induced dyskinesias (LID). Methods: The rat model of LID was treated with SCH 23390(1 mg/kg ip,a dopamine D1 antagonist) and haloperidol (1 mg/kg ip,a dopanfme D2 antagonist) respectively. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure the expression of NGFI-B mRNA in stiiatam and the behavior changes were observed. Resuits: After treatment with SCH23390, abnormal involuntary movement (AIM) in LID rats was decreased ( P 〈 0.05 ) and the expression of NGFI-B mRNA in striatum did not change significantly. After treatment with haloperidol, the changes of AIM in LID rats were not significant and the expression of NGFI-B mRNA was increased significantly( P 〈 0.01). Conclusion: LID is associated with over-expression of NGFI-B in striatum. Abnormal activity in the direct pathway and the basal ganglia circuit could be involved in the occurrence of LID.展开更多
Lead exposure is a known potential risk factor for neurodegenerative diseases such as Alzheimer’s disease (AD). Exposure to lead during the critical phase of brain development has been linked with mental retardatio...Lead exposure is a known potential risk factor for neurodegenerative diseases such as Alzheimer’s disease (AD). Exposure to lead during the critical phase of brain development has been linked with mental retardation and hypophrenia in later life.展开更多
Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target ...Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.展开更多
AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular en...AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway.展开更多
Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic ...Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid. Results showed that the survival rate of neurons was significantly increased after treatment with 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid, and the rate of apoptosis decreased. In addition, the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor were significantly reduced. Our experimental findings indicate that the chloride channel blocker 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid can antagonize apoptotic cell death of hippocampal neurons by inhibiting the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor.展开更多
基金the Swedish Research Council(2018-02667)the National Natural Science Foundation of China(31761133015,U1704281,81901335)+3 种基金the Swedish Childhood Cancer Foundation(PR2018-0082)Swedish Governmental Grants to Scientists Working in Health Care(ALFGBG-717791)the Swedish Brain Foundation(FO2018-0034)the Chinese Scholarship Council to TL(201707040025)and to YX(201507040082)。
文摘Perinatal complications,such as asphyxia,can cause brain injuries that are often associated with subsequent neurological deficits,such as cerebral palsy or mental retardation.The mechanisms of perinatal brain injury are not fully understood,but mitochondria play a prominent role not only due to their central function in metabolism but also because many proteins with apoptosis-related functions are located in the mitochondrion.Among these proteins,apoptosis-inducing factor has already been shown to be an important factor involved in neuronal cell death upon hypoxia-ischemia,but a better understanding of the mechanisms behind these processes is required for the development of more effective treatments during the early stages of perinatal brain injury.In this review,we focus on the molecular mechanisms of hypoxic-ischemic encephalopathy,specifically on the importance of apoptosis-inducing factor.The relevance of apoptosis-inducing factor is based not only because it participates in the caspase-independent apoptotic pathway but also because it plays a crucial role in mitochondrial energetic functionality,especially with regard to the maintenance of electron transport during oxidative phosphorylation and in oxidative stress,acting as a free radical scavenger.We also discuss all the different apoptosis-inducing factor isoforms discovered,focusing especially on apoptosis-inducing factor 2,which is only expressed in the brain and the functions of which are starting now to be clarified.Finally,we summarized the interaction of apoptosis-inducing factor with several proteins that are crucial for both apoptosis-inducing factor functions(prosurvival and pro-apoptotic)and that are highly important in order to develop promising therapeutic targets for improving outcomes after perinatal brain injury.
文摘Objective To investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1 α (HIF- 1α) and erythropoietin (EPO) in vivo and in vitro. Methods Rat model of cerebral ischemia was established by middle cerebral artery occlusion with or without DFO administration. Infarct size was examined by TTC staining, and the neurological severity score was evaluated according to published method. Cortical neurons were cultured under ischemia stress which was mimicked by oxygen-glucose deprivation (OGD), and the neuron damage was assessed by MTT assay. Immunofluorescent staining was employed to detect the expressions of HIF-1 and EPO. Results The protective effect induced by DFO (decreasing the infarction volume and ameliorating the neurological function) appeared at 2 d after administration ofDFO (post-DFO), lasted until 7 d and disappeared at 14 d (P 〈 0.05); the most effective action was observed at 3 d post-DFO. DFO induced tolerance of cultured neurons against OGD: neuronal viability was increased 23%, 34%, 40%, 48% and 56% at 8 h, 12 h, 24 h, 36 h, and 48 h, respectively, post-DFO (P 〈 0.05). Immunofluorescent staining found that HIF-1 α and EPO were upregulated in the neurons of rat brain at 3 d and 7 d post-DFO; increase of HIF-1 α and EPO appeared in cultured cortex neurons at 36 h and 48 h post-DFO. Conclusion DFO induced tolerance against focal cerebral ischemia in rats, and exerted protective effect on OGD cultured cortical neurons. DFO significant induced the expression of HIF- 1 α and EPO both in vivo and in vitro. DFO preconditioning can protect against cerebral ischemia, which may be associated with the synthesis of HIF- 1 α and EPO.
基金This research was supported by grants from Natural Science Foundation of Heilongjiang Province (No. D2007-23), Post-doctoral Foundation of Heilongjiang Province (No. LRB-06-288) and Department of Education of Heilongjiang Province (No. 11531210).
文摘Background Poly(ADP-ribose) polymerase (PARP) plays an important role in cell survival and death. However, the mechanisms involved are not fully understood. Therefore, we investigated the effect of inhibition of PARP on acute myocardial infarction (AMI) at different time points in rats. Methods AMI was induced in rats by ligating the left anterior descending coronary artery. One group received 3-aminobenzamide (3-AB, a kind of PARP inhibitor) (30 mg/kg) by intraperitoneal injection. The changes of ultramicrostructure of cardiocytes in infarction region were noted, PARP cleavage was measured by Western blotting, and expressions of protein of PARP and apoptosis inducing factor (AIF) were measured by immunohistochemical staining after treatment with 3-AB for 2 hours, 4 hours, 6 hours, 1 week, 4 weeks and 8 weeks. Results Few damages to the ultramicrostructure of cardiocytes were observed after treatment with 3-AB. PARP cleavage was detected as early as 4 hours and markedly increased by 6 hours following AMI without 3-AB, but was not found until 6 hours following AMI treated with 3-AB. There were significant differences between 3-AB and AMI groups at the same time points. The expression of PARP was observed gradually increased, but that of AIF was suppressed for 6 hours after treatment of 3-AB, compared with AMI groups in positive cells at the same time points. There was significantly less cleavage of PARP and more PARP expression in 3-AB treated group compared with AMI and control groups at all matched time points. Conclusions Our results suggest that 3-AB inhibits degradation of PARP, increases the expression of PARP protein, and suppresses the expression of AIF protein. Inhibition of PARP activity may protect cardiocytes in rats with AMI and reduce apoptosis.
基金Supported by National Natural Science Foundation of China:Mechanism of Protective Effects of Moxibustion on Regulating m TOR Signaling Pathway and Inhibiting Autophagy in Rats(No.81574084)Key Research and Development Program of Anhui Province:Mechanism and Clinical Application of Moxibustion in that Treatment of Chronic Heart Failure(No.202004j07020045)+1 种基金Open Fund Project of Key Laboratory of Xin’an Medical Education Ministry:Effect of Moxibustion on Myocardial Cell Energy Metabolism in Chronic Heart Failure Patients Based on Xin’an Physician’s Theory of Strengthening the Foundation and Cultivating the Original(No.2020xayx07)Key Natural Science Projects of Anhui Provincial Education Department:Mechanism of Moxibustion Against CHF Fibrosis Based on mi R-21/PTEN/m TOR Signaling Pathway-mediated Regulation of Autophagy in Myocardial Cells by circ PAN3(No.KJ2021A0570)。
文摘OBJECTIVE:To observe the effects of moxibustion at bilateral Feishu(BL13)and Xinshu(BL15)combined with benazepril on myocardial cells apoptosis index,the expression levels of apoptosis-related proteins cytochrome c(Cyt-C)and apoptosis-inducing factor(AIF)in chronic heart failure(CHF)rats.METHODS:Sixty-five rats were randomly divided into normal group(n=10)and model-I group(n=55).After modeling,CHF rats in model-I group were divided into model group,moxibustion group,benazepril group,moxibustion plus benazepril group(abbreviated as aibei group,the same below),10 rats in each group.Echocardiogram index was examined by echocardiography.Hemodynamic indices were measured by rat cardiac function meter.Serum B-type brain natriuretic peptide(BNP)was detected by enzymelinked immunosorbent assay.Myocardial cells apoptosis index was detected by terminal-deoxynucleoitidyl transferase mediated nick end labeling staining.Pathological changes of myocardial tissues were observed by hematoxylin and eosin staining.The expression levels of Cyt-C and AIF in myocardial tissues were detected by Western blot.RESULTS:Compared with normal group,ejection fraction and left ventricular diameter shortening rate in model-Ⅰgroup were significantly reduced,myocardial cells of rats in model group exhibited unclear transverse striations,cells swellings and vacuoles,cardiac functions were deteriorated,serum BNP level,myocardial cells apoptosis index,and the expression levels of Cyt-C and AIF were significantly increased.Compared with model group,myocardial cells of rats in moxibustion group,benazepril group,and aibei group were dyed more evenly,muscle fibers were arranged relatively neatly,cardiac functions were improved,serum BNP level,myocardial cells apoptosis index,and the expression levels of Cyt-C and AIF were significantly decreased.Compared with aibei group,cardiac functions were worsened,myocardial cells apoptosis index,and the expression levels of Cyt-C and AIF were increased.CONCLUSION:Moxibustion at bilateral Feishu(BL13)and Xinshu(BL15)combined with benazepril could improve CHF better than moxibustion at bilateral Feishu(BL13)and Xinshu(BL15)or benazepril alone.The mechanisms might be that they can inhibit the expressions of Cyt-C and AIF,and inhibit the apoptosis of cardiomyocytes.
基金Key Program of Tenth Five-Year Plan and the 211 Key Subject Construction Foundation, No. 2002-2
文摘BACKGROUND: Receptors for tumor necrosis factor related apoptosis inducing ligand (TRAIL) include death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2. Activation of death receptor 4 and 5 selectively kills tumor cells. OBJECTIVE: To detect TRAIL receptor expression in glioblastoma by immunohistochemistry and RT-PCR, and to compare this expression to that in normal brain tissue. DESIGN: Observational analysis. SETTING: Department of Pathology, the First Affiliated Hospital of Zhengzhou University; Henan Tumor Pathology Key Laboratory. PARTICIPANTS: Twenty-five patients (17 males and 8 females) who received glioblastoma resection were selected from the Fifth Affiliated Hospital of Zhengzhou University, between September 2003 to June 2004. All glioblastoma samples were diagnosed pathologically. Twenty patients (12 males and 8 females) with craniocerebral injury who received normal brain tissue resection were selected in the same time period. There were no significant differences in sex and age between glioblastoma patients or between craniocerebral injury patients (P 〉 0.05). All patients and appropriate relatives provided informed consent, and this study was approved by the local research ethics committee. METHODS: Polyclonal antibody against TRAIL receptors and an immunohistochemical kit (batch number: 200502) were purchased from Boster Company, Wuhan. Immunohistochemistry: Expression of death receptor 4, death receptor 5, decoy receptor l, and decoy receptor 2 were observed in both glioblastoma and normal brain tissue. The experiment was performed according to the kit instructions, and positive staining was brown-yellow. Assessment: There were no positive signals (-); weakly positive signals, positive cells 〈 25% (+); weakly positive signals, positive cells 25%-50% (++); strongly positive signals, positive cells 50%-75% (+++); strongly positive signals, positive cells 〉 75% (++++). Evaluation: Expression levels of TRAIL receptors were estimated in both normal brain tissue and glioblastoma. Expression of decoy receptor 1 and decoy receptor 2 mRNA in glioblastoma were detected by reverse transcription polymerase chain reaction, and expression of decoy receptor in glioblastoma was estimated. MAIN OUTCOME MEASURES: Comparison of death receptor and decoy receptor protein expression between glioblastoma and normal brain tissue; decoy receptor mRNA expression in glioblastoma. RESULTS: Death receptor protein expression was strongly positive (+++) in glioblastoma, while it was weakly positive (+, ++) in normal brain tissue. Therefore, expression rate of death receptor protein in the glioblastoma was significantly higher than that in the normal brain tissue (.~ 2 = 18.48, 23.03, P 〈 0.01). Decoy receptor protein expression in the glioblastoma was significantly lower than that in the normal brain tissue ( x2 = 6.65, 18.76, P 〈 0.01). The level of decoy receptor mRNA expression in glioblastoma was significantly higher than those of protein expression ( x 2 = 9.82, 10.09, P〈 0.01). CONCLUSION: High expression of death receptor and low expression of decoy receptor are frequently observed in glioblastoma, suggesting that TRAIL receptor genes show an anti-tumor and expressive response during the initiation and development of the tumor. There are significant differences in decoy receptor expression between normal brain tissue and glioblastoma, suggesting that the restricted expression of decoy receptor in glioblastoma is regulated at the post-transcriptional level.
文摘BACKGROUND: Under induction of retinoic acid (RA), bone marrow stromal cells (BMSCs) can differentiate into nerve cells or neuron-like cells, which do not survive for a long time, so those are restricted to an application. Other neurotrophic factors can also differentiate into neuronal cells through inducing BMSCs; especially, brain-derived neurotrophic factor (BDNF) can delay natural death of neurons and play a key role in survival and growth of neurons. The combination of them is beneficial for differentiation of BMSCs. OBJECTIVE: To investigate the effects of BDNF combining with RA on inducing differentiation of BMSCs to nerve cells of adult rats and compare the results between common medium group and single BDNF group. DESIGN: Randomized controlled animal study SETTING: Department of Neurology, Affiliated Hospital of Xuzhou Medical College MATERIALS: The experiment was carried out in the Clinical Neurological Laboratory of Xuzhou Medical College from September 2003 to April 2005. A total of 24 SD rats, of either gender, 2 months old, weighing 130-150 g, were provided by Experimental Animal Center of Xuzhou Medical College [certification: SYXK (su) 2002-0038]. Materials and reagents: low-glucose DMEM medium, bovine serum, BDNF, RA, trypsin, separating medium of lymphocyte, monoclonal antibody of mouse-anti-nestin, neuro-specific enolase, glial fibrillary acidic protein (GFAP) antibody, SABC kit, and diaminobenzidine (DAB) color agent. All these mentioned above were mainly provided by SIGMA Company, GIBCO Company and Boshide Company. METHODS: Bone marrow of SD rats was selected for density gradient centrifugation. BMSCs were undertaken primary culture and subculture; and then, those cells were induced respectively in various mediums in total of 3 groups, including control group (primary culture), BDNF group (20 μg/L BDNF) and BDNF+RA group (20 μg/L BDNF plus 20 μg/L RA). On the 3^rd and the 7^th days after induction, BMSCs were stained immunocytochemically with nestin (sign of nerve stem cells), neuron-specific enolase (NSE, sign of diagnosing neurons) and GFAP (diagnosing astrocyte), and evaluated cellular property. MAIN OUTCOME MEASURES : Induction and differentiation in vitro of BMSCs in 3 groups RESULTS: (1) Induction and differentiation of BMSCs: Seven days after induction, cells having 2 or more apophyses were observed. Soma shaped like angle or erose form, which were similar to neurons and glial cells having strong refraction. (2) Results of immunocytochemical detection: Three days after induction, rate of positive cells in BDNF+RA group was higher than that in BDNF group and control group [(86.15±4.58)%, (65.43±4.23)%, (4.18±1.09)%, P 〈 0.01]. Seven days after induction, rate of positive cells was lower in BDNF group and BDNF+RA group than that in both groups at 3 days after induction [(31.12±3.18)%, (29.35±2.69)%, P 〈 0.01]; however, amounts of positive cells of NSE and GFAP were higher than those at 3 days after induction (P 〈 0.01); meanwhile, the amount in BDNF+RA group was remarkably higher than that in BDNF group (P 〈 0.01). CONCLUSION: Combination of BDNF and RA can cooperate differentiation of BMSCs into neurons and astrocyte, and the effect is superior to single usage of BDNF.
文摘The role of the hypoxia-inducible factor(HIF)subunits 1α and 2α in response to hypoxia is well established in lungepithelial cells,whereas little is known about HIF-3α with respect to transcriptional and translational regulation by hy-poxia.HIF-3α and HIF-1α are two similar but distinct basic helix-loop-helix-PAS proteins,which have been postulatedto activate hypoxia responsive genes in response to hypoxia.Here,we used quantitative real time RT-PCR and immu-noblotting to determine the activation of HIF-3α vs.HIF-1α by hypoxia.HIF-3α was strongly induced by hypoxia(1%O_2)both at the level of protein and mRNA due to an increase in protein stability and transcriptional activation,whereasHIF-1α protein and mRNA levels enhanced transiently and then decreased because of a reduction in its mRNA stabilityin A549 cells,as measured on mRNA and protein levels.Interestingly,HIF-3α and HIF-1α exhibited strikingly similarresponses to a variety of activating or inhibitory pharmacological agents.These results demonstrate that HIF-3α is ex-pressed abundantly in lung epithelial cells,and that the transcriptional induction of HIF-3α plays an important role in theresponse to hypoxia in vitro.Our findings suggest that HIF-3α,as a member of the HIF system,is complementary ratherthan redundant to HIF-1α induction in protection against hypoxic damage in alveolar epithelial cells.
文摘DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.
基金Supported by Research Project for Jiangxi Educational Department,No.180086.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a malignant tumor that occurs in the liver.Its onset is latent,and it shows high heterogeneity and can readily experience intrahepatic metastasis or systemic metastasis,which seriously affects patients’quality of life.Numerous studies have shown that hypoxia inducible factor1α(HIF-1α)plays a significant role in the occurrence and development of tumors,as it promotes the formation of intratumoral vessels and plays a key role in their metastasis and invasion.Some studies have reported that caspase-3,which is induced by various factors,is involved in the apoptosis of tumor cells.AIM To investigate the expression of caspase-3 and HIF-1αand their relationship to the prognosis of patients with primary HCC complicated by pathological changes of hemorrhage and necrosis.METHODS A total of 88 patients with HCC complicated by pathological changes of hemorrhage and necrosis who were treated at our hospital from January 2017 to December 2019 were selected.The expression of caspase-3 and HIF-1αin HCC and paracancerous tissues from these patients was assessed.RESULTS The positive expression rate of caspase-3 in HCC tissues was 27.27%,which was significantly lower than that in the paracancerous tissues(P<0.05),while the positive expression rate of HIF-1αwas 72.73%,which was significantly higher than that in the paracancerous tissues(P<0.05).The positive expression rates for caspase-3 in tumor node metastasis(TNM)stage III and lymph node metastasis tissues were 2.78%and 2.50%,respectively,which were significantly lower than those in TNM stage I-II and non-lymph node metastasis tissues(P<0.05).The positive expression rates of HIF-1αin TNM stage III,lymph node metastasis,and portal vein tumor thrombus tissues were 86.11%,87.50%,and 88.00%,respectively,and these values were significantly higher than those in TNM stage I-II,non-lymph node metastasis,and portal vein tumor thrombus tissues(P<0.05).The expression of caspase-3 and HIF-1αin HCC tissues were negatively correlated(rs=−0.426,P<0.05).The median overall survival time of HCC patients was 18.90 mo(95%CI:17.20–19.91).The results of the Cox proportional risk regression model analysis showed that TNM stage,portal vein tumor thrombus,lymph node metastasis,caspase-3 expression,and HIF-1αexpression were the factors influencing patient prognosis(P<0.05).CONCLUSION The expression of caspase-3 decreases and HIF-1αincreases in HCC tissues complicated by pathological changes of hemorrhage and necrosis,and these are related to clinicopathological features and prognosis.
基金supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo,Conselho Nacional de Desenvolvimento Científico e Tecnologico (NO.2009/10771-9)Coordenacao de Aperfeicoamento de Pessoal de Nível Superior (NO.301052/2009-3),Brazil
文摘Objective:To evaluate whether hypoxia inducible factor(HIF-1α) targeting pharmacological drugs,echinomycin,resveratrol and CdCl_2 which inhibit HIF-1α stimulation,and mimosine,which enhances the stability of HIF-1α present antileishmanial properties.Methods:The leishmanicidal effect of drugs was evaluated in mouse macrophages and Balb/c mouse model for cutaneous leishmaniosis.Results:Resveratrol and CdCl_2 reduced the parasite load [IC50,(27.3±2.25) μM and(24.8±0.95) μM,respectively].The IC50 value of echinomycin was(22.7±7.36) nM and mimosine did not alter the parasite load in primary macrophages.The macrophage viability IC50 values for resveratrol,echinomycin and CdCl_2 and mimosine were >40 μM,>100 nM,> 200 μM and>2 000 μM,respectively.In vivo no differences between cutaneous lesions from control,resveratrol-and echinomycin-treated Balb/c mice were detected.Conclusions:Resveratrol,echinomycin and CdCl_2 reduce parasite survival in vitro.The HIF-1α targeting pharmacological drugs require further study to more fully determine their anti-Leishmania potential and their role in therapeutic strategies.
基金Supported by National Natural Science Foundation of China,No. 82070609
文摘BACKGROUND The occurrence and development of acute liver failure(ALF)is closely related to a series of inflammatory reactions,such as the production of reactive oxygen species(ROS).Hypoxia inducible factor 1α(HIF-1α)is a key factor that regulates oxygen homeostasis and redox,and the stability of HIF-1αis related to the ROS level regulated by Sirtuin(Sirt)family.The activation of Sirt1 will lead to a powerful antioxidant defense system and therapeutic effects in liver disease.However,little is known about the relationship between HIF-1αand Sirt1 in the process of ALF and the molecular mechanism.AIM To investigate whether HIF-1αmay be a target of Sirt1 deacetylation and what the effects on ALF are.METHODS Mice were administrated lipopolysaccharide(LPS)/D-gal and exposed to hypoxic conditions as animal model,and resveratrol was used as an activator of Sirt1.The cellular model was established with L02 cells stimulated by LPS.N-acetyl-Lcysteine was used to remove ROS,and the expression of Sirt1 was inhibited by nicotinamide.Western blotting was used to detect Sirt1 and HIF-1αactivity and related protein expression.The possible signaling pathways involved were analyzed by immunofluorescent staining,co-immunoprecipitation,dihydroethidium staining,and Western blotting.RESULTS Compared with mice stimulated with LPS alone,the expression of Sirt1 decreased,the level of HIF-1αacetylation increased in hypoxic mice,and the levels of carbonic anhydrase 9 and Bcl-2-adenovirus E1B interacting protein 3 increased significantly,which was regulated by HIF-1α,indicating an increase of HIF-1αactivity.Under hypoxia,the down-regulation of Sirt1 activated and acetylated HIF-1αin L02 cells.The inhibition of Sirt1 significantly aggravated this effect and the massive production of ROS.The regulation of ROS was partly through peroxisome proliferatoractivated receptor alpha or AMP-activated protein kinase.Resveratrol,a Sirt1 activator,effectively relieved ALF aggravated by hypoxia,the production of ROS,and cell apoptosis.It also induced the deacetylation of HIF-1αand inhibited the activity of HIF-1α.CONCLUSION Sirt1 may have a protective effect on ALF by inducing HIF-1α deacetylation to reduce ROS.
基金the National Natural Science Foundation of China,No.81670600.
文摘BACKGROUND Ischemia-reperfusion injury(IRI) is a major risk associated with liver surgery and transplantation,and its pathological mechanism is complex.Interleukin-1 receptor antagonist(IL-1ra) can protect the liver from IRI.However,the regulatory mechanism of IL-1ra expression is still unclear.AIM To identify the mechanism that could protect the liver in the early stage of IRI.METHODS To screen the key genes in hepatic IRI,we performed RNA sequencing and gene enrichment analysis on liver tissue from mice with hepatic IRI.Subsequently,we verified the expression and effect of IL-1ra in hepatic IRI.We also used promoter mutagenesis and chromatin immunoprecipitation assay to search for the transcriptional regulatory sites of hypoxia-inducible factor(HIF)-1α.Finally,to explore the protective mechanism of ischemic preconditioning(IP),we examined the expression of HIF-1α and IL-1ra after IP.RESULTS We identified IL-1ra as a key regulator in hepatic IRI.The expression of IL-1ra was significantly upregulated after hepatic IRI both in vivo and in vitro.Furthermore,we found that HIF-1αregulated Il-1ra transcription in response to hypoxia.Increased HIF-1α accumulation promoted IL-1ra expression,whereas inhibition of HIF-1α exhibited the opposite effect.We also confirmed a predominant role for hypoxia response element in the regulation of Il1ra transcription by HIF-1αactivation.Of note,we demonstrated that IP protects against hepatic IRI by inducing IL-1ra expression,which is mediated through HIF-1α.CONCLUSION We demonstrated that ischemia or hypoxia leads to increased expression of IL-1ra through HIF-1α.Importantly,IP protects the liver from IRI via the HIF-1α–IL-1ra pathway.
文摘BACKGROUND: Therapeutic angiogenesis has opened up new pathway for the treatment of ischemic cerebrovascular disease in recent years. The exploration of the effect of vascular endothelial growth factor (VEGF) on inducing angiogenesis following ischemia/reperfusion injury can provide better help for the long-term treatment of cerebrovascular disease in clinic. OBJECTIVE: To observe the effect of VEGF on inducing angiogenesis following focal cerebral ischemia /reperfusion injury in rabbits through the angiogenesis of microvessels reflected by the expression of the factors of vascular pseudohemophilia. DESIGN: A randomized controlled animal tria SETTNG: Department of Medical Imaging, Second Hospital of Hebei Medical University MATERIALS: Sixty-five healthy male New Zealand rabbits of clean degree, weighing (2.6±0.2) kg, aged 4.5-5 months, were used. The polyclonal antibody against vascular pseudohemophilia (Beijing Zhongshan Company), recombinant VEGF165 (Peprotech Company, USA), biotinylated second antibody and ABC compound (Wuhan Boster Company) were applied. METHODS: The experiments were carried out in the Laboratory of Neuromolecular Imaging and Neuropathy, Second Hospital of Hebei Medical University from May to August in 2005. (1) The rabbits were randomly divided into three groups: sham-operated group (n=15), control group (n=25) and VEGF-treated group (n=-25). In the control group and VEGF-treated group, models were established by middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia/reperfusion. In the VEGF-treated group, VEGF165 (2.5 mg/L) was stereotactically injected into the surrounding regions of the infarcted sites immediately after the 2-hour ischemia/reperfusion; Saline of the same dosage was injected in the control group. But the rabbits in the sham-operated group were only drilled but not administrated. (2) The experimental indexes were observed on the 3^rd 7^th, 14^th, 28^th and 70^th days of the experiment respectively, 3 rabbits in the sham-operated group and 5 in the control group and VEGF-treated group were observed at each time point. The brain tissues in the surrounding regions of the infarcted sites were collected. The positive expressions of the factors of vascular pseudohemophilia in vascular endothelial cells were analyzed with immunohistochemical method. The microvessels in unit statistical field were counted with the imaging analytical software. MAIN OUTCOME MEASURES: The changes of microvascular density in the brain tissue and the positive expressions of the factors of vascular pseudohemophilia in the surrounding regions of the infarcted sites were observed on the 3^rd 7^th, 14^th, 28^th and 70^th days of the experiment. RESULTS: All the 65 New Zealand rabbits were involved in the analysis of results without deletion. Changes of the number of microvessels at different time points in each group: There were no obvious changes at different time points in the sham-operated group. The numbers of microvessels at 7 and 14 days were obviously more in the control group than in the sham-operated group [(6.0±1.1), (9.0±0.9) microvessels; (3.0±1.1), (3.0±1.1) microvessels; P〈 0.05-0.01], and those at 3, 7, 14 and 28 days were obviously more in the VEGF-treated group than in the control group [(8.3±2.0), (13.4±1.4), (15.5±2.3), (6.8± 1.0) microvessels; (3.4±0.6), (6.0±1.1), (9.0±0.9), (3.2±0.8) microvessels; P 〈 0.01]. (2) Positive expressions of the factors of vascular pseudohemophilia in the surrounding regions of infarcted sites: There were no obvious changes at different time points in the sham-operated group. In the control group, the changing law of the expressions was the same as that for the number of microvessels that the expression began to mildly increase at 7 days, reached the peak value at 14 days, and began to reduce at 28 days. In the VEGF-treated group, the expression was obviously increased at 3 days, also reached the peak value at 14 days, and reduced to the normal level at 70 days, but the expressions were obviously stronger than those in the control group at the same time points. CONCLUSION: Angiogenesis can be obviously induced in rabbits after the focal cerebral ischemia/reperfusion injury is treated with VEGF for 18 days.
文摘The defining neuropathological feature of Parkinson's disease (PD) is the loss of nigrostriatal dopaminergic (DA) projections. This results in striatal dopamine levels and a biochemical reduction of movement disorders, such as a tremor at rest, rigidity of the limbs, bradykinesia, and postural instability (Kim et al., 2011; Kim et al., 2012; Burke and O'Malley, 2013; Leem et al., 2014; Namet al., 2014).
基金supported by the National Science Foundation CAREER Award CBET-0133775 and CBET-0754158,REU grant,and graduate fellowship from the CUNY
文摘Introduction Thrombosis is the formation of a blood clot in a blood vessel. When thrombosis happens in the brain,it would cause stroke; when happens in the heart,it would cause heart attack. If a thrombus breaks and travels to the lung,it would
文摘Objective: To study the role of the expression of nerve growth factor inducible protein B gene (NGFI-B) in striatum in the pathogenesis of levodopa-induced dyskinesias (LID). Methods: The rat model of LID was treated with SCH 23390(1 mg/kg ip,a dopamine D1 antagonist) and haloperidol (1 mg/kg ip,a dopanfme D2 antagonist) respectively. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure the expression of NGFI-B mRNA in stiiatam and the behavior changes were observed. Resuits: After treatment with SCH23390, abnormal involuntary movement (AIM) in LID rats was decreased ( P 〈 0.05 ) and the expression of NGFI-B mRNA in striatum did not change significantly. After treatment with haloperidol, the changes of AIM in LID rats were not significant and the expression of NGFI-B mRNA was increased significantly( P 〈 0.01). Conclusion: LID is associated with over-expression of NGFI-B in striatum. Abnormal activity in the direct pathway and the basal ganglia circuit could be involved in the occurrence of LID.
基金supported by the National Natural Science Foundation of China(NSFC),No.31201878,81172716,and U1204804Post Doctoral Foundation of China,No.2015M572109Post Doctoral Fund of Henan province,No.2014049
文摘Lead exposure is a known potential risk factor for neurodegenerative diseases such as Alzheimer’s disease (AD). Exposure to lead during the critical phase of brain development has been linked with mental retardation and hypophrenia in later life.
基金supported by Guangdong Basic and Applied Basic Research Foundation(2023A1515010969)Natural Science Foundation of Top Talent of SZTU(GDRC202305).
文摘Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.
基金Supported by Tianjin Key Medical Discipline Specialty Construction Project(No.TJXZDXK-016A)Science Foundation of Tianjin Eye Hospital(No.YKZD1901).
文摘AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway.
基金supported by the National Natural Science Foundation of China, No. 81160157projects of Science and Technology Bureau of Guizhou Province, No.20093075, 20072127
文摘Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid. Results showed that the survival rate of neurons was significantly increased after treatment with 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid, and the rate of apoptosis decreased. In addition, the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor were significantly reduced. Our experimental findings indicate that the chloride channel blocker 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid can antagonize apoptotic cell death of hippocampal neurons by inhibiting the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor.