Blast furnace (BF) ironmaking is the most typical “black box” process, and its complexity and uncertainty bring forth great challenges for furnace condition judgment and BF operation. Rich data resources for BF iron...Blast furnace (BF) ironmaking is the most typical “black box” process, and its complexity and uncertainty bring forth great challenges for furnace condition judgment and BF operation. Rich data resources for BF ironmaking are available, and the rapid development of data science and intelligent technology will provide an effective means to solve the uncertainty problem in the BF ironmaking process. This work focused on the application of artificial intelligence technology in BF ironmaking. The current intelligent BF ironmaking technology was summarized and analyzed from five aspects. These aspects include BF data management, the analyses of time delay and correlation, the prediction of BF key variables, the evaluation of BF status, and the multi-objective intelligent optimization of BF operations. Solutions and suggestions were offered for the problems in the current progress, and some outlooks for future prospects and technological breakthroughs were added. To effectively improve the BF data quality, we comprehensively considered the data problems and the characteristics of algorithms and selected the data processing method scientifically. For analyzing important BF characteristics, the effect of the delay was eliminated to ensure an accurate logical relationship between the BF parameters and economic indicators. As for BF parameter prediction and BF status evaluation,a BF intelligence model that integrates data information and process mechanism was built to effectively achieve the accurate prediction of BF key indexes and the scientific evaluation of BF status. During the optimization of BF parameters, low risk, low cost, and high return were used as the optimization criteria, and while pursuing the optimization effect, the feasibility and site operation cost were considered comprehensively.This work will help increase the process operator’s overall awareness and understanding of intelligent BF technology. Additionally, combining big data technology with the process will improve the practicality of data models in actual production and promote the application of intelligent technology in BF ironmaking.展开更多
Industrial big data was usually multi-source, heterogeneous, and deeply intertwined. It had a wide range of data sources, high data dimensions, and strong data correlation. In order to effectively analyze and process ...Industrial big data was usually multi-source, heterogeneous, and deeply intertwined. It had a wide range of data sources, high data dimensions, and strong data correlation. In order to effectively analyze and process streaming industrial big data generated by edge computing, it was very important to provide an effective real-time incremental data method. However, in the process of incremental processing, industrial big data incremental computing faced the challenges of dimensional disaster, repeated calculations, and the explosion of intermediate results. Therefore, in order to solve the above problems effectively, a QR-based tensor-train(TT) decomposition(TTD) method and a QR-based incremental TTD(QRITTD) method were proposed. This algorithm combined the incremental QR-based decomposition algorithm with an approximate singular value decomposition(SVD) algorithm and had good scalability. In addition, the computational complexity, space complexity, and approximation error analysis were analyzed in detail. The effectiveness of the three algorithms of QRITTD, non-incremental TTD(NITTD), and TT rank-1(TTr1) SVD(TTr1 SVD)were verified by comparison. Experimental results show that the SVD QRITTD method has better performance under the premise of ensuring the same tensor size.展开更多
Artificial intelligence is a new technological science that researches and develops theories,methods,technologies and application systems for simulating,extending and expanding human intelligence.It simulates certain ...Artificial intelligence is a new technological science that researches and develops theories,methods,technologies and application systems for simulating,extending and expanding human intelligence.It simulates certain human thought processes and intelligent behaviors(such as learning,reasoning,thinking,planning,etc.),and produces a new type of intelligent machine that can respond in a similar way to human intelligence.In the past 30 years,it has achieved rapid development in various industries and related disciplines such as manufacturing,medical care,finance,and transportation.展开更多
To solve the problems in the quality control and improvement of coiled tubing steel strips production, such as scattered and inefficient production data, difficult performance fluctuation factor analysis, complex mult...To solve the problems in the quality control and improvement of coiled tubing steel strips production, such as scattered and inefficient production data, difficult performance fluctuation factor analysis, complex multivariate statistical analysis, and low accuracy and difficulty in mechanical property prediction, an industrial data analysis platform for coiled tubing steel strips production has been preliminarily developed.As the premise and foundation of analysis, industrial data collection, storage, and utilization are realized by using multiple big data technologies.With Django as the agile development framework, data visualization and comprehensive analyses are achieved.The platform has functions including overview survey, stability analysis, comprehensive analysis(such as exploratory data analysis, correlation analysis, and multivariate statistics),precise steel strength prediction, and skin-passing process recommendation.The platform is helpful for production overviewing and prompt responding, laying a foundation for an in-depth understanding of product characteristics and improving product performance stability.展开更多
The industrial Internet has germinated with the integration of the traditional industry and information technologies.An identifier is the identification of an object in the industrial Internet.The identifier technolog...The industrial Internet has germinated with the integration of the traditional industry and information technologies.An identifier is the identification of an object in the industrial Internet.The identifier technology is a method to validate the identification of an object and trace it.The identifier is a bridge to connect information islands in the industry,as well as the data basis for building a technology application ecosystem based on identifier resolution.We propose three practical applications and application scenarios of the industrial Internet identifier in this paper.Future applications of identifier resolution in the industrial Internet field are also presented.展开更多
There is a growing demand for time series data analysis in industry areas.Apache loTDB is a time series database designed for the Internet of Things(loT)with enhanced storage and I/O performance.With User-Defined Func...There is a growing demand for time series data analysis in industry areas.Apache loTDB is a time series database designed for the Internet of Things(loT)with enhanced storage and I/O performance.With User-Defined Functions(UDF)provided,computation for time series can be executed on Apache loTDB directly.To satisfy most of the common requirements in industrial time series analysis,we create a UDF library,loTDQ,on Apache loTDB.This library integrates stream computation functions on data quality analysis,data profiling,anomaly detection,data repairing,etc.loTDQ enables users to conduct a wide range of analyses,such as monitoring,error diagnosis,equipment reliability analysis.It provides a framework for users to examine loT time series with data quality problems.Experiments show that loTDQ keeps the same level of performance compared to mainstream alternatives,and shortens I/O consumption for Apache loTDB users.展开更多
This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with gener...This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.展开更多
基金financially supported by the General Program of the National Natural Science Foundation of China(No.52274326)the Fundamental Research Funds for the Central Universities (Nos.2125018 and 2225008)China Baowu Low Carbon Metallurgy Innovation Foundation(BWLCF202109)。
文摘Blast furnace (BF) ironmaking is the most typical “black box” process, and its complexity and uncertainty bring forth great challenges for furnace condition judgment and BF operation. Rich data resources for BF ironmaking are available, and the rapid development of data science and intelligent technology will provide an effective means to solve the uncertainty problem in the BF ironmaking process. This work focused on the application of artificial intelligence technology in BF ironmaking. The current intelligent BF ironmaking technology was summarized and analyzed from five aspects. These aspects include BF data management, the analyses of time delay and correlation, the prediction of BF key variables, the evaluation of BF status, and the multi-objective intelligent optimization of BF operations. Solutions and suggestions were offered for the problems in the current progress, and some outlooks for future prospects and technological breakthroughs were added. To effectively improve the BF data quality, we comprehensively considered the data problems and the characteristics of algorithms and selected the data processing method scientifically. For analyzing important BF characteristics, the effect of the delay was eliminated to ensure an accurate logical relationship between the BF parameters and economic indicators. As for BF parameter prediction and BF status evaluation,a BF intelligence model that integrates data information and process mechanism was built to effectively achieve the accurate prediction of BF key indexes and the scientific evaluation of BF status. During the optimization of BF parameters, low risk, low cost, and high return were used as the optimization criteria, and while pursuing the optimization effect, the feasibility and site operation cost were considered comprehensively.This work will help increase the process operator’s overall awareness and understanding of intelligent BF technology. Additionally, combining big data technology with the process will improve the practicality of data models in actual production and promote the application of intelligent technology in BF ironmaking.
基金supported by the Science and Technology Project in Shaanxi Province of China (2019ZDLGY07-08)the Natural Science Foundation Research Program of Shaanxi Province, China。
文摘Industrial big data was usually multi-source, heterogeneous, and deeply intertwined. It had a wide range of data sources, high data dimensions, and strong data correlation. In order to effectively analyze and process streaming industrial big data generated by edge computing, it was very important to provide an effective real-time incremental data method. However, in the process of incremental processing, industrial big data incremental computing faced the challenges of dimensional disaster, repeated calculations, and the explosion of intermediate results. Therefore, in order to solve the above problems effectively, a QR-based tensor-train(TT) decomposition(TTD) method and a QR-based incremental TTD(QRITTD) method were proposed. This algorithm combined the incremental QR-based decomposition algorithm with an approximate singular value decomposition(SVD) algorithm and had good scalability. In addition, the computational complexity, space complexity, and approximation error analysis were analyzed in detail. The effectiveness of the three algorithms of QRITTD, non-incremental TTD(NITTD), and TT rank-1(TTr1) SVD(TTr1 SVD)were verified by comparison. Experimental results show that the SVD QRITTD method has better performance under the premise of ensuring the same tensor size.
文摘Artificial intelligence is a new technological science that researches and develops theories,methods,technologies and application systems for simulating,extending and expanding human intelligence.It simulates certain human thought processes and intelligent behaviors(such as learning,reasoning,thinking,planning,etc.),and produces a new type of intelligent machine that can respond in a similar way to human intelligence.In the past 30 years,it has achieved rapid development in various industries and related disciplines such as manufacturing,medical care,finance,and transportation.
文摘To solve the problems in the quality control and improvement of coiled tubing steel strips production, such as scattered and inefficient production data, difficult performance fluctuation factor analysis, complex multivariate statistical analysis, and low accuracy and difficulty in mechanical property prediction, an industrial data analysis platform for coiled tubing steel strips production has been preliminarily developed.As the premise and foundation of analysis, industrial data collection, storage, and utilization are realized by using multiple big data technologies.With Django as the agile development framework, data visualization and comprehensive analyses are achieved.The platform has functions including overview survey, stability analysis, comprehensive analysis(such as exploratory data analysis, correlation analysis, and multivariate statistics),precise steel strength prediction, and skin-passing process recommendation.The platform is helpful for production overviewing and prompt responding, laying a foundation for an in-depth understanding of product characteristics and improving product performance stability.
文摘The industrial Internet has germinated with the integration of the traditional industry and information technologies.An identifier is the identification of an object in the industrial Internet.The identifier technology is a method to validate the identification of an object and trace it.The identifier is a bridge to connect information islands in the industry,as well as the data basis for building a technology application ecosystem based on identifier resolution.We propose three practical applications and application scenarios of the industrial Internet identifier in this paper.Future applications of identifier resolution in the industrial Internet field are also presented.
文摘There is a growing demand for time series data analysis in industry areas.Apache loTDB is a time series database designed for the Internet of Things(loT)with enhanced storage and I/O performance.With User-Defined Functions(UDF)provided,computation for time series can be executed on Apache loTDB directly.To satisfy most of the common requirements in industrial time series analysis,we create a UDF library,loTDQ,on Apache loTDB.This library integrates stream computation functions on data quality analysis,data profiling,anomaly detection,data repairing,etc.loTDQ enables users to conduct a wide range of analyses,such as monitoring,error diagnosis,equipment reliability analysis.It provides a framework for users to examine loT time series with data quality problems.Experiments show that loTDQ keeps the same level of performance compared to mainstream alternatives,and shortens I/O consumption for Apache loTDB users.
基金Project(51774219)supported by the National Natural Science Foundation of China
文摘This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.