Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical app...Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical approach is proposed to solve the resource allocation problem for IMA systems in distributed environments. Firstly, the worst case response time of tasks with arbitrary deadlines is analyzed for the two-level scheduler. Then, the hierarchical resource allocation approach is presented in two levels. At the platform level, a task assignment algorithm based on genetic simulated annealing (GSA) is proposed to assign a set of pre-defined tasks to different processing nodes in the form of task groups, so that resources can be allocated as partitions and mapped to task groups. While yielding to all the resource con- straints, the algorithm tries to find an optimal task assignment with minimized communication costs and balanced work load. At the node level, partition parameters are optimized, so that the computational resource can be allocated further. An example is shown to illustrate the hierarchal resource allocation approach and manifest the validity. Simulation results comparing the performance of the proposed GSA with that of traditional genetic algorithms are presented in the context of task assignment in IMA systems.展开更多
The integrated modular avionics (IMA) architecture is an open standard in avionics industry, in which the number of functionalities implemented by software is greater than ever before. In the IMA architecture, the r...The integrated modular avionics (IMA) architecture is an open standard in avionics industry, in which the number of functionalities implemented by software is greater than ever before. In the IMA architecture, the reliability of the avionics system is highly affected by the software applications. In order to enhance the fault tolerance feature with regard to software application failures, many industrial standards propose a layered health monitoring/fault management (HM/FM) scheme to periodically check the health status of software application processes and recover the malfunctioning software process whenever an error is located. In this paper, we make an analytical study of the HM/FM system for avionics application software. We use the stochastic Petri nets (SPN) to build a formal model of each component and present a method to combine the components together to form a complete system model with respect to three interlayer query strategies. We further investigate the effectiveness of these strategies in an illustrative system.展开更多
基金supported by the National Natural Science Foundation of China (60879024)
文摘Recently the integrated modular avionics (IMA) architecture which introduces the concept of resource partitioning becomes popular as an alternative to the traditional federated architecture. A novel hierarchical approach is proposed to solve the resource allocation problem for IMA systems in distributed environments. Firstly, the worst case response time of tasks with arbitrary deadlines is analyzed for the two-level scheduler. Then, the hierarchical resource allocation approach is presented in two levels. At the platform level, a task assignment algorithm based on genetic simulated annealing (GSA) is proposed to assign a set of pre-defined tasks to different processing nodes in the form of task groups, so that resources can be allocated as partitions and mapped to task groups. While yielding to all the resource con- straints, the algorithm tries to find an optimal task assignment with minimized communication costs and balanced work load. At the node level, partition parameters are optimized, so that the computational resource can be allocated further. An example is shown to illustrate the hierarchal resource allocation approach and manifest the validity. Simulation results comparing the performance of the proposed GSA with that of traditional genetic algorithms are presented in the context of task assignment in IMA systems.
基金supported by the National Grand Fundamental Research Program of China (Nos. 2010CB328105, 2009CB320504)the Tsinghua University Initiative Scientific Research Programthe National Natural Science Foundation of China (Nos. 61070182,60973107, 60973144, 61173008, 61070021)
文摘The integrated modular avionics (IMA) architecture is an open standard in avionics industry, in which the number of functionalities implemented by software is greater than ever before. In the IMA architecture, the reliability of the avionics system is highly affected by the software applications. In order to enhance the fault tolerance feature with regard to software application failures, many industrial standards propose a layered health monitoring/fault management (HM/FM) scheme to periodically check the health status of software application processes and recover the malfunctioning software process whenever an error is located. In this paper, we make an analytical study of the HM/FM system for avionics application software. We use the stochastic Petri nets (SPN) to build a formal model of each component and present a method to combine the components together to form a complete system model with respect to three interlayer query strategies. We further investigate the effectiveness of these strategies in an illustrative system.