A high-speed and effective packet scheduling method is crucial to the performance of Gigabit routers. The paper studies the variable-length packet scheduling problem in Gigabit router with crossbar switch fabric and i...A high-speed and effective packet scheduling method is crucial to the performance of Gigabit routers. The paper studies the variable-length packet scheduling problem in Gigabit router with crossbar switch fabric and input queuing, and a scheduling method based on neural network is proposed. For the proposed method, a scheduling system structure fit for the variable-length packet case is presented first, then some rules for scheduling are given. At last, an optimal scheduling method using Hopfield neural network is proposed based on the rules. Furthermore, the paper discusses that the proposed method can be realized by hardware circuit. The simulation result shows the effectiveness of the proposed method.展开更多
This letter presents an efficient scheduling algorithm DTRR (Dual-Threshold Round Robin) for input-queued switches. In DTRR, a new matched input and output by round robin in a cell time will be locked by two self-adap...This letter presents an efficient scheduling algorithm DTRR (Dual-Threshold Round Robin) for input-queued switches. In DTRR, a new matched input and output by round robin in a cell time will be locked by two self-adaptive thresholds whenever the queue length or the wait-time of the head cell in the corresponding Virtual Output Queue (VOQ) exceeds the thresholds. The locked input and output will be matched directly in the succeeding cell time until they are unlocked. By employing queue length and wait-time thresholds which are updated every cell time simultane- ously, DTRR achieves a good tradeoff between the performance and hardware complexity. Simula- tion results indicate that the delay performance of DTRR is competitive compared to other typical scheduling algorithms under various traffic patterns especially under diagonal traffic.展开更多
The high-performance computing paradigm needs high-speed switching fabrics to meet the heavy traffic generated by their applications.These switching fabrics are efficiently driven by the deployed scheduling algorithms...The high-performance computing paradigm needs high-speed switching fabrics to meet the heavy traffic generated by their applications.These switching fabrics are efficiently driven by the deployed scheduling algorithms.In this paper,we proposed two scheduling algorithms for input queued switches whose operations are based on ranking procedures.At first,we proposed a Simple 2-Bit(S2B)scheme which uses binary ranking procedure and queue size for scheduling the packets.Here,the Virtual Output Queue(VOQ)set with maximum number of empty queues receives higher rank than other VOQ’s.Through simulation,we showed S2B has better throughput performance than Highest Ranking First(HRF)arbitration under uniform,and non-uniform traffic patterns.To further improve the throughput-delay performance,an Enhanced 2-Bit(E2B)approach is proposed.This approach adopts an integer representation for rank,which is the number of empty queues in a VOQ set.The simulation result shows E2B outperforms S2B and HRF scheduling algorithms with maximum throughput-delay performance.Furthermore,the algorithms are simulated under hotspot traffic and E2B proves to be more efficient.展开更多
A Single-Buffered (SB) router is a router where only one stage of shared buffering is sandwiched between two interconnects in comparison of a Combined Input and Output Queued (CIOQ) router where a central switch f...A Single-Buffered (SB) router is a router where only one stage of shared buffering is sandwiched between two interconnects in comparison of a Combined Input and Output Queued (CIOQ) router where a central switch fabric is sandwiched between two stages of buffering. The notion of SB routers was firstly proposed by the High-Performance Networking Group (HPNG) of Stanford University, along with two promising designs of SB routers: one of which was Parallel Shared Memory (PSM) router and the other was Distributed Shared Memory (DSM) router. Admittedly, the work of HPNG deserved full credit, but all results presented by them appeared to relay on a Centralized Memory Management Algorithm (CMMA) which was essentially impractical because of the high processing and communication complexity. This paper attempts to make a scalable high-speed SB router completely practical by introducing a fully distributed architecture for managing the shared memory of SB routers. The resulting SB router is called as a Virtual Output and Input Queued (VOIQ) router. Furthermore, the scheme of VOIQ routers can not only eliminate the need for the CMMA scheduler, thus allowing a fully distributed implementation with low processing and commu- nication complexity, but also provide QoS guarantees and efficiently support variable-length packets in this paper. In particular, the results of performance testing and the hardware implementation of our VOIQ-based router (NDSC~ SR1880-TTM series) are illustrated at the end of this paper. The proposal of this paper is the first distributed scheme of how to design and implement SB routers publicized till now.展开更多
文摘A high-speed and effective packet scheduling method is crucial to the performance of Gigabit routers. The paper studies the variable-length packet scheduling problem in Gigabit router with crossbar switch fabric and input queuing, and a scheduling method based on neural network is proposed. For the proposed method, a scheduling system structure fit for the variable-length packet case is presented first, then some rules for scheduling are given. At last, an optimal scheduling method using Hopfield neural network is proposed based on the rules. Furthermore, the paper discusses that the proposed method can be realized by hardware circuit. The simulation result shows the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China (No.60472057).
文摘This letter presents an efficient scheduling algorithm DTRR (Dual-Threshold Round Robin) for input-queued switches. In DTRR, a new matched input and output by round robin in a cell time will be locked by two self-adaptive thresholds whenever the queue length or the wait-time of the head cell in the corresponding Virtual Output Queue (VOQ) exceeds the thresholds. The locked input and output will be matched directly in the succeeding cell time until they are unlocked. By employing queue length and wait-time thresholds which are updated every cell time simultane- ously, DTRR achieves a good tradeoff between the performance and hardware complexity. Simula- tion results indicate that the delay performance of DTRR is competitive compared to other typical scheduling algorithms under various traffic patterns especially under diagonal traffic.
文摘The high-performance computing paradigm needs high-speed switching fabrics to meet the heavy traffic generated by their applications.These switching fabrics are efficiently driven by the deployed scheduling algorithms.In this paper,we proposed two scheduling algorithms for input queued switches whose operations are based on ranking procedures.At first,we proposed a Simple 2-Bit(S2B)scheme which uses binary ranking procedure and queue size for scheduling the packets.Here,the Virtual Output Queue(VOQ)set with maximum number of empty queues receives higher rank than other VOQ’s.Through simulation,we showed S2B has better throughput performance than Highest Ranking First(HRF)arbitration under uniform,and non-uniform traffic patterns.To further improve the throughput-delay performance,an Enhanced 2-Bit(E2B)approach is proposed.This approach adopts an integer representation for rank,which is the number of empty queues in a VOQ set.The simulation result shows E2B outperforms S2B and HRF scheduling algorithms with maximum throughput-delay performance.Furthermore,the algorithms are simulated under hotspot traffic and E2B proves to be more efficient.
基金the National High-Tech Research and De-velopment Program of China (863 Program) (2003AA103510, 2004AA103130, 2005AA121210).
文摘A Single-Buffered (SB) router is a router where only one stage of shared buffering is sandwiched between two interconnects in comparison of a Combined Input and Output Queued (CIOQ) router where a central switch fabric is sandwiched between two stages of buffering. The notion of SB routers was firstly proposed by the High-Performance Networking Group (HPNG) of Stanford University, along with two promising designs of SB routers: one of which was Parallel Shared Memory (PSM) router and the other was Distributed Shared Memory (DSM) router. Admittedly, the work of HPNG deserved full credit, but all results presented by them appeared to relay on a Centralized Memory Management Algorithm (CMMA) which was essentially impractical because of the high processing and communication complexity. This paper attempts to make a scalable high-speed SB router completely practical by introducing a fully distributed architecture for managing the shared memory of SB routers. The resulting SB router is called as a Virtual Output and Input Queued (VOIQ) router. Furthermore, the scheme of VOIQ routers can not only eliminate the need for the CMMA scheduler, thus allowing a fully distributed implementation with low processing and commu- nication complexity, but also provide QoS guarantees and efficiently support variable-length packets in this paper. In particular, the results of performance testing and the hardware implementation of our VOIQ-based router (NDSC~ SR1880-TTM series) are illustrated at the end of this paper. The proposal of this paper is the first distributed scheme of how to design and implement SB routers publicized till now.