Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and ar...Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and artificial neural network algorithm,compared with the traditional optimization way,these algorithms can be applied to a variety of situations,meet the demand of solution,in the mechanical design industry has wide application prospects.This paper analyzes the application of the algorithm in mechanical design and the comparison of the results to verify the significance of the intelligent optimization algorithm in mechanical design.展开更多
The research on nanophotonic devices has made great progress during the past decades. It is the unremitting pursuit of researchers that realize various device functions to meet practical applications. However, most of...The research on nanophotonic devices has made great progress during the past decades. It is the unremitting pursuit of researchers that realize various device functions to meet practical applications. However, most of the traditional methods rely on human experience and physical inspiration for structural design and parameter optimization, which usually require a lot of resources, and the performance of the designed device is limited. Intelligent algorithms, which are composed of rich optimized algorithms, show a vigorous development trend in the field of nanophotonic devices in recent years. The design of nanophotonic devices by intelligent algorithms can break the restrictions of traditional methods and predict novel configurations, which is universal and efficient for different materials, different structures, different modes, different wavelengths, etc. In this review, intelligent algorithms for designing nanophotonic devices are introduced from their concepts to their applications, including deep learning methods, the gradient-based inverse design method, swarm intelligence algorithms, individual inspired algorithms, and some other algorithms. The design principle based on intelligent algorithms and the design of typical new nanophotonic devices are reviewed. Intelligent algorithms can play an important role in designing complex functions and improving the performances of nanophotonic devices, which provide new avenues for the realization of photonic chips.展开更多
The self-potential method is widely used in environmental and engineering geophysics. Four intelligent optimization algorithms are adopted to design the inversion to interpret self-potential data more accurately and e...The self-potential method is widely used in environmental and engineering geophysics. Four intelligent optimization algorithms are adopted to design the inversion to interpret self-potential data more accurately and efficiently: simulated annealing, genetic, particle swarm optimization, and ant colony optimization. Using both noise-free and noise-added synthetic data, it is demonstrated that all four intelligent algorithms can perform self-potential data inversion effectively. During the numerical experiments, the model distribution in search space, the relative errors of model parameters, and the elapsed time are recorded to evaluate the performance of the inversion. The results indicate that all the intelligent algorithms have good precision and tolerance to noise. Particle swarm optimization has the fastest convergence during iteration because of its good balanced searching capability between global and local minimisation.展开更多
Small or smooth cloned regions are difficult to be detected in image copy-move forgery (CMF) detection. Aiming at this problem, an effective method based on image segmentation and swarm intelligent (SI) algorithm ...Small or smooth cloned regions are difficult to be detected in image copy-move forgery (CMF) detection. Aiming at this problem, an effective method based on image segmentation and swarm intelligent (SI) algorithm is proposed. This method segments image into small nonoverlapping blocks. A calculation of smooth degree is given for each block. Test image is segmented into independent layers according to the smooth degree. SI algorithm is applied in finding the optimal detection parameters for each layer. These parameters are used to detect each layer by scale invariant features transform (SIFT)-based scheme, which can locate a mass of keypoints. The experimental results prove the good performance of the proposed method, which is effective to identify the CMF image with small or smooth cloned region.展开更多
As a novel application technology,wireless video sensor networks become the current research focus,especially on target tracking and surveillance scenario.Based on multiple agents' technique,this article introduces a...As a novel application technology,wireless video sensor networks become the current research focus,especially on target tracking and surveillance scenario.Based on multiple agents' technique,this article introduces a series of intelligent algorithms such as simulated annealing algorithm(SA),genetic algorithm(GA),and ant colony optimization algorithm(ACO) or their mixed algorithms,to resolve the optimization of tasks schedule and data transmission.This article analyzes the performance of abovementioned algorithms and verifies their feasibility associated with agents.The simulations demonstrates that the mixed algorithms based on SA and GA obtain the optimal solution to tasks schedule,and those combined with SA-ACO show advantages on multimedia sensor networks routing optimization.展开更多
One of the options for non-dependence on fossil fuels is the use of renewable energy,which has not grown significantly due to the variable nature of this type of energy.The combined use of wind and solar energy as ene...One of the options for non-dependence on fossil fuels is the use of renewable energy,which has not grown significantly due to the variable nature of this type of energy.The combined use of wind and solar energy as energy sources can be a good solution to the problem of variable energy output.Therefore,the purpose of this research is to model a combination of the wind-turbine system and photovoltaic cell,which is needed to investigate their ability to supply electrical energy.To determine this important power production,real data of solar-radiation intensity and wind are used and,in modelling photovoltaic cells,the effects of ambient temperature are also considered.In order to generalize the studied system in all dimensions,different scenarios have been considered.According to the amount of electrical power generated,during the evaluation of these scenarios,two economic parameters,namely the selected scenario of a wind/solar system with diesel-generator support,was determined.展开更多
Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of im...Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of image or video processing,which imposes enormous pressure on the UAV computation platform.To solve this issue,in this work,we propose an intelligent Task Offloading Algorithm(iTOA)for UAV edge computing network.Compared with existing methods,iTOA is able to perceive the network’s environment intelligently to decide the offloading action based on deep Monte Calor Tree Search(MCTS),the core algorithm of Alpha Go.MCTS will simulate the offloading decision trajectories to acquire the best decision by maximizing the reward,such as lowest latency or power consumption.To accelerate the search convergence of MCTS,we also proposed a splitting Deep Neural Network(sDNN)to supply the prior probability for MCTS.The sDNN is trained by a self-supervised learning manager.Here,the training data set is obtained from iTOA itself as its own teacher.Compared with game theory and greedy search-based methods,the proposed iTOA improves service latency performance by 33%and 60%,respectively.展开更多
With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality pred...With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.展开更多
Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and sha...Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and shape(k),is crucial in describing the actual wind speed data and evaluating the wind energy potential.Therefore,this study compares the most common conventional numerical(CN)estimation methods and the recent intelligent optimization algorithms(IOA)to show how precise estimation of c and k affects the wind energy resource assessments.In addition,this study conducts technical and economic feasibility studies for five sites in the northern part of Saudi Arabia,namely Aljouf,Rafha,Tabuk,Turaif,and Yanbo.Results exhibit that IOAs have better performance in attaining optimal Weibull parameters and provided an adequate description of the observed wind speed data.Also,with six wind turbine technologies rating between 1 and 3MW,the technical and economic assessment results reveal that the CN methods tend to overestimate the energy output and underestimate the cost of energy($/kWh)compared to the assessments by IOAs.The energy cost analyses show that Turaif is the windiest site,with an electricity cost of$0.016906/kWh.The highest wind energy output is obtained with the wind turbine having a rated power of 2.5 MW at all considered sites with electricity costs not exceeding$0.02739/kWh.Finally,the outcomes of this study exhibit the potential of wind energy in Saudi Arabia,and its environmental goals can be acquired by harvesting wind energy.展开更多
A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociol...A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociology. Firstly, the solution space was organized into a small-world network model based on social relationship network. Secondly, a simple search strategy was adopted to navigate into this network in order to realize the optimization. In SWO, the two operators for searching the short-range contacts and long-range contacts in small-world network were corresponding to the exploitation and exploration, which have been revealed as the common features in many intelligent algorithms. The proposed algorithm was validated via popular benchmark functions and engineering problems. And also the impacts of parameters were studied. The simulation results indicate that because of the small-world theory, it is suitable for heuristic methods to search targets efficiently in this constructed small-world network model. It is not easy for each test mail to fall into a local trap by shifting into two mapping spaces in order to accelerate the convergence speed. Compared with some classical algorithms, SWO is inherited with optimal features and outstanding in convergence speed. Thus, the algorithm can be considered as a good alternative to solve global optimization problems.展开更多
Epidermal electrophysiological monitoring has garnered significant attention for its potential in medical diagnosis and healthcare,particularly in continuous signal recording.However,simultaneously satisfying skin com...Epidermal electrophysiological monitoring has garnered significant attention for its potential in medical diagnosis and healthcare,particularly in continuous signal recording.However,simultaneously satisfying skin compliance,mechanical properties,environmental adaptation,and biocompatibility to avoid signal attenuation and motion artifacts is challenging,and accurate physiological feature extraction necessitates effective signal-processing algorithms.This review presents the latest advancements in smart electrodes for epidermal electrophysiological monitoring,focusing on materials,structures,and algorithms.First,smart materials incorporating self-adhesion,self-healing,and self-sensing functions offer promising solutions for long-term monitoring.Second,smart meso-structures,together with micro/nanostructures endowed the electrodes with self-adaption and multifunctionality.Third,intelligent algorithms give smart electrodes a“soul,”facilitating faster and more-accurate identification of required information via automatic processing of collected electrical signals.Finally,the existing challenges and future opportunities for developing smart electrodes are discussed.Recognized as a crucial direction for next-generation epidermal electrodes,intelligence holds the potential for extensive,effective,and transformative applications in the future.展开更多
The ball-screw feed drive has varying high-order dynamic characteristics due to flexibilities of the slender screw spindle and joints between components, and an obvious feature of non-collocated control when a direct ...The ball-screw feed drive has varying high-order dynamic characteristics due to flexibilities of the slender screw spindle and joints between components, and an obvious feature of non-collocated control when a direct position measurement using a linear'scale is employed. The dynamic characteristics and non- collocated situation have long been the source of difficulties in motion and vibration control, and deterio- rate the achieved accuracy of the axis motion. In this study, a dynamic model using a frequency-based sub- structure approach is established, considering the flexibilities and their variation. The position-dependent variation of the dynamic characteristics is then fully investigated. A corresponding control strategy, which is composed of a modal characteristic modifier (MCM) and an intelligent adaptive tuning algorithm (ATA), is then developed. The MCM utilizes a combination of peak filters and notch filters, thereby shaping the plant dynamics into a virtual collocated system and avoiding control spillover. An ATA using an artificial neural network (ANN) as a smooth parameter interpolator updates the parameters of the filters in real time in order to cope with the feed drive's dynamic variation. Numerical verification of the effectiveness and robustness of the orooosed strategy is shown for a real feed drive.展开更多
An analytical solution is undertaken to describe the wave-induced flow field and the surge motion of a permeable platform structure with fuzzy controllers in an oceanic environment.In the design procedure of the contr...An analytical solution is undertaken to describe the wave-induced flow field and the surge motion of a permeable platform structure with fuzzy controllers in an oceanic environment.In the design procedure of the controller,a parallel distributed compensation(PDC) scheme is utilized to construct a global fuzzy logic controller by blending all local state feedback controllers.A stability analysis is carried out for a real structure system by using Lyapunov method.The corresponding boundary value problems are then incorporated into scattering and radiation problems.They are analytically solved,based on separation of variables,to obtain series solutions in terms of the harmonic incident wave motion and surge motion.The dependence of the wave-induced flow field and its resonant frequency on wave characteristics and structure properties including platform width,thickness and mass has been thus drawn with a parametric approach.From which mathematical models are applied for the wave-induced displacement of the surge motion.A nonlinearly inverted pendulum system is employed to demonstrate that the controller tuned by swarm intelligence method can not only stabilize the nonlinear system,but has the robustness against external disturbance.展开更多
Four intelligent optimization algorithms are compared by searching for control pulses to achieve the preparation of target quantum states for closed and open quantum systems, which include differential evolution(DE), ...Four intelligent optimization algorithms are compared by searching for control pulses to achieve the preparation of target quantum states for closed and open quantum systems, which include differential evolution(DE), particle swarm optimization(PSO), quantum-behaved particle swarm optimization(QPSO), and quantum evolutionary algorithm(QEA).We compare their control performance and point out their differences. By sampling and learning for uncertain quantum systems, the robustness of control pulses found by these four algorithms is also demonstrated and compared. The resulting research shows that the QPSO nearly outperforms the other three algorithms for all the performance criteria considered.This conclusion provides an important reference for solving complex quantum control problems by optimization algorithms and makes the QPSO be a powerful optimization tool.展开更多
Much of our daily tasks have been computerized by machines and sensors communicating with each other in real-time.There is a reasonable risk that something could go wrong because there are a lot of sensors producing a...Much of our daily tasks have been computerized by machines and sensors communicating with each other in real-time.There is a reasonable risk that something could go wrong because there are a lot of sensors producing a lot of data.Combinatorial testing(CT)can be used in this case to reduce risks and ensure conformance to specifications.Numerous existing metaheuristic-based solutions aim to assist the test suite generation for combinatorial testing,also known as t-way testing(where t indicates the interaction strength),viewed as an optimization problem.Much previous research,while helpful,only investigated a small number of interaction strengths up to t=6.For lightweight applications,research has demonstrated good fault-finding ability.However,the number of interaction strengths considered must be higher in the case of interactions that generate large amounts of data.Due to resource restrictions and the combinatorial explosion challenge,little work has been done to produce high-order interaction strength.In this context,the Whale Optimization Algorithm(WOA)is proposed to generate high-order interaction strength.To ensure that WOA conquers premature convergence and avoids local optima for large search spaces(owing to high-order interaction),three variants of WOA have been developed,namely Structurally Modified Whale Optimization Algorithm(SWOA),Tolerance Whale Optimization Algorithm(TWOA),and Tolerance Structurally Modified Whale Optimization Algorithm(TSWOA).Our experiments show that the third strategy gives the best performance and is comparable to existing state-of-thearts based strategies.展开更多
A two-layer implicit difference scheme is employed in the present study to determine the temperature distribution in an asphalt pavement.The calculation of each layer only needs four iterations to achieve convergence....A two-layer implicit difference scheme is employed in the present study to determine the temperature distribution in an asphalt pavement.The calculation of each layer only needs four iterations to achieve convergence.Furthermore,in order to improve the calculation accuracy a swarm intelligence optimization algorithm is also exploited to inversely analyze the laws by which the thermal physical parameters of the asphalt pavement materials change with temperature.Using the basic cuckoo and the gray wolf algorithms,an adaptive hybrid optimization algorithm is obtained and used to determine the relationship between the thermal diffusivity of two types of asphalt pavement materials and the temperature.As shown by the results,the prediction accuracy achievable with this approach is higher than that of the linear model.展开更多
With today's global economic downturn and the increasingly fierce market competition, manufacturing enterprises must guarantee the efficient operation of production system, in order to get ahead in the competition, s...With today's global economic downturn and the increasingly fierce market competition, manufacturing enterprises must guarantee the efficient operation of production system, in order to get ahead in the competition, scheduling reasonable flow shop production systems can improve productivity and equipment utilization rate, reduce production costs. So the production system of flow shop scheduling problem has become one of the core problems ofmanufactaring enterprises the use of more and more.展开更多
Attracted numerous analysts’consideration,classification is one of the primary issues in Machine learning.Numerous evolutionary algorithms(EAs)were utilized to improve their global search ability.In the previous year...Attracted numerous analysts’consideration,classification is one of the primary issues in Machine learning.Numerous evolutionary algorithms(EAs)were utilized to improve their global search ability.In the previous years,many scientists have attempted to tackle this issue,yet regardless of the endeavors,there are still a few inadequacies.Based on solving the classification problem,this paper introduces a new optimization classification model,which can be applied to the majority of evolutionary computing(EC)techniques.Firework algorithm(FWA)is one of the EC methods,Although the Firework algorithm(FWA)is a proficient algorithm for solving complex optimization issue.The proficient of the FWA isn't fulfilled when being utilized for solving the classification issues.In this paper we previously proposed optimization classification model according to the classification issue.At that point we legitimately utilize the model with FWA to solve the classification issue.Finally,to investigate the performance of our model,we select 4 datasets in the experiments,and the results indicate that an improved FWA can upgrade the classification accuracy by using this model.展开更多
In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local ...In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local optimum of the standard fruit fly optimization algorithm. By using the information of the iteration number and the maximum iteration number, the proposed algorithm uses the floor function to ensure that the fruit fly swarms adopt the large step search during the olfactory search stage which improves the search speed;in the visual search stage, the small step is used to effectively avoid local optimum. Finally, using commonly used benchmark testing functions, the proposed algorithm is compared with the standard fruit fly optimization algorithm with some fixed steps. The simulation experiment results show that the proposed algorithm can quickly approach the optimal solution in the olfactory search stage and accurately search in the visual search stage, demonstrating more effective performance.展开更多
TheUAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles(UAVs),which is pivotal in public safety applications,particularly in scenarios involving i...TheUAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles(UAVs),which is pivotal in public safety applications,particularly in scenarios involving intrusion monitoring and interception.To address the challenges of data acquisition,real-world deployment,and the limited intelligence of existing algorithms in UAV pursuit-evasion tasks,we propose an innovative swarm intelligencebased UAV pursuit-evasion control framework,namely“Boids Model-based DRL Approach for Pursuit and Escape”(Boids-PE),which synergizes the strengths of swarm intelligence from bio-inspired algorithms and deep reinforcement learning(DRL).The Boids model,which simulates collective behavior through three fundamental rules,separation,alignment,and cohesion,is adopted in our work.By integrating Boids model with the Apollonian Circles algorithm,significant improvements are achieved in capturing UAVs against simple evasion strategies.To further enhance decision-making precision,we incorporate a DRL algorithm to facilitate more accurate strategic planning.We also leverage self-play training to continuously optimize the performance of pursuit UAVs.During experimental evaluation,we meticulously designed both one-on-one and multi-to-one pursuit-evasion scenarios,customizing the state space,action space,and reward function models for each scenario.Extensive simulations,supported by the PyBullet physics engine,validate the effectiveness of our proposed method.The overall results demonstrate that Boids-PE significantly enhance the efficiency and reliability of UAV pursuit-evasion tasks,providing a practical and robust solution for the real-world application of UAV pursuit-evasion missions.展开更多
文摘Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and artificial neural network algorithm,compared with the traditional optimization way,these algorithms can be applied to a variety of situations,meet the demand of solution,in the mechanical design industry has wide application prospects.This paper analyzes the application of the algorithm in mechanical design and the comparison of the results to verify the significance of the intelligent optimization algorithm in mechanical design.
基金supported by the National Natural Science Foundation of China (Nos. 11604378, 91850117, and 11654003)the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘The research on nanophotonic devices has made great progress during the past decades. It is the unremitting pursuit of researchers that realize various device functions to meet practical applications. However, most of the traditional methods rely on human experience and physical inspiration for structural design and parameter optimization, which usually require a lot of resources, and the performance of the designed device is limited. Intelligent algorithms, which are composed of rich optimized algorithms, show a vigorous development trend in the field of nanophotonic devices in recent years. The design of nanophotonic devices by intelligent algorithms can break the restrictions of traditional methods and predict novel configurations, which is universal and efficient for different materials, different structures, different modes, different wavelengths, etc. In this review, intelligent algorithms for designing nanophotonic devices are introduced from their concepts to their applications, including deep learning methods, the gradient-based inverse design method, swarm intelligence algorithms, individual inspired algorithms, and some other algorithms. The design principle based on intelligent algorithms and the design of typical new nanophotonic devices are reviewed. Intelligent algorithms can play an important role in designing complex functions and improving the performances of nanophotonic devices, which provide new avenues for the realization of photonic chips.
基金Project(41574123)supported by the National Natural Science Foundation of ChinaProject(2015zzts250)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2013FY110800)supported by the National Basic Research Scientific Program of China
文摘The self-potential method is widely used in environmental and engineering geophysics. Four intelligent optimization algorithms are adopted to design the inversion to interpret self-potential data more accurately and efficiently: simulated annealing, genetic, particle swarm optimization, and ant colony optimization. Using both noise-free and noise-added synthetic data, it is demonstrated that all four intelligent algorithms can perform self-potential data inversion effectively. During the numerical experiments, the model distribution in search space, the relative errors of model parameters, and the elapsed time are recorded to evaluate the performance of the inversion. The results indicate that all the intelligent algorithms have good precision and tolerance to noise. Particle swarm optimization has the fastest convergence during iteration because of its good balanced searching capability between global and local minimisation.
基金Supported by the National Natural Science Foundation of China(61472429,61070192,91018008,61303074,61170240)the National High Technology Research Development Program of China(863 Program)(2007AA01Z414)+1 种基金the National Science and Technology Major Project of China(2012ZX01039-004)the Beijing Natural Science Foundation(4122041)
文摘Small or smooth cloned regions are difficult to be detected in image copy-move forgery (CMF) detection. Aiming at this problem, an effective method based on image segmentation and swarm intelligent (SI) algorithm is proposed. This method segments image into small nonoverlapping blocks. A calculation of smooth degree is given for each block. Test image is segmented into independent layers according to the smooth degree. SI algorithm is applied in finding the optimal detection parameters for each layer. These parameters are used to detect each layer by scale invariant features transform (SIFT)-based scheme, which can locate a mass of keypoints. The experimental results prove the good performance of the proposed method, which is effective to identify the CMF image with small or smooth cloned region.
基金sponsored by the National Natural Science Foundation of China (60973139, 60773041)the Natural Science Foundation of Jiangsu Province (BK2008451)+4 种基金the Hi-Tech Research and Development Program of China (2007AA01Z404, 2007AA01Z478)Special Fund for Software Technology of Jiangsu ProvinceFoundation of National Laboratory for Modern Communications (9140C1105040805)Postdoctoral Foundation (0801019C, 20090451240)the six kinds of Top Talent of Jiangsu Province (2008118)
文摘As a novel application technology,wireless video sensor networks become the current research focus,especially on target tracking and surveillance scenario.Based on multiple agents' technique,this article introduces a series of intelligent algorithms such as simulated annealing algorithm(SA),genetic algorithm(GA),and ant colony optimization algorithm(ACO) or their mixed algorithms,to resolve the optimization of tasks schedule and data transmission.This article analyzes the performance of abovementioned algorithms and verifies their feasibility associated with agents.The simulations demonstrates that the mixed algorithms based on SA and GA obtain the optimal solution to tasks schedule,and those combined with SA-ACO show advantages on multimedia sensor networks routing optimization.
文摘One of the options for non-dependence on fossil fuels is the use of renewable energy,which has not grown significantly due to the variable nature of this type of energy.The combined use of wind and solar energy as energy sources can be a good solution to the problem of variable energy output.Therefore,the purpose of this research is to model a combination of the wind-turbine system and photovoltaic cell,which is needed to investigate their ability to supply electrical energy.To determine this important power production,real data of solar-radiation intensity and wind are used and,in modelling photovoltaic cells,the effects of ambient temperature are also considered.In order to generalize the studied system in all dimensions,different scenarios have been considered.According to the amount of electrical power generated,during the evaluation of these scenarios,two economic parameters,namely the selected scenario of a wind/solar system with diesel-generator support,was determined.
基金the Artificial Intelligence Key Laboratory of Sichuan Province(Nos.2019RYJ05)National Natural Science Foundation of China(Nos.61971107).
文摘Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of image or video processing,which imposes enormous pressure on the UAV computation platform.To solve this issue,in this work,we propose an intelligent Task Offloading Algorithm(iTOA)for UAV edge computing network.Compared with existing methods,iTOA is able to perceive the network’s environment intelligently to decide the offloading action based on deep Monte Calor Tree Search(MCTS),the core algorithm of Alpha Go.MCTS will simulate the offloading decision trajectories to acquire the best decision by maximizing the reward,such as lowest latency or power consumption.To accelerate the search convergence of MCTS,we also proposed a splitting Deep Neural Network(sDNN)to supply the prior probability for MCTS.The sDNN is trained by a self-supervised learning manager.Here,the training data set is obtained from iTOA itself as its own teacher.Compared with game theory and greedy search-based methods,the proposed iTOA improves service latency performance by 33%and 60%,respectively.
基金supported by the National Science and Technology Innovation 2030 Next-Generation Artifical Intelligence Major Project(2018AAA0101801)the National Natural Science Foundation of China(72271188)。
文摘With the development of information technology,a large number of product quality data in the entire manufacturing process is accumulated,but it is not explored and used effectively.The traditional product quality prediction models have many disadvantages,such as high complexity and low accuracy.To overcome the above problems,we propose an optimized data equalization method to pre-process dataset and design a simple but effective product quality prediction model:radial basis function model optimized by the firefly algorithm with Levy flight mechanism(RBFFALM).First,the new data equalization method is introduced to pre-process the dataset,which reduces the dimension of the data,removes redundant features,and improves the data distribution.Then the RBFFALFM is used to predict product quality.Comprehensive expe riments conducted on real-world product quality datasets validate that the new model RBFFALFM combining with the new data pre-processing method outperforms other previous me thods on predicting product quality.
基金The author extends his appreciation to theDeputyship forResearch&Innovation,Ministry of Education,Saudi Arabia for funding this research work through the Project Number(QUIF-4-3-3-33891)。
文摘Statistical distributions are used to model wind speed,and the twoparameters Weibull distribution has proven its effectiveness at characterizing wind speed.Accurate estimation of Weibull parameters,the scale(c)and shape(k),is crucial in describing the actual wind speed data and evaluating the wind energy potential.Therefore,this study compares the most common conventional numerical(CN)estimation methods and the recent intelligent optimization algorithms(IOA)to show how precise estimation of c and k affects the wind energy resource assessments.In addition,this study conducts technical and economic feasibility studies for five sites in the northern part of Saudi Arabia,namely Aljouf,Rafha,Tabuk,Turaif,and Yanbo.Results exhibit that IOAs have better performance in attaining optimal Weibull parameters and provided an adequate description of the observed wind speed data.Also,with six wind turbine technologies rating between 1 and 3MW,the technical and economic assessment results reveal that the CN methods tend to overestimate the energy output and underestimate the cost of energy($/kWh)compared to the assessments by IOAs.The energy cost analyses show that Turaif is the windiest site,with an electricity cost of$0.016906/kWh.The highest wind energy output is obtained with the wind turbine having a rated power of 2.5 MW at all considered sites with electricity costs not exceeding$0.02739/kWh.Finally,the outcomes of this study exhibit the potential of wind energy in Saudi Arabia,and its environmental goals can be acquired by harvesting wind energy.
基金Projects(51105157, 50875101) supported by the National Natural Science Foundation of ChinaProject(2009AA043301) supported by the National High Technology Research and Development Program of China
文摘A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociology. Firstly, the solution space was organized into a small-world network model based on social relationship network. Secondly, a simple search strategy was adopted to navigate into this network in order to realize the optimization. In SWO, the two operators for searching the short-range contacts and long-range contacts in small-world network were corresponding to the exploitation and exploration, which have been revealed as the common features in many intelligent algorithms. The proposed algorithm was validated via popular benchmark functions and engineering problems. And also the impacts of parameters were studied. The simulation results indicate that because of the small-world theory, it is suitable for heuristic methods to search targets efficiently in this constructed small-world network model. It is not easy for each test mail to fall into a local trap by shifting into two mapping spaces in order to accelerate the convergence speed. Compared with some classical algorithms, SWO is inherited with optimal features and outstanding in convergence speed. Thus, the algorithm can be considered as a good alternative to solve global optimization problems.
基金supported by Science and Technology Innovation 2030-Major Project(Grant No.2022ZD0208601)the National Natural Science Foundation of China(Grant Nos.62104056,62106041,and 62204204)+2 种基金the Shanghai Sailing Program(Grant No.21YF1451000)the Key Research and Development Program of Shaanxi(Grant No.2022GY-001)the Fundamental Research Funds for the Central Universities(Grant No.223202100019).
文摘Epidermal electrophysiological monitoring has garnered significant attention for its potential in medical diagnosis and healthcare,particularly in continuous signal recording.However,simultaneously satisfying skin compliance,mechanical properties,environmental adaptation,and biocompatibility to avoid signal attenuation and motion artifacts is challenging,and accurate physiological feature extraction necessitates effective signal-processing algorithms.This review presents the latest advancements in smart electrodes for epidermal electrophysiological monitoring,focusing on materials,structures,and algorithms.First,smart materials incorporating self-adhesion,self-healing,and self-sensing functions offer promising solutions for long-term monitoring.Second,smart meso-structures,together with micro/nanostructures endowed the electrodes with self-adaption and multifunctionality.Third,intelligent algorithms give smart electrodes a“soul,”facilitating faster and more-accurate identification of required information via automatic processing of collected electrical signals.Finally,the existing challenges and future opportunities for developing smart electrodes are discussed.Recognized as a crucial direction for next-generation epidermal electrodes,intelligence holds the potential for extensive,effective,and transformative applications in the future.
基金This work was supported by the key project of the National Natural Science Foundation of China (51235009).
文摘The ball-screw feed drive has varying high-order dynamic characteristics due to flexibilities of the slender screw spindle and joints between components, and an obvious feature of non-collocated control when a direct position measurement using a linear'scale is employed. The dynamic characteristics and non- collocated situation have long been the source of difficulties in motion and vibration control, and deterio- rate the achieved accuracy of the axis motion. In this study, a dynamic model using a frequency-based sub- structure approach is established, considering the flexibilities and their variation. The position-dependent variation of the dynamic characteristics is then fully investigated. A corresponding control strategy, which is composed of a modal characteristic modifier (MCM) and an intelligent adaptive tuning algorithm (ATA), is then developed. The MCM utilizes a combination of peak filters and notch filters, thereby shaping the plant dynamics into a virtual collocated system and avoiding control spillover. An ATA using an artificial neural network (ANN) as a smooth parameter interpolator updates the parameters of the filters in real time in order to cope with the feed drive's dynamic variation. Numerical verification of the effectiveness and robustness of the orooosed strategy is shown for a real feed drive.
基金financially supported by the Key Project in Fujian Provincial Education Bureau(Grant No.JA15323)
文摘An analytical solution is undertaken to describe the wave-induced flow field and the surge motion of a permeable platform structure with fuzzy controllers in an oceanic environment.In the design procedure of the controller,a parallel distributed compensation(PDC) scheme is utilized to construct a global fuzzy logic controller by blending all local state feedback controllers.A stability analysis is carried out for a real structure system by using Lyapunov method.The corresponding boundary value problems are then incorporated into scattering and radiation problems.They are analytically solved,based on separation of variables,to obtain series solutions in terms of the harmonic incident wave motion and surge motion.The dependence of the wave-induced flow field and its resonant frequency on wave characteristics and structure properties including platform width,thickness and mass has been thus drawn with a parametric approach.From which mathematical models are applied for the wave-induced displacement of the surge motion.A nonlinearly inverted pendulum system is employed to demonstrate that the controller tuned by swarm intelligence method can not only stabilize the nonlinear system,but has the robustness against external disturbance.
基金supported by the National Natural Science Foundation of China (Grant No. 61873251)。
文摘Four intelligent optimization algorithms are compared by searching for control pulses to achieve the preparation of target quantum states for closed and open quantum systems, which include differential evolution(DE), particle swarm optimization(PSO), quantum-behaved particle swarm optimization(QPSO), and quantum evolutionary algorithm(QEA).We compare their control performance and point out their differences. By sampling and learning for uncertain quantum systems, the robustness of control pulses found by these four algorithms is also demonstrated and compared. The resulting research shows that the QPSO nearly outperforms the other three algorithms for all the performance criteria considered.This conclusion provides an important reference for solving complex quantum control problems by optimization algorithms and makes the QPSO be a powerful optimization tool.
基金This work was supported by the Ministry of Education,Malaysia(FRGS/1/2019/ICT02/UKM/01/1)the Universiti Kebangsaan Malaysia(DIP-2016-024).
文摘Much of our daily tasks have been computerized by machines and sensors communicating with each other in real-time.There is a reasonable risk that something could go wrong because there are a lot of sensors producing a lot of data.Combinatorial testing(CT)can be used in this case to reduce risks and ensure conformance to specifications.Numerous existing metaheuristic-based solutions aim to assist the test suite generation for combinatorial testing,also known as t-way testing(where t indicates the interaction strength),viewed as an optimization problem.Much previous research,while helpful,only investigated a small number of interaction strengths up to t=6.For lightweight applications,research has demonstrated good fault-finding ability.However,the number of interaction strengths considered must be higher in the case of interactions that generate large amounts of data.Due to resource restrictions and the combinatorial explosion challenge,little work has been done to produce high-order interaction strength.In this context,the Whale Optimization Algorithm(WOA)is proposed to generate high-order interaction strength.To ensure that WOA conquers premature convergence and avoids local optima for large search spaces(owing to high-order interaction),three variants of WOA have been developed,namely Structurally Modified Whale Optimization Algorithm(SWOA),Tolerance Whale Optimization Algorithm(TWOA),and Tolerance Structurally Modified Whale Optimization Algorithm(TSWOA).Our experiments show that the third strategy gives the best performance and is comparable to existing state-of-thearts based strategies.
文摘A two-layer implicit difference scheme is employed in the present study to determine the temperature distribution in an asphalt pavement.The calculation of each layer only needs four iterations to achieve convergence.Furthermore,in order to improve the calculation accuracy a swarm intelligence optimization algorithm is also exploited to inversely analyze the laws by which the thermal physical parameters of the asphalt pavement materials change with temperature.Using the basic cuckoo and the gray wolf algorithms,an adaptive hybrid optimization algorithm is obtained and used to determine the relationship between the thermal diffusivity of two types of asphalt pavement materials and the temperature.As shown by the results,the prediction accuracy achievable with this approach is higher than that of the linear model.
文摘With today's global economic downturn and the increasingly fierce market competition, manufacturing enterprises must guarantee the efficient operation of production system, in order to get ahead in the competition, scheduling reasonable flow shop production systems can improve productivity and equipment utilization rate, reduce production costs. So the production system of flow shop scheduling problem has become one of the core problems ofmanufactaring enterprises the use of more and more.
基金This work was partially supported by the Science and technology program of ministry of Housing and Urban-Rural Development(2019-K-142)the Entrepreneurial team of Sponge City(2017R02002).
文摘Attracted numerous analysts’consideration,classification is one of the primary issues in Machine learning.Numerous evolutionary algorithms(EAs)were utilized to improve their global search ability.In the previous years,many scientists have attempted to tackle this issue,yet regardless of the endeavors,there are still a few inadequacies.Based on solving the classification problem,this paper introduces a new optimization classification model,which can be applied to the majority of evolutionary computing(EC)techniques.Firework algorithm(FWA)is one of the EC methods,Although the Firework algorithm(FWA)is a proficient algorithm for solving complex optimization issue.The proficient of the FWA isn't fulfilled when being utilized for solving the classification issues.In this paper we previously proposed optimization classification model according to the classification issue.At that point we legitimately utilize the model with FWA to solve the classification issue.Finally,to investigate the performance of our model,we select 4 datasets in the experiments,and the results indicate that an improved FWA can upgrade the classification accuracy by using this model.
文摘In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local optimum of the standard fruit fly optimization algorithm. By using the information of the iteration number and the maximum iteration number, the proposed algorithm uses the floor function to ensure that the fruit fly swarms adopt the large step search during the olfactory search stage which improves the search speed;in the visual search stage, the small step is used to effectively avoid local optimum. Finally, using commonly used benchmark testing functions, the proposed algorithm is compared with the standard fruit fly optimization algorithm with some fixed steps. The simulation experiment results show that the proposed algorithm can quickly approach the optimal solution in the olfactory search stage and accurately search in the visual search stage, demonstrating more effective performance.
文摘TheUAV pursuit-evasion problem focuses on the efficient tracking and capture of evading targets using unmanned aerial vehicles(UAVs),which is pivotal in public safety applications,particularly in scenarios involving intrusion monitoring and interception.To address the challenges of data acquisition,real-world deployment,and the limited intelligence of existing algorithms in UAV pursuit-evasion tasks,we propose an innovative swarm intelligencebased UAV pursuit-evasion control framework,namely“Boids Model-based DRL Approach for Pursuit and Escape”(Boids-PE),which synergizes the strengths of swarm intelligence from bio-inspired algorithms and deep reinforcement learning(DRL).The Boids model,which simulates collective behavior through three fundamental rules,separation,alignment,and cohesion,is adopted in our work.By integrating Boids model with the Apollonian Circles algorithm,significant improvements are achieved in capturing UAVs against simple evasion strategies.To further enhance decision-making precision,we incorporate a DRL algorithm to facilitate more accurate strategic planning.We also leverage self-play training to continuously optimize the performance of pursuit UAVs.During experimental evaluation,we meticulously designed both one-on-one and multi-to-one pursuit-evasion scenarios,customizing the state space,action space,and reward function models for each scenario.Extensive simulations,supported by the PyBullet physics engine,validate the effectiveness of our proposed method.The overall results demonstrate that Boids-PE significantly enhance the efficiency and reliability of UAV pursuit-evasion tasks,providing a practical and robust solution for the real-world application of UAV pursuit-evasion missions.