Hollow cylindrical sandstone specimens filled with Al,Pb and polymethyl methacrylate(PMMA),as well as hollow and solid specimens were tested under monotonic unconfined compression.The discrepancies in the elastic modu...Hollow cylindrical sandstone specimens filled with Al,Pb and polymethyl methacrylate(PMMA),as well as hollow and solid specimens were tested under monotonic unconfined compression.The discrepancies in the elastic modulus,unconfined compressive strength and failure pattern of the specimens were studied and then illustrated.The interaction stress threshold and localized failure stress threshold were identified by the strain gauges on the rock and filling rod.The results indicated that unobvious changes in the strength and elastic modulus were found between the solid and hollow specimens,while for the hollow specimens with infillings,the strength decreases with increasing the stiffness of the infilling material.The filling material with a higher stiffness leads to a high hoop stress,and hence a stronger interfacial force.The specimens coupled with filling rod are mainly fractured with tensile cracks,while the solid and hollow specimens are typically split into blocky fragments with dominated shear fractures.Finally,the equivalent inner pressure in the opening was theoretically derived.The findings suggested in the experiments can be well explained using the theoretical thick-walled cylinder model.展开更多
Depletion-induced stress change causes the redistribution of stress field in reservoirs,which can lead to the reorientation of principal stresses.Stress reorientation has a direct impact on fracture propagation of inf...Depletion-induced stress change causes the redistribution of stress field in reservoirs,which can lead to the reorientation of principal stresses.Stress reorientation has a direct impact on fracture propagation of infill wells.To understand the effect of stress reorientation on the propagation of infill well’s fractures,an integrated simulation workflow that combines the reservoir flow calculation and the infill well hydraulic fracturing modeling is adopted.The reservoir simulation is computed to examine the relationship between the extent of stress reversal region and reservoir properties.Then,the hydraulic fracturing model considering the altered stress field for production is built to characterize the stress evolution of secondary fracturing.Numerical simulations show that stress reorientation may occur due to the decreasing of the horizontal stresses in an elliptical region around the parent well.Also,the initial stress difference is the driving factor for stress reorientation.However,the bottom hole pressure,permeability and other properties connected with fluid flow control timing of the stress reorientation.The decrease of the horizontal stresses around the parent well lead to asymmetrical propagation of a hydraulic fracture of the infill well.The study provides insights on understanding the influence of stress reorientation to the infill well fracturing treatment and interference between parent and infill wells.展开更多
This study aims to examine the influence of pre-existing discontinuities on the strengths of four natural rocks of different origins.A series of unconfined compression tests was performed on specimens of two types of ...This study aims to examine the influence of pre-existing discontinuities on the strengths of four natural rocks of different origins.A series of unconfined compression tests was performed on specimens of two types of sandstones,argillite and basalt that contain open and filled cracks.It was found that the presence of cracks tends to decrease the overall strength for all studied rocks;however,the magnitude of strength reduction is related to the property of rock.The larger strength decrease was observed for the relatively harder argillite and basalt,compared to the softer sandstone.It was also found that the infill material could increase the strength of rock specimens,while the obtained strength depended on the characteristics of the fill material.展开更多
Tightening the well spacing for unconventional tight reservoirs is an efficient technique to enhance oil and gas recoveries.Infill well-caused fracture connection between wells is widely reported in the field with sma...Tightening the well spacing for unconventional tight reservoirs is an efficient technique to enhance oil and gas recoveries.Infill well-caused fracture connection between wells is widely reported in the field with small well spacing.This will make it difficult to make formation evaluation and fracture characterization between wells compared to single well cases.In this paper,a novel production data analysis(PDA)method is proposed for fracture characterization with the consideration of interwell fracture connections after the hydraulic fracturing of the infill.The PDA method is based on a semianalytical model,in which the small-scaled fractures are treated with the concept of stimulated reservoir volume(SRV).Thus,the fracture connections between wells are classified into three types,including SRV,fractures,and both SRV and fractures.The physical model is discretized into several linear flow regions,so the mathematical model can be solved semianalytically.An integrated workflow is proposed to analyze the production data for the wellpad,and three steps are mainly included in the workflow,including PDA for the parent well before infill,PDA for the parent well after infill,and PDA for the infill well.In each step,the production performance in the early linear and bilinear flow regimes are analyzed with approximate solutions in the square and fourth root-of-time plots.Because only the relationship between unknown model parameters can be obtained with the approximate solutions,history matching to the production data in log-log plots is further used to determine each unknown parameter.The PDA method is benchmarked with a synthetic case generated by the numerical simulator tNavigator and a field case from Southwestern China.The results show that both good matches and precise parameters can be obtained with the proposed PDA method.The connected fracture number will not be sensitive in PDA when the wells are connected with high-conductive dSRV.The innovation of this paper is that a practical method is provided for PDA analysis of well groups with fracture connection,and it will be a good technique for fracture characterization and well-interference analysis for tight formations.展开更多
The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristic...The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristics and displacement mechanisms are still unclear,which restricts its further popularization and application.Aiming at this problem,this paper firstly analyzes the production performance of the pilot test and proposed four response types according to the change of water cut curves,including W-type,U-type,V-type response,and no response.Furthermore,the underlying reasons of these four types are analyzed from the aspects of seepage resistance and sweep efficiency.The overall sweep efficiency of gradual-rising W-type,gradual-decreasing W-type,and early V-type response increases from 0.81 to 0.93,0.55 to 0.89,and 0.94 to 1,respectively.And the sum of seepage resistance along the connection line between production well and injection well for U-type and delayed V-type response increases from 0.0994 to 0.2425,and 0.0677 to 0.1654,respectively.Then,the remaining oil distribution after polymer flooding is summarized into four types on the basis of production and geological characteristics,namely disconnected remaining oil,streamline unswept remaining oil,rhythm remaining oil,and interlayer-controlled remaining oil.Furthermore,the main displacement mechanisms for each type are clarified based on the dimensionless seepage resistance and water absorption profile.Generally,improving connectivity by well pattern infilling is the most important for producing disconnected remaining oil.The synergistic effect of well pattern infilling and polymer-surfactant-PPG flooding increases the dimensionless seepage resistance of water channeling regions and forces the subsequent injected water to turn to regions with streamline unswept remaining oil.The improvement of the water absorption profile by polymer-surfactant-PPG flooding and separated layer water injection contributes to displacing rhythm remaining oil and interlayer-controlled remaining oil.Finally,the paper analyzes the relationships between the remaining oil distribution after polymer flooding and production characteristics of infilling polymer-surfactant-PPG flooding.The study helps to deepen the understanding of infilling polymer-surfactant-PPG flooding and has reference significance for more commercial implementations in the future.展开更多
Based on performance data of over 600 wells in 32 large gas fields of different types in China, the correlation is established between per-well average dynamic reserves( G) and average initial absolute open flow poten...Based on performance data of over 600 wells in 32 large gas fields of different types in China, the correlation is established between per-well average dynamic reserves( G) and average initial absolute open flow potential(IAOFq) of each field, and its connotation and applicability are further discussed through theoretical deduction. In log-log plot, G vs. IAOFq exhibit highly dependent linear trend, which implicates the compatibility between G and IAOFq attained through development optimization to reach the balance among annual flow capacity, maximum profits and certain production plateau, that is to match productivity with rate maintenance capacity. The correlation can be used as analogue in new gas field development planning to evaluate the minimum dynamic reserves which meet the requirement of stable and profitable production, and facilitate well pattern arrangement. It can also serve as criteria to appraise the effectiveness and infill drilling potential of well patterns for developed gas fields.展开更多
Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be f...Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts.展开更多
The complex geological conditions in doubly complex areas tend to result in difficult surface survey operations and poor target layer imaging in the subsurface which has a great impact on seismic data quality. In this...The complex geological conditions in doubly complex areas tend to result in difficult surface survey operations and poor target layer imaging in the subsurface which has a great impact on seismic data quality. In this paper, we propose an optimal crooked line survey method for decreasing the surface survey operational difficulties and improving the sub-layer event continuity. The method concentrates on the surface shooting conditions, first, selecting the proper shot positions based on the specific surface topographic features to reduce the shot difficulties and then optimizing the receiver positioning to meet the prerequisite that the subsurface reflection points remain in a straight line. Using this method cannot only lower the shooting difficulty of rough surface condition areas but also overcome the subsurface reflection point bending problem appearing in the traditional crooked line survey method. On the other hand, we use local infill shooting rather than conventional overall infill shooting to improve sublayer event continuity and uniformity with lower survey operation cost. A model has been calculated and processed with the proposed optimal crooked line survey and local infill shooting design method workflow and the results show that this new method can work for seismic surveys in double complex areas.展开更多
Seismic imaging quality is critical to describing reservoirs. There are many methods that can improve imaging quality; some rely on advanced processing means, whereas others rely on changing the field acquisition meth...Seismic imaging quality is critical to describing reservoirs. There are many methods that can improve imaging quality; some rely on advanced processing means, whereas others rely on changing the field acquisition methods. However, most of the acquisition methods focus on improving imaging by using infill shots without considering the target-layer illumination energy. Moreover, total infill shooting greatly increases the acquisition cost. In this paper, we present a new method for maximizing the contribution to the target shadow area illumination by automatic local infill shooting. Thus, we designed 2D and 3D models and obtained the depth migration section by forward modeling, infill shots, depth migration, etc. The model results also show that by choosing the most appropriate number of shot points, we can enhance the shadow area energy and improve the target-layer imaging quality at low cost.展开更多
Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous ...Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous components offer alternatives that may avoid such failures.A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics.Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used.However,a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported.In this study,a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing.Critical joints were designed and verified.Numerical models were established and calibrated to estimate frame shear forces.The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms.Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall.Drift distribution becomes more uniform with height.Concrete cracks and damage occurs in desired areas.The infilled rocking wall frame offers a promising approach to achieving seismic resilience.展开更多
To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained(PR)steel frames with solid reinforced concrete(RC)infill walls,an innovati...To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained(PR)steel frames with solid reinforced concrete(RC)infill walls,an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution,load transferring mechanism,and failure modes of RC infill walls filled in PR steel frame.The proposed composite compression struts model for the solid RC infill walls is composed ofαinclined struts and main diagonal struts.Theαinclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface,while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls.This study derives appropriate formulas for the effective widths of theαinclined strut and main diagonal strut,respectively.An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated.The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results,and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%.This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%.展开更多
Rock joints infilled with sediments can strongly influence the strength of rock mass. As infilled joints often exist under unsaturated condition, this study investigated the influence of matric suction of infill on th...Rock joints infilled with sediments can strongly influence the strength of rock mass. As infilled joints often exist under unsaturated condition, this study investigated the influence of matric suction of infill on the overall joint shear strength. A novel technique that allows direct measurement of matric suction of infill using high capacity tensiometers(HCTs) during direct shear of infilled joints under constant normal stiffness(CNS) is described. The CNS apparatus was modified to accommodate the HCT and the procedure is explained in detail. Joint specimens were simulated by gypsum plaster using threedimensional(3D) printed surface moulds, and filled with kaolin and sand mixture prepared at different water contents. Shear behaviours of both planar infilled joints and rough joints having joint roughness coefficients(JRCs) of 8-10 and 18-20 with the ratios of infill thickness to asperity height(t/a)equal to 0.5 were investigated. Matric suction shows predominantly unimodal behaviour during shearing of both planar and rough joints, which is closely associated with the variation of unloading rate and volumetric changes of the infill material. As expected, two-peak behaviour was observed for the rough joints and both peaks increased with the increase of infill matric suction. The results suggest that the contribution of matric suction of infill on the joint peak normalised shear stress is relatively independent of the joint roughness.展开更多
Six reinforced concrete frames with or without masonry infills were constructed and tested under horizontal cyclic loads. All six frames had identical details in which the transverse reinforcement in columns was provi...Six reinforced concrete frames with or without masonry infills were constructed and tested under horizontal cyclic loads. All six frames had identical details in which the transverse reinforcement in columns was provided by rectangular hoops that did not meet current ACI specifications for ductile frames. For comparison purposes, the columns in three of these frames were jacketed by carbon-fiber-reinforced-polymer (CFRP) sheets to avoid possible shear failure. A nonlinear pushover analysis, in which the force-deformation relationships of individual elements were developed based on ACI 318, FEMA 356, and Chen's model, was carried out for these frames and compared to test results. Both the failure mechanisms and impact of infills on the behaviors of these frames were examined in the study. Conclusions from the present analysis provide structural engineers with valuable information for evaluation and design of infilled concrete frame building structures.展开更多
Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the sy...Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the system. On the other hand, irregular arrangements of the masonry panels may lead to the concentration of damage in some regions, with negative effects; for example soft story mechanisms and shear failures in short columns. Therefore, the presence ofinfill walls should not be neglected, especially in regions of moderate and high seismicity. To this aim, simple models are available for solid infills walls, such as the diagonal no-tension strut model, while infilled frames with openings have not been adequately investigated. In this study, the effect of openings on the strength and stiffness of infilled frames is investigated by means of about 150 experimental and numerical tests. The main parameters involved are identified and a simple model to take into account the openings in the infills is developed and compared with other models proposed by different researchers. The model, which is based on the use of strength and stiffness reduction factors, takes into account the opening dimensions and presence of reinforcing elements around the opening. An example of an application of the proposed reduction factors is also presented.展开更多
This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-be...This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks. These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs. Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored, their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed. As a consequence, nonstructural elements, as for wall enclosures, are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements, however they do not specifically indicate how to prevent collapse and severe cracking, and how to enhance the overall stability in the case of moderate to high seismic loading. Furthermore, a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.展开更多
Infill drilling is now recognized as a viable improved recovery process. However, the reliable prediction of incremental recovery by infill drilling cannot be readily and accurately determined by present techniques. T...Infill drilling is now recognized as a viable improved recovery process. However, the reliable prediction of incremental recovery by infill drilling cannot be readily and accurately determined by present techniques. This paper proposes a hybrid predictive model of stream tube simulation and numerical simulation by using the contemporary theory of fluid flow in porous media. The model calculates the geometries of stream tubes, remaining oil distribution and water cut at different development stages in the near future, and uses a three-dimensional simulation to track fluid movement in each stream tube slice. This will help reservoir engineers to determine the feasibility of infill drilling. This predictive model is used to forecast the degree of control of well pattern, the ultimate incremental recovery of infill wells within an inverted 5-spot case in an oilfield and the economic benefit is also analyzed.展开更多
Past earthquake disasters in Greece, during the last thirty years, demonstrate that the severity of destruction is not only due to the intensity of the seismic event but also to the urbanization of the affected region...Past earthquake disasters in Greece, during the last thirty years, demonstrate that the severity of destruction is not only due to the intensity of the seismic event but also to the urbanization of the affected region and the vulnerability of certain types of buildings. Considerable damage was sustained by both old unreinforced masonry structures as well as by relatively new multistory reinforced concrete structures with "soft story" at their ground floor level. The most important observations made during six past earthquake disasters are presented in a summary form and discussed. The most remarkable case of extensive structural damage was caused from the resent Athens 1999 earthquake. The consequent discussion focuses on the following issues: (1) Classification of structural damage and their underlying causes. (2) Repair and strengthening of damaged structures. (3) Upgrade the seismic design. (4) Plans for earthquake preparedness. (5) Assessing the vulnerability of certain type of structures (schools, hospitals, public buildings etc). (6) Education specialized in earthquake engineering. (7) The enrichment of the strong motion data base.展开更多
基金Projects(51904101,51774131,52004143)supported by the National Natural Science Foundation of ChinaProject(MDPC201916)supported by the Key Laboratory of Mining Disaster Prevention and Control,China。
文摘Hollow cylindrical sandstone specimens filled with Al,Pb and polymethyl methacrylate(PMMA),as well as hollow and solid specimens were tested under monotonic unconfined compression.The discrepancies in the elastic modulus,unconfined compressive strength and failure pattern of the specimens were studied and then illustrated.The interaction stress threshold and localized failure stress threshold were identified by the strain gauges on the rock and filling rod.The results indicated that unobvious changes in the strength and elastic modulus were found between the solid and hollow specimens,while for the hollow specimens with infillings,the strength decreases with increasing the stiffness of the infilling material.The filling material with a higher stiffness leads to a high hoop stress,and hence a stronger interfacial force.The specimens coupled with filling rod are mainly fractured with tensile cracks,while the solid and hollow specimens are typically split into blocky fragments with dominated shear fractures.Finally,the equivalent inner pressure in the opening was theoretically derived.The findings suggested in the experiments can be well explained using the theoretical thick-walled cylinder model.
基金the support provided by the Scientific Research and Technology Development Project of CNPC(Grant No.kt2017-19-01-1)the National Natural Science Foundation of China(Grant No.41772286,No.42077247 and No.42002271)+2 种基金Petro China Innovation Foundation(Grant No.2018D-5007-0202)Project funded by China Postdoctoral Science Foundation(Grant No.2021T140514)Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020009)。
文摘Depletion-induced stress change causes the redistribution of stress field in reservoirs,which can lead to the reorientation of principal stresses.Stress reorientation has a direct impact on fracture propagation of infill wells.To understand the effect of stress reorientation on the propagation of infill well’s fractures,an integrated simulation workflow that combines the reservoir flow calculation and the infill well hydraulic fracturing modeling is adopted.The reservoir simulation is computed to examine the relationship between the extent of stress reversal region and reservoir properties.Then,the hydraulic fracturing model considering the altered stress field for production is built to characterize the stress evolution of secondary fracturing.Numerical simulations show that stress reorientation may occur due to the decreasing of the horizontal stresses in an elliptical region around the parent well.Also,the initial stress difference is the driving factor for stress reorientation.However,the bottom hole pressure,permeability and other properties connected with fluid flow control timing of the stress reorientation.The decrease of the horizontal stresses around the parent well lead to asymmetrical propagation of a hydraulic fracture of the infill well.The study provides insights on understanding the influence of stress reorientation to the infill well fracturing treatment and interference between parent and infill wells.
基金The authors would like to acknowledge Mr.Beau McDonald for his invaluable help with laboratory testing.
文摘This study aims to examine the influence of pre-existing discontinuities on the strengths of four natural rocks of different origins.A series of unconfined compression tests was performed on specimens of two types of sandstones,argillite and basalt that contain open and filled cracks.It was found that the presence of cracks tends to decrease the overall strength for all studied rocks;however,the magnitude of strength reduction is related to the property of rock.The larger strength decrease was observed for the relatively harder argillite and basalt,compared to the softer sandstone.It was also found that the infill material could increase the strength of rock specimens,while the obtained strength depended on the characteristics of the fill material.
基金supported by the Jiangsu Province Carbon Peak Carbon Neutral Technology Innovation Project in China(BE2022034-2)the foundation of the National Natural Science Foundation of China(51974328)+2 种基金the Fundamental Research Funds for the Central Universities(2021QN1005)the Natural Science Foundation of Jiangsu Province(BK20210520)China Postdoctoral Science Foundation(2022M713372).
文摘Tightening the well spacing for unconventional tight reservoirs is an efficient technique to enhance oil and gas recoveries.Infill well-caused fracture connection between wells is widely reported in the field with small well spacing.This will make it difficult to make formation evaluation and fracture characterization between wells compared to single well cases.In this paper,a novel production data analysis(PDA)method is proposed for fracture characterization with the consideration of interwell fracture connections after the hydraulic fracturing of the infill.The PDA method is based on a semianalytical model,in which the small-scaled fractures are treated with the concept of stimulated reservoir volume(SRV).Thus,the fracture connections between wells are classified into three types,including SRV,fractures,and both SRV and fractures.The physical model is discretized into several linear flow regions,so the mathematical model can be solved semianalytically.An integrated workflow is proposed to analyze the production data for the wellpad,and three steps are mainly included in the workflow,including PDA for the parent well before infill,PDA for the parent well after infill,and PDA for the infill well.In each step,the production performance in the early linear and bilinear flow regimes are analyzed with approximate solutions in the square and fourth root-of-time plots.Because only the relationship between unknown model parameters can be obtained with the approximate solutions,history matching to the production data in log-log plots is further used to determine each unknown parameter.The PDA method is benchmarked with a synthetic case generated by the numerical simulator tNavigator and a field case from Southwestern China.The results show that both good matches and precise parameters can be obtained with the proposed PDA method.The connected fracture number will not be sensitive in PDA when the wells are connected with high-conductive dSRV.The innovation of this paper is that a practical method is provided for PDA analysis of well groups with fracture connection,and it will be a good technique for fracture characterization and well-interference analysis for tight formations.
基金The authors greatly appreciate the financial support of the National Natural Science Foundation of China(Grant No.52104027)the Project supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U21B2070)the Shandong Provincial Natural Science Foundation(Grant No.ZR2021ME072).
文摘The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristics and displacement mechanisms are still unclear,which restricts its further popularization and application.Aiming at this problem,this paper firstly analyzes the production performance of the pilot test and proposed four response types according to the change of water cut curves,including W-type,U-type,V-type response,and no response.Furthermore,the underlying reasons of these four types are analyzed from the aspects of seepage resistance and sweep efficiency.The overall sweep efficiency of gradual-rising W-type,gradual-decreasing W-type,and early V-type response increases from 0.81 to 0.93,0.55 to 0.89,and 0.94 to 1,respectively.And the sum of seepage resistance along the connection line between production well and injection well for U-type and delayed V-type response increases from 0.0994 to 0.2425,and 0.0677 to 0.1654,respectively.Then,the remaining oil distribution after polymer flooding is summarized into four types on the basis of production and geological characteristics,namely disconnected remaining oil,streamline unswept remaining oil,rhythm remaining oil,and interlayer-controlled remaining oil.Furthermore,the main displacement mechanisms for each type are clarified based on the dimensionless seepage resistance and water absorption profile.Generally,improving connectivity by well pattern infilling is the most important for producing disconnected remaining oil.The synergistic effect of well pattern infilling and polymer-surfactant-PPG flooding increases the dimensionless seepage resistance of water channeling regions and forces the subsequent injected water to turn to regions with streamline unswept remaining oil.The improvement of the water absorption profile by polymer-surfactant-PPG flooding and separated layer water injection contributes to displacing rhythm remaining oil and interlayer-controlled remaining oil.Finally,the paper analyzes the relationships between the remaining oil distribution after polymer flooding and production characteristics of infilling polymer-surfactant-PPG flooding.The study helps to deepen the understanding of infilling polymer-surfactant-PPG flooding and has reference significance for more commercial implementations in the future.
文摘Based on performance data of over 600 wells in 32 large gas fields of different types in China, the correlation is established between per-well average dynamic reserves( G) and average initial absolute open flow potential(IAOFq) of each field, and its connotation and applicability are further discussed through theoretical deduction. In log-log plot, G vs. IAOFq exhibit highly dependent linear trend, which implicates the compatibility between G and IAOFq attained through development optimization to reach the balance among annual flow capacity, maximum profits and certain production plateau, that is to match productivity with rate maintenance capacity. The correlation can be used as analogue in new gas field development planning to evaluate the minimum dynamic reserves which meet the requirement of stable and profitable production, and facilitate well pattern arrangement. It can also serve as criteria to appraise the effectiveness and infill drilling potential of well patterns for developed gas fields.
基金The authors are grateful for the support by National Key Research and Development Program of China(2021YFF0500300,2020YFB1708300)the National Natural Science Foundation of China(52205280,12172041).
文摘Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts.
基金funded by the National Basic Research program of China(973 Program)(No.2009CB219403)Applied Basic Research Project of CNPC(No:2011B-3706)School Fund of SWPU,and Earth Exploration and Information Technology of Sichuan Provincial Key Disciplines Construction Program
文摘The complex geological conditions in doubly complex areas tend to result in difficult surface survey operations and poor target layer imaging in the subsurface which has a great impact on seismic data quality. In this paper, we propose an optimal crooked line survey method for decreasing the surface survey operational difficulties and improving the sub-layer event continuity. The method concentrates on the surface shooting conditions, first, selecting the proper shot positions based on the specific surface topographic features to reduce the shot difficulties and then optimizing the receiver positioning to meet the prerequisite that the subsurface reflection points remain in a straight line. Using this method cannot only lower the shooting difficulty of rough surface condition areas but also overcome the subsurface reflection point bending problem appearing in the traditional crooked line survey method. On the other hand, we use local infill shooting rather than conventional overall infill shooting to improve sublayer event continuity and uniformity with lower survey operation cost. A model has been calculated and processed with the proposed optimal crooked line survey and local infill shooting design method workflow and the results show that this new method can work for seismic surveys in double complex areas.
基金funded by the Science and technology Program (No:13ZB0191)the Natural Gas Geology Innovation Team (No:13TD0024) of Sichuan Province Education Departmentthe Sichuan Province University Key Laboratory of Natural Gas Geology,the Sichuan Province key Disciplines Construction Program (Earth Exploration and Information Technology)
文摘Seismic imaging quality is critical to describing reservoirs. There are many methods that can improve imaging quality; some rely on advanced processing means, whereas others rely on changing the field acquisition methods. However, most of the acquisition methods focus on improving imaging by using infill shots without considering the target-layer illumination energy. Moreover, total infill shooting greatly increases the acquisition cost. In this paper, we present a new method for maximizing the contribution to the target shadow area illumination by automatic local infill shooting. Thus, we designed 2D and 3D models and obtained the depth migration section by forward modeling, infill shots, depth migration, etc. The model results also show that by choosing the most appropriate number of shot points, we can enhance the shadow area energy and improve the target-layer imaging quality at low cost.
基金Natural Science Foundation of China under Grant Nos.51178342 and 51578314
文摘Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous components offer alternatives that may avoid such failures.A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics.Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used.However,a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported.In this study,a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing.Critical joints were designed and verified.Numerical models were established and calibrated to estimate frame shear forces.The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms.Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall.Drift distribution becomes more uniform with height.Concrete cracks and damage occurs in desired areas.The infilled rocking wall frame offers a promising approach to achieving seismic resilience.
基金National Science Foundation of China under Grant No.51108292,and Qing Lan Project of Jiangsu Province
文摘To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained(PR)steel frames with solid reinforced concrete(RC)infill walls,an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution,load transferring mechanism,and failure modes of RC infill walls filled in PR steel frame.The proposed composite compression struts model for the solid RC infill walls is composed ofαinclined struts and main diagonal struts.Theαinclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface,while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls.This study derives appropriate formulas for the effective widths of theαinclined strut and main diagonal strut,respectively.An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated.The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results,and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%.This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%.
基金The financial support provided by the China Scholarship Council (Grant No. 201406420027)
文摘Rock joints infilled with sediments can strongly influence the strength of rock mass. As infilled joints often exist under unsaturated condition, this study investigated the influence of matric suction of infill on the overall joint shear strength. A novel technique that allows direct measurement of matric suction of infill using high capacity tensiometers(HCTs) during direct shear of infilled joints under constant normal stiffness(CNS) is described. The CNS apparatus was modified to accommodate the HCT and the procedure is explained in detail. Joint specimens were simulated by gypsum plaster using threedimensional(3D) printed surface moulds, and filled with kaolin and sand mixture prepared at different water contents. Shear behaviours of both planar infilled joints and rough joints having joint roughness coefficients(JRCs) of 8-10 and 18-20 with the ratios of infill thickness to asperity height(t/a)equal to 0.5 were investigated. Matric suction shows predominantly unimodal behaviour during shearing of both planar and rough joints, which is closely associated with the variation of unloading rate and volumetric changes of the infill material. As expected, two-peak behaviour was observed for the rough joints and both peaks increased with the increase of infill matric suction. The results suggest that the contribution of matric suction of infill on the joint peak normalised shear stress is relatively independent of the joint roughness.
基金Science Council of Chinese Taipei Under Grant No. SC-92-2625-Z-027-003
文摘Six reinforced concrete frames with or without masonry infills were constructed and tested under horizontal cyclic loads. All six frames had identical details in which the transverse reinforcement in columns was provided by rectangular hoops that did not meet current ACI specifications for ductile frames. For comparison purposes, the columns in three of these frames were jacketed by carbon-fiber-reinforced-polymer (CFRP) sheets to avoid possible shear failure. A nonlinear pushover analysis, in which the force-deformation relationships of individual elements were developed based on ACI 318, FEMA 356, and Chen's model, was carried out for these frames and compared to test results. Both the failure mechanisms and impact of infills on the behaviors of these frames were examined in the study. Conclusions from the present analysis provide structural engineers with valuable information for evaluation and design of infilled concrete frame building structures.
基金The financial support of the Ministry of the Instruction, University and Research of Italy (MIUR)
文摘Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the system. On the other hand, irregular arrangements of the masonry panels may lead to the concentration of damage in some regions, with negative effects; for example soft story mechanisms and shear failures in short columns. Therefore, the presence ofinfill walls should not be neglected, especially in regions of moderate and high seismicity. To this aim, simple models are available for solid infills walls, such as the diagonal no-tension strut model, while infilled frames with openings have not been adequately investigated. In this study, the effect of openings on the strength and stiffness of infilled frames is investigated by means of about 150 experimental and numerical tests. The main parameters involved are identified and a simple model to take into account the openings in the infills is developed and compared with other models proposed by different researchers. The model, which is based on the use of strength and stiffness reduction factors, takes into account the opening dimensions and presence of reinforcing elements around the opening. An example of an application of the proposed reduction factors is also presented.
文摘This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks. These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs. Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored, their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed. As a consequence, nonstructural elements, as for wall enclosures, are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements, however they do not specifically indicate how to prevent collapse and severe cracking, and how to enhance the overall stability in the case of moderate to high seismic loading. Furthermore, a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.
文摘Infill drilling is now recognized as a viable improved recovery process. However, the reliable prediction of incremental recovery by infill drilling cannot be readily and accurately determined by present techniques. This paper proposes a hybrid predictive model of stream tube simulation and numerical simulation by using the contemporary theory of fluid flow in porous media. The model calculates the geometries of stream tubes, remaining oil distribution and water cut at different development stages in the near future, and uses a three-dimensional simulation to track fluid movement in each stream tube slice. This will help reservoir engineers to determine the feasibility of infill drilling. This predictive model is used to forecast the degree of control of well pattern, the ultimate incremental recovery of infill wells within an inverted 5-spot case in an oilfield and the economic benefit is also analyzed.
文摘Past earthquake disasters in Greece, during the last thirty years, demonstrate that the severity of destruction is not only due to the intensity of the seismic event but also to the urbanization of the affected region and the vulnerability of certain types of buildings. Considerable damage was sustained by both old unreinforced masonry structures as well as by relatively new multistory reinforced concrete structures with "soft story" at their ground floor level. The most important observations made during six past earthquake disasters are presented in a summary form and discussed. The most remarkable case of extensive structural damage was caused from the resent Athens 1999 earthquake. The consequent discussion focuses on the following issues: (1) Classification of structural damage and their underlying causes. (2) Repair and strengthening of damaged structures. (3) Upgrade the seismic design. (4) Plans for earthquake preparedness. (5) Assessing the vulnerability of certain type of structures (schools, hospitals, public buildings etc). (6) Education specialized in earthquake engineering. (7) The enrichment of the strong motion data base.