Comprehensive Summary Kagome lattices have garnered significant attention due to their promising applications in catalysis,electronics,and magnetics.Although many efforts have been paid to the design and synthesis of ...Comprehensive Summary Kagome lattices have garnered significant attention due to their promising applications in catalysis,electronics,and magnetics.Although many efforts have been paid to the design and synthesis of Kagome lattices,there is a limited focus on constructing this lattice by multiple interaction forces.In this work,we employ 2,7-dibromo-carbazole as precursors to successfully fabricate the two-dimensional self-assembly Kagome lattices stabled by multiple interaction forces on Au(111)substrate.Using low-temperature scanning tunneling microscopy,non-contact atomic force microscopy and density functional theory calculation,we visualize and identify the four interaction forces within Kagome lattices:Au—N coordination bonds,Au—H hydrogen bonds,Br—Br halogen bonds,and Br—H hydrogen bonds,respectively.This study provides a basic understanding for designing and constructing more complex Kagome lattices.展开更多
Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes...Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.展开更多
The flotation of diasporic bauxite is to separate diaspore(valuable mineral)from aluminosilicate minerals(gangue minerals,mainly including kaolinite,illite and pyrophyllite),and the microscopic interaction force betwe...The flotation of diasporic bauxite is to separate diaspore(valuable mineral)from aluminosilicate minerals(gangue minerals,mainly including kaolinite,illite and pyrophyllite),and the microscopic interaction force between the two types of minerals and air bubbles determines the separation efficiency.In this paper,based on the extended Derjaguin-Landau-Verwey-Overbeek(DLVO)theory,the van der Waals,electrostatic and hydrophobic interaction between particles of the four minerals mentioned above and air bubbles in collectorless solution were calculated first,and then diaspore and kaolinite were taken as examples to analyze the influence of various factors such as electrolyte concentration,mineral particle size,air bubble size,collector type(dodecylamine hydrochloride(DAH)and sodium oleate(NaOL))and concentration,and pulp pH on the interactions between the particles of valuable mineral and gangue minerals and air bubbles.The results showed that the total extended DLVO interactions between the four minerals and air bubbles were repulsive in most cases in collectorless solution.The increase in electrolyte concentration reduced the interaction force or even changed the direction of the force under certain circumstances.The addition of DAH and NaOL can reduce the adhesion energy barrier of kaolinitebubble and diaspore-bubble respectively.Each type of minerals exhibited a specific interface interaction response with air bubbles in each collector with different pH values.The research results have theoretical guiding significance for the optimization and directional control of diasporic bauxite flotation conditions.展开更多
The adsorption of dedecyltrimethylammoium chloride(DTAC) and hexadecyltrimethylammoium chloride(CTAC) on muscovite mica substrates was examined using atomic force microscopy(AFM). Adsorption morphology images and inte...The adsorption of dedecyltrimethylammoium chloride(DTAC) and hexadecyltrimethylammoium chloride(CTAC) on muscovite mica substrates was examined using atomic force microscopy(AFM). Adsorption morphology images and interaction forces of cationic surfactants at solid-solution interfaces were measured in tapping mode and Pico Force mode, respectively. The images demonstrated that the adsorbed structure was varied by a variety of surfactant concentrations. The adsorbed layer on mica was monolayer at first, and then became bilayer. A striped adsorbed structure was observed in a higher concentration of CTAC,which could not be found in any other concentrations of DTAC. For force measurements, the repulsive force was exponentially decreasing with the concentration increasing till a net attractive force appeared. A largest attractive force could be observed at a certain concentration, which was close to the point of charge neutralization. The results also showed a significant impact of hydrocarbon chain length on adsorption. An adsorption simulation was established to give a clear understanding of the interaction between cationic surfactants and mica.展开更多
The parallel processing based on the free running model test was adopted to predict the interaction force coefficients (flow straightening coefficient and wake fraction) of ship maneuvering. And the multipopulation ...The parallel processing based on the free running model test was adopted to predict the interaction force coefficients (flow straightening coefficient and wake fraction) of ship maneuvering. And the multipopulation genetic algorithm (MPGA) based on real coding that can contemporarily process the data of free running model and simulation of ship maneuvering was applied to solve the problem. Accordingly the optimal individual was obtained using the method of genetic algorithm. The parallel processing of multiopulation solved the prematurity in the identification for single population, meanwhile, the parallel processing of the data of ship maneuvering (turning motion and zigzag motion) is an attempt to solve the coefficient drift problem. In order to validate the method, the interaction force coefficients were verified by the procedure and these coefficients measured were compared with those ones identified. The maximum error is less than 5%, and the identification is an effective method.展开更多
In the past three decades, numerous papers have bee n publishedon the dynamics of rotating discs. most of them have focused on the ma thematical modeling and solution for a specific interactive force, such as a n elas...In the past three decades, numerous papers have bee n publishedon the dynamics of rotating discs. most of them have focused on the ma thematical modeling and solution for a specific interactive force, such as a n elastic force produced by a stationary spring or a damping force from a statio nary viscous damper. Few of them have looked into the instability mechanisms. This study has established a generalized approach to investigate the instability mechanisms that are involved in the interaction between a rotating and an arbit rary interactive force. An energy flux equation has been developed, which leads to the following conclusions: (1) The possibility of the occurrence of instability due to any interactive forc es may be identified based on the energy flux analysis, even without solving equ ations. (2) Instabilities will occur if the interactive forces are in phase with the vel ocity measured at the interactive point from the coordinates rotating with the d isc. (3) Instability cannot occur when a rotating disc is subjected to a stationary c onstant lateral force, but a stationary harmonic lateral force, a moving constan t lateral force or a moving harmonic lateral force may cause instability. (4) Conservative forces may only cause coupling instability associated with two modes, and non-conservative forces usually cause terminal instability where onl y one mode is involved.展开更多
Studies of interactions between wind and saltating particles (i.e., the wind-saltation interaction) are usually conducted without consideration of the downwind air pressure gradient. However, in a wind tunnel with l...Studies of interactions between wind and saltating particles (i.e., the wind-saltation interaction) are usually conducted without consideration of the downwind air pressure gradient. However, in a wind tunnel with limited size, this gradient is required to maintain the movement of the saltation cloud. Attempts are made to investigate the effects of the downwind air pressure gradient on the wind-saltation interaction in a saltation boundary layer based on the experimental results from a wind tunnel with a relatively small cross-sectional area. The wind-saltation interaction is characterized by airborne stress, grain-borne stress, and the force exerted on the wind by the saltation cloud. Basic equations were developed for wind-saltation interactions without and with a downwind air pressure gradient. The results reveal that unacceptable values of negative grain-borne stress and negative force exerted on the wind by the saltation cloud are obtained if the downwind air pressure gradient is ignored. When this air pressure gradient is defined using the measured wind velocity profiles in the presence of saltation and the downwind air pressure gradient is taken into account, reasonable values for grain-borne stress and the force exerted on the wind by the saltation cloud are obtained. These results suggest that attention must be paid to the effects of downwind air pressure gradients when studying the wind-saltation interaction in a wind tunnel. Consideration of the downwind air pressure gradient, inertial forces, and other unidentified variables will provide a more thorough understanding of the interactions within a saltation boundary layer.展开更多
Swift perception of interaction forces is a crucial skill required for legged robots to ensure safe human-robot interaction and dynamic contact management.Proprioceptive-based interactive force is widely applied due t...Swift perception of interaction forces is a crucial skill required for legged robots to ensure safe human-robot interaction and dynamic contact management.Proprioceptive-based interactive force is widely applied due to its outstanding cross-platform versatility.In this paper,we present a novel interactive force observer,which possesses superior dynamic tracking performance.We propose a dynamic cutoff frequency configuration method to replace the conventional fixed cutoff frequency setting in the traditional momentum-based observer(MBO).This method achieves a balance between rapid tracking and noise suppression.Moreover,to mitigate the phase lag introduced by the low-pass filtering,we cascaded a Newton Predictor(NP)after MBO,which features simple computation and adaptability.The precision analysis of this method has been presented.We conducted extensive experiments on the point-foot biped robot BRAVER to validate the performance of the proposed algorithm in both simulation and physical prototype.展开更多
Understanding the regulatory mechanism of self-assembly processes is a necessity to modulate nanostructures and their properties. Herein, we have studied the mechanism of self-assembly in the C3 symmetric 1,3,5-benzen...Understanding the regulatory mechanism of self-assembly processes is a necessity to modulate nanostructures and their properties. Herein, we have studied the mechanism of self-assembly in the C3 symmetric 1,3,5-benzentricarboxylic amino acid methyl ester enantiomers(TPE) in a mixed solvent system consisting of methanol and water. The resultant chiral structure was used for chiral recognition. The formation of chiral structures from the synergistic effect of multiple noncovalent interaction forces was confirmed by various techniques. Molecular dynamics simulations were used to characterize the time evolution of TPE structure and properties in solution. The theoretical results were consistent with the experimental results. Furthermore, the chiral structure assembled by the building blocks of TPE molecules was highly stereoselective for diamine compounds.展开更多
In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices...In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices were used, interaction of force among pedestrians or between pedestrians and constructions was considered, and static floor fields in a multi-level exit environment were simplified into cabin and exit static floor fields. Compared with the traditional cellular automata model, the multi-grid model enhanced the continuity of the passengers'track and the precision of the boundary qualifications. The functions of the dislocation distribution of passengers as well as partial overlap of tracks due to congestion were realized. Furthermore, taking the typical cabin environment as an example, the two models were used to analyze passenger evacuation under the same conditions. It was found that the laws of passenger evacuation simulated by the two models are similar, while the simulation's authenticity and accuracy are enhanced by the multi-grid model.展开更多
A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test cas...A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test case is proposed, and a bogie with a layout used on some European locomotives such as SIEMENS El90 is studied. In this layout, an additional shaft on which brake disks are installed is used to transmit the braking torque to the wheelset through a single-stage gearbox. Using a mixed approach based on finite element techniques and statistical considerations, it is possible to evaluate an optimal layout for strain gauge positioning and to optimize the measurement system to diminish the effects of noise and disturbance. We also conducted preliminary evaluations on the precision and frequency response of the proposed system.展开更多
Based on the single-chain structure model of magnetorheological fluids, a formu la for the calculation of shear stresses was established. The interaction force of two magnetic particles in an infinite single-chain wa...Based on the single-chain structure model of magnetorheological fluids, a formu la for the calculation of shear stresses was established. The interaction force of two magnetic particles in an infinite single-chain was deduced using a new theoretical model which is founded on Ampere' molecular curr ent hypothesis, dipole theory and Ampere' law. Furthermore, the resultant force on a particle was then deduced by taking into account of the action caused by al l the other particles in the single-chain. A predictive formula for shear stres ses was made corresponding to the case that MR fluids were sheared by a small an gle and the calculating results fit well on the order with the yield stresses of the commercial MR fluids.展开更多
A theoretical model based on BCT lattice structure was developed. Resultant force in the BCT lattice structure was deduced, following the interaction force of two kinds of magnetic particles. According to empirical Fr...A theoretical model based on BCT lattice structure was developed. Resultant force in the BCT lattice structure was deduced, following the interaction force of two kinds of magnetic particles. According to empirical FroHlich-Kermelly law, the relationship between the magnetic induction and the magnetic field was discussed, and a predictive formula of shear stresses of the BCT lattice structure model was established for the case of small shear deformation. Compared with the experimental data for different particle volume fractions, the theoretical results of the shear stress indicate the effects of the saturation magnetization and the external magnetic field on the shear stress.展开更多
The paper analyze the polarization of study dielectric that produced field by dipole, medium field plays an important role in electromagnetic wave radiation. The electric field expression for electric dipole electric ...The paper analyze the polarization of study dielectric that produced field by dipole, medium field plays an important role in electromagnetic wave radiation. The electric field expression for electric dipole electric field distribution in ordinary textbooks only give a special direction, This paper introduces in detail the formula of the electric dipole in the space of an arbitrary point excitation electric field, and use computer sottware to simulate the distribution pattern of electric dipole, and gives some typical figures for reference.展开更多
There is an intrinsic traction force in the technological development which has various manifestations. It is from nonlinear interaction that occurs among the essential elements of technology and among the relevant te...There is an intrinsic traction force in the technological development which has various manifestations. It is from nonlinear interaction that occurs among the essential elements of technology and among the relevant technology. It is not the only decisive factor but to interweave with other tensions in the development of technology.展开更多
Microencapsulation phase change material slurry(MEPCMS) becomes a potential working fluid for cooling high energy density miniaturized components,thanks to the latent heat absorption of particles in the heat transfer ...Microencapsulation phase change material slurry(MEPCMS) becomes a potential working fluid for cooling high energy density miniaturized components,thanks to the latent heat absorption of particles in the heat transfer process.In this work,the Discrete Phase Model(DPM) based on the Euler-Lagrangian method is used to numerically investigate the convective heat transfer characteristics of MEPCMS flowing through a rectangular minichannel with constant heat flux.The results show that particles of MEPCMS are mainly subjected to drag force during the flow.Even so,they can migrate from the high-temperature region to the low-temperature region driven by the thermophoretic force,affecting the particle distribution and phase change process.Moreover,the Nux of the MEPCMS fluctuates due to particle phase change with varying specific heat capacities.Specifically,the value increases first,then decreases,and eventually increases again until it approaches the fully developed value of the pure base fluid as the particles gradually melt.Furthermore,the heat transfer performance of the MEPCMS is influenced by the combination of fluid inlet temperature fluid inlet velocity(v),and mass concentration(c_(m)) of MEPCM particles.The result shows that the maximum reduction of the maximum bottom wall temperature difference(ΔT_(w)) is 23.98% at T_(in)=293.15 K,v=0.15 m·s^(-1),c_(m)=10%.展开更多
In this work several relationships governing solid-fluid dynamic interaction forces were validated against experimental data for a single particle settling in a suspension of other smaller particles. It was observed t...In this work several relationships governing solid-fluid dynamic interaction forces were validated against experimental data for a single particle settling in a suspension of other smaller particles. It was observed that force relationships based on Lattice-Boltzmann simulations did not perform as well as other inter- action types tested. Nonetheless, it is apparent that, in the case of a suspension of different particle types, it is important that the correct choice is made as to how the contribution to the overall fluid-particle interaction force is split between buoyancy and drag. Experimental evidence clearly suggests that the "generalized" Archimedes' principle (where the foreign particle is considered to displace the whole suspension and not just the fluid) provides the best result.展开更多
The physicochemical properties of emulsions stabilized by surfactants depend on the film drainage and coalescence behavior between dispersed drops in a system.The combination of direct measurement of the interaction f...The physicochemical properties of emulsions stabilized by surfactants depend on the film drainage and coalescence behavior between dispersed drops in a system.The combination of direct measurement of the interaction forces between soft matters by AFM and the prediction of the film drainage process by the SRYL model helps to explore the dynamic behavior of droplets in the emulsion system.In this review,novel experimental designs and recent advances in experimental methodologies for solving interaction forces,interfacial deformation and drop coalescence are presented,which show the advantage of using AFM as a tool for probing colloidal interactions.The effects of hydrodynamic forces,both DLVO and non-DLVO forces,on the emulsion stabilization mechanism are discussed.In addition,an outlook is presented to discuss the further development of the relevant technology and the problems that need to be solved.展开更多
Fluid-particle systems as commonly encountered in chemical, metallurgical and petroleum industries are mostly polydisperse in nature. However, the relations used to describe fluid-particle interactions are originally ...Fluid-particle systems as commonly encountered in chemical, metallurgical and petroleum industries are mostly polydisperse in nature. However, the relations used to describe fluid-particle interactions are originally derived from monodisperse systems, with ad hoc modifications to account for polydispersity. In previous work it was shown that for bidisperse systems with moderate diameter ratios of 1:2 to 1:4, this approach leads to discrepancies, and a correction factor is needed. In this work we demonstrate that this correction factor also holds for more extreme diameter ratios of 1:5, 1:7 and 1: 10, although the force on the large particles is slightly overestimated when using the correction factor. The main origin of the correction is that the void surrounding the large particles becomes less in case ofa bidisperse mixture, as compared to a monodisperse system with the same volume fraction. We further investigated this discrepancy by calculating the volume per particle by means of Voronoi tessellation.展开更多
Exoskeleton robots and their control methods have been extensively developed to aid post-stroke rehabilitation. Most of the existing methods using linear controllers are designed for position control and are not suita...Exoskeleton robots and their control methods have been extensively developed to aid post-stroke rehabilitation. Most of the existing methods using linear controllers are designed for position control and are not suitable for human-machine interaction(HMI) force control, as the interaction system between the human body and exoskeleton is uncertain and nonlinear. We present an approach for HMI force control via model reference adaptive impedance control(MRAIC) to solve this problem in case of index finger exoskeleton control. First, a dynamic HMI model, which is based on a position control inner loop, is formulated. Second, the theoretical MRAC framework is implemented in the control system. Then, the adaptive controllers are designed according to the Lyapunov stability theory. To verify the performance of the proposed method, we compare it with a proportional-integral-derivative(PID) method in the time domain with real experiments and in the frequency domain with simulations. The results illustrate the effectiveness and robustness of the proposed method in solving the nonlinear HMI force control problem in hand exoskeleton.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62271238,22372074,62301240)Yunnan Fundamental Research Projects(Nos.202201AT070078,202201BE070001-009 and 202301AW070017)+2 种基金the Major Basic Research Project of Science and Technology of Yunnan(202302AG050007)Yunnan Innovation Team of Graphene Mechanism Research and Application Industrialization(202305AS350017)Graphene Application and Engineering Research Centre of Education Department of Yunnan Providence(KKPP202351001).
文摘Comprehensive Summary Kagome lattices have garnered significant attention due to their promising applications in catalysis,electronics,and magnetics.Although many efforts have been paid to the design and synthesis of Kagome lattices,there is a limited focus on constructing this lattice by multiple interaction forces.In this work,we employ 2,7-dibromo-carbazole as precursors to successfully fabricate the two-dimensional self-assembly Kagome lattices stabled by multiple interaction forces on Au(111)substrate.Using low-temperature scanning tunneling microscopy,non-contact atomic force microscopy and density functional theory calculation,we visualize and identify the four interaction forces within Kagome lattices:Au—N coordination bonds,Au—H hydrogen bonds,Br—Br halogen bonds,and Br—H hydrogen bonds,respectively.This study provides a basic understanding for designing and constructing more complex Kagome lattices.
文摘Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.
基金supported by the National Natural Science Foundation of China(No.51904240,51904239,52104268)the Natural Science Foundation of Shaanxi Province(No.2020JQ-752,2021JQ-571)+3 种基金the Postdoctoral Science Foundation of China(No.2019M653877XB)the Outstanding Youth Science Foundation of Xi’an University of Science and Technology(No.2019YQ3-08)the Huo Yingdong Education Foundation(No.171102)the 2019 Merit-based Science and Technology Project Foundation for Shannxi Overseas-educated Scholars(No.14).
文摘The flotation of diasporic bauxite is to separate diaspore(valuable mineral)from aluminosilicate minerals(gangue minerals,mainly including kaolinite,illite and pyrophyllite),and the microscopic interaction force between the two types of minerals and air bubbles determines the separation efficiency.In this paper,based on the extended Derjaguin-Landau-Verwey-Overbeek(DLVO)theory,the van der Waals,electrostatic and hydrophobic interaction between particles of the four minerals mentioned above and air bubbles in collectorless solution were calculated first,and then diaspore and kaolinite were taken as examples to analyze the influence of various factors such as electrolyte concentration,mineral particle size,air bubble size,collector type(dodecylamine hydrochloride(DAH)and sodium oleate(NaOL))and concentration,and pulp pH on the interactions between the particles of valuable mineral and gangue minerals and air bubbles.The results showed that the total extended DLVO interactions between the four minerals and air bubbles were repulsive in most cases in collectorless solution.The increase in electrolyte concentration reduced the interaction force or even changed the direction of the force under certain circumstances.The addition of DAH and NaOL can reduce the adhesion energy barrier of kaolinitebubble and diaspore-bubble respectively.Each type of minerals exhibited a specific interface interaction response with air bubbles in each collector with different pH values.The research results have theoretical guiding significance for the optimization and directional control of diasporic bauxite flotation conditions.
基金Project(50974134)supported by the National Natural Science Foundation of China
文摘The adsorption of dedecyltrimethylammoium chloride(DTAC) and hexadecyltrimethylammoium chloride(CTAC) on muscovite mica substrates was examined using atomic force microscopy(AFM). Adsorption morphology images and interaction forces of cationic surfactants at solid-solution interfaces were measured in tapping mode and Pico Force mode, respectively. The images demonstrated that the adsorbed structure was varied by a variety of surfactant concentrations. The adsorbed layer on mica was monolayer at first, and then became bilayer. A striped adsorbed structure was observed in a higher concentration of CTAC,which could not be found in any other concentrations of DTAC. For force measurements, the repulsive force was exponentially decreasing with the concentration increasing till a net attractive force appeared. A largest attractive force could be observed at a certain concentration, which was close to the point of charge neutralization. The results also showed a significant impact of hydrocarbon chain length on adsorption. An adsorption simulation was established to give a clear understanding of the interaction between cationic surfactants and mica.
基金the Knowledge-based Ship-designHyper-integrated Platform (KSHIP) of Ministry ofEducation, China
文摘The parallel processing based on the free running model test was adopted to predict the interaction force coefficients (flow straightening coefficient and wake fraction) of ship maneuvering. And the multipopulation genetic algorithm (MPGA) based on real coding that can contemporarily process the data of free running model and simulation of ship maneuvering was applied to solve the problem. Accordingly the optimal individual was obtained using the method of genetic algorithm. The parallel processing of multiopulation solved the prematurity in the identification for single population, meanwhile, the parallel processing of the data of ship maneuvering (turning motion and zigzag motion) is an attempt to solve the coefficient drift problem. In order to validate the method, the interaction force coefficients were verified by the procedure and these coefficients measured were compared with those ones identified. The maximum error is less than 5%, and the identification is an effective method.
文摘In the past three decades, numerous papers have bee n publishedon the dynamics of rotating discs. most of them have focused on the ma thematical modeling and solution for a specific interactive force, such as a n elastic force produced by a stationary spring or a damping force from a statio nary viscous damper. Few of them have looked into the instability mechanisms. This study has established a generalized approach to investigate the instability mechanisms that are involved in the interaction between a rotating and an arbit rary interactive force. An energy flux equation has been developed, which leads to the following conclusions: (1) The possibility of the occurrence of instability due to any interactive forc es may be identified based on the energy flux analysis, even without solving equ ations. (2) Instabilities will occur if the interactive forces are in phase with the vel ocity measured at the interactive point from the coordinates rotating with the d isc. (3) Instability cannot occur when a rotating disc is subjected to a stationary c onstant lateral force, but a stationary harmonic lateral force, a moving constan t lateral force or a moving harmonic lateral force may cause instability. (4) Conservative forces may only cause coupling instability associated with two modes, and non-conservative forces usually cause terminal instability where onl y one mode is involved.
基金the funding received from the Natural Science Foundation of China (40638038)
文摘Studies of interactions between wind and saltating particles (i.e., the wind-saltation interaction) are usually conducted without consideration of the downwind air pressure gradient. However, in a wind tunnel with limited size, this gradient is required to maintain the movement of the saltation cloud. Attempts are made to investigate the effects of the downwind air pressure gradient on the wind-saltation interaction in a saltation boundary layer based on the experimental results from a wind tunnel with a relatively small cross-sectional area. The wind-saltation interaction is characterized by airborne stress, grain-borne stress, and the force exerted on the wind by the saltation cloud. Basic equations were developed for wind-saltation interactions without and with a downwind air pressure gradient. The results reveal that unacceptable values of negative grain-borne stress and negative force exerted on the wind by the saltation cloud are obtained if the downwind air pressure gradient is ignored. When this air pressure gradient is defined using the measured wind velocity profiles in the presence of saltation and the downwind air pressure gradient is taken into account, reasonable values for grain-borne stress and the force exerted on the wind by the saltation cloud are obtained. These results suggest that attention must be paid to the effects of downwind air pressure gradients when studying the wind-saltation interaction in a wind tunnel. Consideration of the downwind air pressure gradient, inertial forces, and other unidentified variables will provide a more thorough understanding of the interactions within a saltation boundary layer.
基金supported in part by the National Key Research and Development Program of China(2022YFB4701504)the National Natural Science Foundation of China(62373223 and 62203268)Youth Innovation and Technology Support Plan for Higher Education Institutions in Shandong Province(2023KJ029).
文摘Swift perception of interaction forces is a crucial skill required for legged robots to ensure safe human-robot interaction and dynamic contact management.Proprioceptive-based interactive force is widely applied due to its outstanding cross-platform versatility.In this paper,we present a novel interactive force observer,which possesses superior dynamic tracking performance.We propose a dynamic cutoff frequency configuration method to replace the conventional fixed cutoff frequency setting in the traditional momentum-based observer(MBO).This method achieves a balance between rapid tracking and noise suppression.Moreover,to mitigate the phase lag introduced by the low-pass filtering,we cascaded a Newton Predictor(NP)after MBO,which features simple computation and adaptability.The precision analysis of this method has been presented.We conducted extensive experiments on the point-foot biped robot BRAVER to validate the performance of the proposed algorithm in both simulation and physical prototype.
基金supported by the National Natural Science Foundation of China(No.21962003)the Natural Science Foundation of Jiangsu Province(No.BK20190056)the“Fundamental Research Funds for the Central Universities”(No.021514380014)。
文摘Understanding the regulatory mechanism of self-assembly processes is a necessity to modulate nanostructures and their properties. Herein, we have studied the mechanism of self-assembly in the C3 symmetric 1,3,5-benzentricarboxylic amino acid methyl ester enantiomers(TPE) in a mixed solvent system consisting of methanol and water. The resultant chiral structure was used for chiral recognition. The formation of chiral structures from the synergistic effect of multiple noncovalent interaction forces was confirmed by various techniques. Molecular dynamics simulations were used to characterize the time evolution of TPE structure and properties in solution. The theoretical results were consistent with the experimental results. Furthermore, the chiral structure assembled by the building blocks of TPE molecules was highly stereoselective for diamine compounds.
基金Supported by the Ph.D Programs Foundation of Ministryof Education of China under Grant No.201023041108the Fundamental Research Funds for the Central Universities under Grant No.61004008
文摘In order to enhance the authenticity and accuracy of passenger evacuation simulation in ships, a new multi-grid model was proposed on the basis of a traditional cellular automata model. In the new model finer lattices were used, interaction of force among pedestrians or between pedestrians and constructions was considered, and static floor fields in a multi-level exit environment were simplified into cabin and exit static floor fields. Compared with the traditional cellular automata model, the multi-grid model enhanced the continuity of the passengers'track and the precision of the boundary qualifications. The functions of the dislocation distribution of passengers as well as partial overlap of tracks due to congestion were realized. Furthermore, taking the typical cabin environment as an example, the two models were used to analyze passenger evacuation under the same conditions. It was found that the laws of passenger evacuation simulated by the two models are similar, while the simulation's authenticity and accuracy are enhanced by the multi-grid model.
文摘A comprehension of railway dynamic behavior implies the measure of wheel-rail contact forces which are affected by disturbances and errors that are often difficult to be quantified. In this study, a benchmark test case is proposed, and a bogie with a layout used on some European locomotives such as SIEMENS El90 is studied. In this layout, an additional shaft on which brake disks are installed is used to transmit the braking torque to the wheelset through a single-stage gearbox. Using a mixed approach based on finite element techniques and statistical considerations, it is possible to evaluate an optimal layout for strain gauge positioning and to optimize the measurement system to diminish the effects of noise and disturbance. We also conducted preliminary evaluations on the precision and frequency response of the proposed system.
基金Funded by the"863"Hi tech Research and Development Program of China(No.2001AA33P020)
文摘Based on the single-chain structure model of magnetorheological fluids, a formu la for the calculation of shear stresses was established. The interaction force of two magnetic particles in an infinite single-chain was deduced using a new theoretical model which is founded on Ampere' molecular curr ent hypothesis, dipole theory and Ampere' law. Furthermore, the resultant force on a particle was then deduced by taking into account of the action caused by al l the other particles in the single-chain. A predictive formula for shear stres ses was made corresponding to the case that MR fluids were sheared by a small an gle and the calculating results fit well on the order with the yield stresses of the commercial MR fluids.
基金the Ministry of Education of China(No.NCET-04-0725 and PCSIRT)
文摘A theoretical model based on BCT lattice structure was developed. Resultant force in the BCT lattice structure was deduced, following the interaction force of two kinds of magnetic particles. According to empirical FroHlich-Kermelly law, the relationship between the magnetic induction and the magnetic field was discussed, and a predictive formula of shear stresses of the BCT lattice structure model was established for the case of small shear deformation. Compared with the experimental data for different particle volume fractions, the theoretical results of the shear stress indicate the effects of the saturation magnetization and the external magnetic field on the shear stress.
文摘The paper analyze the polarization of study dielectric that produced field by dipole, medium field plays an important role in electromagnetic wave radiation. The electric field expression for electric dipole electric field distribution in ordinary textbooks only give a special direction, This paper introduces in detail the formula of the electric dipole in the space of an arbitrary point excitation electric field, and use computer sottware to simulate the distribution pattern of electric dipole, and gives some typical figures for reference.
文摘There is an intrinsic traction force in the technological development which has various manifestations. It is from nonlinear interaction that occurs among the essential elements of technology and among the relevant technology. It is not the only decisive factor but to interweave with other tensions in the development of technology.
基金the financial support of the National Natural Science Foundation of China (No.U20A20299)the Natural Science Foundation of Guangdong Province (No.2019A1515012119)。
文摘Microencapsulation phase change material slurry(MEPCMS) becomes a potential working fluid for cooling high energy density miniaturized components,thanks to the latent heat absorption of particles in the heat transfer process.In this work,the Discrete Phase Model(DPM) based on the Euler-Lagrangian method is used to numerically investigate the convective heat transfer characteristics of MEPCMS flowing through a rectangular minichannel with constant heat flux.The results show that particles of MEPCMS are mainly subjected to drag force during the flow.Even so,they can migrate from the high-temperature region to the low-temperature region driven by the thermophoretic force,affecting the particle distribution and phase change process.Moreover,the Nux of the MEPCMS fluctuates due to particle phase change with varying specific heat capacities.Specifically,the value increases first,then decreases,and eventually increases again until it approaches the fully developed value of the pure base fluid as the particles gradually melt.Furthermore,the heat transfer performance of the MEPCMS is influenced by the combination of fluid inlet temperature fluid inlet velocity(v),and mass concentration(c_(m)) of MEPCM particles.The result shows that the maximum reduction of the maximum bottom wall temperature difference(ΔT_(w)) is 23.98% at T_(in)=293.15 K,v=0.15 m·s^(-1),c_(m)=10%.
文摘In this work several relationships governing solid-fluid dynamic interaction forces were validated against experimental data for a single particle settling in a suspension of other smaller particles. It was observed that force relationships based on Lattice-Boltzmann simulations did not perform as well as other inter- action types tested. Nonetheless, it is apparent that, in the case of a suspension of different particle types, it is important that the correct choice is made as to how the contribution to the overall fluid-particle interaction force is split between buoyancy and drag. Experimental evidence clearly suggests that the "generalized" Archimedes' principle (where the foreign particle is considered to displace the whole suspension and not just the fluid) provides the best result.
基金the National Natural Science Foundation of China(Grant Nos.51774303,51422406&51534007)the National Science and Technology Specific Project(Grant No.2016ZX05028004-001)+1 种基金the Henry Fok Foundation(Grant No.142021)the Science Foundation of China University of Petroleum,Beijing(Grant No.C201602)for providing financial support for this research
文摘The physicochemical properties of emulsions stabilized by surfactants depend on the film drainage and coalescence behavior between dispersed drops in a system.The combination of direct measurement of the interaction forces between soft matters by AFM and the prediction of the film drainage process by the SRYL model helps to explore the dynamic behavior of droplets in the emulsion system.In this review,novel experimental designs and recent advances in experimental methodologies for solving interaction forces,interfacial deformation and drop coalescence are presented,which show the advantage of using AFM as a tool for probing colloidal interactions.The effects of hydrodynamic forces,both DLVO and non-DLVO forces,on the emulsion stabilization mechanism are discussed.In addition,an outlook is presented to discuss the further development of the relevant technology and the problems that need to be solved.
基金funded by the Nederlandse Organisatievoor Wetenschappelijk Onderzoek(Netherlands Organization forScientific Research,NWO)
文摘Fluid-particle systems as commonly encountered in chemical, metallurgical and petroleum industries are mostly polydisperse in nature. However, the relations used to describe fluid-particle interactions are originally derived from monodisperse systems, with ad hoc modifications to account for polydispersity. In previous work it was shown that for bidisperse systems with moderate diameter ratios of 1:2 to 1:4, this approach leads to discrepancies, and a correction factor is needed. In this work we demonstrate that this correction factor also holds for more extreme diameter ratios of 1:5, 1:7 and 1: 10, although the force on the large particles is slightly overestimated when using the correction factor. The main origin of the correction is that the void surrounding the large particles becomes less in case ofa bidisperse mixture, as compared to a monodisperse system with the same volume fraction. We further investigated this discrepancy by calculating the volume per particle by means of Voronoi tessellation.
基金Project supported by the National Natural Science Foundation of China(No.51221004)
文摘Exoskeleton robots and their control methods have been extensively developed to aid post-stroke rehabilitation. Most of the existing methods using linear controllers are designed for position control and are not suitable for human-machine interaction(HMI) force control, as the interaction system between the human body and exoskeleton is uncertain and nonlinear. We present an approach for HMI force control via model reference adaptive impedance control(MRAIC) to solve this problem in case of index finger exoskeleton control. First, a dynamic HMI model, which is based on a position control inner loop, is formulated. Second, the theoretical MRAC framework is implemented in the control system. Then, the adaptive controllers are designed according to the Lyapunov stability theory. To verify the performance of the proposed method, we compare it with a proportional-integral-derivative(PID) method in the time domain with real experiments and in the frequency domain with simulations. The results illustrate the effectiveness and robustness of the proposed method in solving the nonlinear HMI force control problem in hand exoskeleton.