To understand the geochemical characteristics of iron and sulfur and the extent of iron-sulfide minerals influencing heavy metal behaviour in metal-polluted sediments of Talhu Lake, two sites, in Meiliang Bay (ML) a...To understand the geochemical characteristics of iron and sulfur and the extent of iron-sulfide minerals influencing heavy metal behaviour in metal-polluted sediments of Talhu Lake, two sites, in Meiliang Bay (ML) and Wuli Lake (WL), were selected to study the fractionation of iron, sulfur and related heavy metals. There were relatively high concentrations of Fe^2+ and low concentrations of total S^2- in porewaters, indicating that conditions in these sediments favored iron reduction. The concentrations of acid volatile sulfides in sediments were 1.9-9.6 μmol g^-1 at ML and 1.0-11.7 μmool g^-1 at WL, both in the range of values detected in unpolluted lakes. Pyrite-S was 10.2-49.4 μmol g^-1 at ML and 10.3- 33.0 μmol g^-1 at WL, accounting for more than 69% of the reduced inorganic sulfur at both sites. The low degree of sulphidization (〈 14%) and pyritization (〈 10%) indicate that sulfate may be the limiting factor for pyrite formation. The extractability of Mn, Cu, Pb, Zn, Ni, and Cr in sediments all suggest that sulfides are not the major binding phase for these metals during early diagenesis. Sulfur may play a modest role in the geochemistry of iron and traced metals in the sediments.展开更多
Impeding high temperature sintering is challengeable for synthesis of carbon-supported single-atom catalysts (C-SACs), which requires high-cost precursor and strictly-controlled procedures. Herein, by virtue of the ul...Impeding high temperature sintering is challengeable for synthesis of carbon-supported single-atom catalysts (C-SACs), which requires high-cost precursor and strictly-controlled procedures. Herein, by virtue of the ultrastrong polarity of salt melts, sintering of metal atoms is effectively suppressed. Meanwhile, doping with inorganic sulfur anions not only produces sufficient anchoring sites to achieve high loading of atomically dispersed Co up to 13.85 wt.%, but also enables their electronic and geometric structures to be well tuned. When served as a cathode catalyst in dye-sensitized solar cells, the C-SAC with Co-N4-S2 moieties exhibits high activity towards the iodide reduction reaction (IRR), achieving a higher power conversion efficiency than that of conventional Pt counterpart. Density function theory (DFT) calculations revealed that the superior IRR activity was ascribed to the unique structure of Co-N4-S2 moieties with lower reaction barriers and moderate binding energy of iodine on the Co center, which was beneficial to I2 dissociation.展开更多
Comprehensive Summary,A transition-metal-free one-pot direct synthesis of tetrathiophosphates(R^(1)S)_(2)P(S)SR^(2) from white phosphorus(P_(4)),through intermediate sodium alkyltetrathiophosphates(R^(1)S)_(2)P(S)SNa,...Comprehensive Summary,A transition-metal-free one-pot direct synthesis of tetrathiophosphates(R^(1)S)_(2)P(S)SR^(2) from white phosphorus(P_(4)),through intermediate sodium alkyltetrathiophosphates(R^(1)S)_(2)P(S)SNa,is presented.In the presence of NaSH,various disulfides such as diaryl disulfidbges and dialkyl disulfides are easily coupled with P_(4) to give sodium alkyltetrathiophosphates(R^(1)S)_(2)P(S)SNa in almost quantitative yield,which react with alkyl halides in one pot to generate(R^(1)S)_(2)P(S)SR2.Furthermore,S-(2-cyanoethyl)-substituted tetrathiophosphates(R^(1)S)_(2)P(S)SCH_(2)CH_(2)CN are successfully designed as a kind of tetrathiophosphorylation reagent to react with diaryl iodonium salts involving deprotection-dealkylation process.展开更多
A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibility 〈 10 km and RH(relative humidity) 〈 90%. Four haze episodes, which accounted for ~ 60...A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibility 〈 10 km and RH(relative humidity) 〈 90%. Four haze episodes, which accounted for ~ 60% of the time during the whole campaign, were characterized by increases of SNA(sulfate, nitrate, and ammonium) and SOA(secondary organic aerosol) concentrations. The average values with standard deviation of SO2-+4, NO-3, NH4 and SOA were 49.8(± 31.6), 31.4(±22.3), 25.8(±16.6) and 8.9(±4.1) μg/m3, respectively, during the haze episodes, which were 4.3, 3.4, 4.1, and 1.7 times those in the non-haze days. The SO2-4,NO-3, NH+4, and SOA accounted for 15.8%, 8.8%, 7.3%, and 6.0% of the total mass concentration of PM10 during the non-haze days. The respective contributions of SNA species to PM10 rose to about27.2%, 15.9%, and 13.9% during the haze days, while the contributions of SOA maintained the same level with a slight decrease to about 4.9%. The observed mass concentrations of SNA and SOA increased with the increase of PM10 mass concentration, however, the rate of increase of SNA was much faster than that of the SOA. The SOR(sulfur oxidation ratio) and NOR(nitrogen oxidation ratio) increased from non-haze days to hazy days, and increased with the increase of RH. High concentrations of aerosols and water vapor favored the conversion of SO2 to SO2-4and NO2 to NO-3, which accelerated the accumulation of the aerosols and resulted in the formation of haze in Beijing.展开更多
基金the National Natural Science Foundation of China (No.40730528)the National High Technology Research and Development Program (863 Program) of China (No.2007AA06Z411)the Social Development Plan of Jiangsu Province (No.BS2007161).
文摘To understand the geochemical characteristics of iron and sulfur and the extent of iron-sulfide minerals influencing heavy metal behaviour in metal-polluted sediments of Talhu Lake, two sites, in Meiliang Bay (ML) and Wuli Lake (WL), were selected to study the fractionation of iron, sulfur and related heavy metals. There were relatively high concentrations of Fe^2+ and low concentrations of total S^2- in porewaters, indicating that conditions in these sediments favored iron reduction. The concentrations of acid volatile sulfides in sediments were 1.9-9.6 μmol g^-1 at ML and 1.0-11.7 μmool g^-1 at WL, both in the range of values detected in unpolluted lakes. Pyrite-S was 10.2-49.4 μmol g^-1 at ML and 10.3- 33.0 μmol g^-1 at WL, accounting for more than 69% of the reduced inorganic sulfur at both sites. The low degree of sulphidization (〈 14%) and pyritization (〈 10%) indicate that sulfate may be the limiting factor for pyrite formation. The extractability of Mn, Cu, Pb, Zn, Ni, and Cr in sediments all suggest that sulfides are not the major binding phase for these metals during early diagenesis. Sulfur may play a modest role in the geochemistry of iron and traced metals in the sediments.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51773025 and 21701168)the Natural Foundation of Liaoning Province(Materials Joint Foundation,No.20180510027)+1 种基金Dalian Science and Technology Innovation Fund(No.019J12GX032)We gratefully acknowledge the BL14W1 Beamline of Shanghai Synchrotron Radiation Facility(SSRF)in Shanghai,China and the 1W1B Beamline of Beijing Synchrotron Radiation Facility(BSRF)in Beijing,China for providing the beam time.
文摘Impeding high temperature sintering is challengeable for synthesis of carbon-supported single-atom catalysts (C-SACs), which requires high-cost precursor and strictly-controlled procedures. Herein, by virtue of the ultrastrong polarity of salt melts, sintering of metal atoms is effectively suppressed. Meanwhile, doping with inorganic sulfur anions not only produces sufficient anchoring sites to achieve high loading of atomically dispersed Co up to 13.85 wt.%, but also enables their electronic and geometric structures to be well tuned. When served as a cathode catalyst in dye-sensitized solar cells, the C-SAC with Co-N4-S2 moieties exhibits high activity towards the iodide reduction reaction (IRR), achieving a higher power conversion efficiency than that of conventional Pt counterpart. Density function theory (DFT) calculations revealed that the superior IRR activity was ascribed to the unique structure of Co-N4-S2 moieties with lower reaction barriers and moderate binding energy of iodine on the Co center, which was beneficial to I2 dissociation.
基金supported by the National Key Research and Development Program of China(2020YFA0608300)the NSFC(21772163,21778042 and 41876072)NFFTBS(J1310024)。
文摘Comprehensive Summary,A transition-metal-free one-pot direct synthesis of tetrathiophosphates(R^(1)S)_(2)P(S)SR^(2) from white phosphorus(P_(4)),through intermediate sodium alkyltetrathiophosphates(R^(1)S)_(2)P(S)SNa,is presented.In the presence of NaSH,various disulfides such as diaryl disulfidbges and dialkyl disulfides are easily coupled with P_(4) to give sodium alkyltetrathiophosphates(R^(1)S)_(2)P(S)SNa in almost quantitative yield,which react with alkyl halides in one pot to generate(R^(1)S)_(2)P(S)SR2.Furthermore,S-(2-cyanoethyl)-substituted tetrathiophosphates(R^(1)S)_(2)P(S)SCH_(2)CH_(2)CN are successfully designed as a kind of tetrathiophosphorylation reagent to react with diaryl iodonium salts involving deprotection-dealkylation process.
基金supported by the National Natural Science Foundation of China (Nos. 41475113, 41175018)the CAS Strategic Priority Research Program (No. XDB05010500)
文摘A field experiment from 18 August to 8 September 2006 in Beijing, China, was carried out. A hazy day was defined as visibility 〈 10 km and RH(relative humidity) 〈 90%. Four haze episodes, which accounted for ~ 60% of the time during the whole campaign, were characterized by increases of SNA(sulfate, nitrate, and ammonium) and SOA(secondary organic aerosol) concentrations. The average values with standard deviation of SO2-+4, NO-3, NH4 and SOA were 49.8(± 31.6), 31.4(±22.3), 25.8(±16.6) and 8.9(±4.1) μg/m3, respectively, during the haze episodes, which were 4.3, 3.4, 4.1, and 1.7 times those in the non-haze days. The SO2-4,NO-3, NH+4, and SOA accounted for 15.8%, 8.8%, 7.3%, and 6.0% of the total mass concentration of PM10 during the non-haze days. The respective contributions of SNA species to PM10 rose to about27.2%, 15.9%, and 13.9% during the haze days, while the contributions of SOA maintained the same level with a slight decrease to about 4.9%. The observed mass concentrations of SNA and SOA increased with the increase of PM10 mass concentration, however, the rate of increase of SNA was much faster than that of the SOA. The SOR(sulfur oxidation ratio) and NOR(nitrogen oxidation ratio) increased from non-haze days to hazy days, and increased with the increase of RH. High concentrations of aerosols and water vapor favored the conversion of SO2 to SO2-4and NO2 to NO-3, which accelerated the accumulation of the aerosols and resulted in the formation of haze in Beijing.