An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evan...An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evans shear-lag model was adopted to analyse the micro-stress field of the damaged composites.The critical matrix strain energy criterion,which presupposes the existence of an ultimate or critical matrix strain energy with matrix,was obtained to simulate the matrix multicracking evolution of CMCs.With the increase of the applied stress,the matrix multicracking and fiber/matrix interface debonding occurred to dissipate the additional energy entered into the composites.The fiber/matrix interface debonded length under matrix multicracking evolution was obtained by treating the interface debonding as a particular crack propagation problem.The conditions for no-debonding and debonding during the evolution of matrix multicracking were discussed in terms of two interfacial properties,i.e.,the interface shear stress and interface debonded toughness.When the fiber/matrix interface was bonded,the matrix multicracking evolution was much more intense compared with the interface debonding;when the fiber/matrix interface was debonded,the matrix crack density increased with the increasing of interface shear stress and interface debonded energy.The theoretical results were compared with experimental data of unidirectional SiC/CAS(calcium alumina silicate),SiC/CAS-Ⅱand SiC/borosilicate composites.展开更多
Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding sta...Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding status plays an essential role in guaranteeing the structural performance of SCCS.Accordingly,efficient non-destructive testing(NDT)on interfacial debondings in SCCS has become a prominent research area.Multi-channel analysis of surface waves(MASW)has been validated as an effective NDT technique for interfacial debonding detection for SCCS.However,the feasibility of MASW must be validated using experimental measurements.This study establishes a high-frequency data synchronous acquisition system with 32 channels to perform comparative verification experiments in depth.First,the current sensing approaches for high-frequency vibration and stress waves are summarized.Secondly,three types of contact sensors,namely,piezoelectric lead-zirconate-titanate(PZT)patches,accelerometers,and ultrasonic transducers,are selected for MASW measurement.Then,the selection and optimization of the force hammer head are performed.Comparative experiments are carried out for the optimal selection of ultrasonic transducers,PZT patches,and accelerometers for MASW measurement.In addition,the influence of different pasting methods on the output signal of the sensor array is discussed.Experimental results indicate that optimized PZT patches,acceleration sensors,and ultrasonic transducers can provide efficient data acquisition for MASW-based non-destructive experiments.The research findings in this study lay a solid foundation for analyzing the recognition accuracy of contact MASW measurement using different sensor arrays.展开更多
Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its mi...Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its microscopic computational model was established. The interface mechanical response was modeled by the bilinear cohesive zone model. The effects of interface properties and particle sizes on the macroscopic mechanical behavior were investigated. Numerical simulation of debonding damage evolution of composite propellant under finite deformation was carried out. The debonding damage nucleation, propagation mechanism and non-uniform distribution of microscopic stress-strain fields were discussed. The results show that the finite element simulation method based on microstructure model can effectively predict the trend of macroscopic mechanical behavior and particle/matrix debonding evolution process. It can be used for damage simulation and failure assessment of composite propellants.展开更多
The analysis of the dynamic stress on the particle-matrix interface in particle-reinforced composite for the reason that this stress may lead to the microvoids' nucleation due to the interfacial debonding were stu...The analysis of the dynamic stress on the particle-matrix interface in particle-reinforced composite for the reason that this stress may lead to the microvoids' nucleation due to the interfacial debonding were studied. For simplification, a sphere containing a concentric rigid spherical particle was taken as the representative volume element (RVE). The Laplace transformation was used to derive the basic equations, and the analytical solutions were obtained by means of Hankel transformation. Moreover, the influences of the inertia and viscosity on the debonding damage were also discussed.展开更多
Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of ne...Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder.展开更多
The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the ...The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data.展开更多
The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation...The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.展开更多
This paper investigates the dynamic behavior of a buried rigid elliptic cylinder partially debonded from surrounding matrix under the action of anti-plane shear waves (SH waves). The debonding region is modeled as an ...This paper investigates the dynamic behavior of a buried rigid elliptic cylinder partially debonded from surrounding matrix under the action of anti-plane shear waves (SH waves). The debonding region is modeled as an elliptic arc-shaped interface crack with non-contacting faces. By using the wave function (Mathieu function) expansion method and introducing the dislocation density function as an unknown variable, the problem is reduced to a singular integral equation which is solved numerically to calculate the near and far fields of the problem. The resonance of the structure and the effects of various parameters on the resonance are discussed.展开更多
The paper describes use of self-consistent finite element method (SCFEM) for predicting effective properties of fiber composite with partially debonded interface. The effective longitudinal Young's modulus and she...The paper describes use of self-consistent finite element method (SCFEM) for predicting effective properties of fiber composite with partially debonded interface. The effective longitudinal Young's modulus and shear modulus for unidirectional fiber reinforced composites with fiber-end cracks are calculated. Numerical results show that the effective properties are considerably influenced by the fiber-end cracks. The effects of microstructural parameters, such as fiber volume fraction, modulus ratio of the constituents and fiber aspect, on the effective properties of the composites were discussed.展开更多
The strain distributions near the interface when the elbow steel fiber is pulled out from the half-mould concrete matrix are directly measured using a combined method of single fiber pull-out test and digital image co...The strain distributions near the interface when the elbow steel fiber is pulled out from the half-mould concrete matrix are directly measured using a combined method of single fiber pull-out test and digital image correlation. Meanwhile, the real-time processes of the bonding, debonding and sliding at the interface are observed. The micro-mechanism of the strain localization in the failure process of interface when debonding occurs and the strengthening mechanism at the imbedded fiber are discussed. The experimental results show that the meso-scale strain localization gives rise to the localization of shear damage near the fiber interface. This strain localization characterized by the debonding process near the interface occurs, develops and moves gradually at an apparently regular interval. At the elbow part of the imbedded fiber, the peak value of the shearing stress occurs. But the primary debonding does not occur at this place because the strength of the shear damage is increased at the local area of the elbow part in the concrete, displaying an apparent reinforced effect at the end of the fiber.展开更多
A multiscale method for simulating the dynamic response of ceramic matrix composite (CMC) with matrix cracks is developed. At the global level, the finite element method is employed to simulate the dynamic response ...A multiscale method for simulating the dynamic response of ceramic matrix composite (CMC) with matrix cracks is developed. At the global level, the finite element method is employed to simulate the dynamic response of a CMC beam. While at the local level, the multiscale mechanical method is used to estimate the stress/strain response of the material. A distributed computing system is developed to speed up the simulation. The simulation of dynamic response of a Nicalon/CAS-II beam being subjected to harmonic loading is performed as a numerical example. The results show that both the stress/strain responses under tension and compressive loading are nonlinear. These conditions result in a different response compared with that of elastic beam, such as: 1) the displacement response is not symmetric about the axis of time; 2) in the condition of small external load, the response at first order natural frequency is limited within a finite range; 3) decreasing the matrix crack space will increase the displace- ment response of the beam.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20140813)Postdoctoral Science Foundation of China(Grant No.2012M511274)Introduction of Talents Scientific Research Foundation of Nanjing University of Aeronautics and Astronautics(Grant No.56YAH12034)
文摘An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evans shear-lag model was adopted to analyse the micro-stress field of the damaged composites.The critical matrix strain energy criterion,which presupposes the existence of an ultimate or critical matrix strain energy with matrix,was obtained to simulate the matrix multicracking evolution of CMCs.With the increase of the applied stress,the matrix multicracking and fiber/matrix interface debonding occurred to dissipate the additional energy entered into the composites.The fiber/matrix interface debonded length under matrix multicracking evolution was obtained by treating the interface debonding as a particular crack propagation problem.The conditions for no-debonding and debonding during the evolution of matrix multicracking were discussed in terms of two interfacial properties,i.e.,the interface shear stress and interface debonded toughness.When the fiber/matrix interface was bonded,the matrix multicracking evolution was much more intense compared with the interface debonding;when the fiber/matrix interface was debonded,the matrix crack density increased with the increasing of interface shear stress and interface debonded energy.The theoretical results were compared with experimental data of unidirectional SiC/CAS(calcium alumina silicate),SiC/CAS-Ⅱand SiC/borosilicate composites.
基金National Natural Science Foundation of China under Grant (Nos.52192662,52020105005,51908320)the Beijing Nova Program under Grant No.20220484012+1 种基金the Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities,FRF-IDRY-22-013)the Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province (Huaqiao University,IIM-01-05)。
文摘Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding status plays an essential role in guaranteeing the structural performance of SCCS.Accordingly,efficient non-destructive testing(NDT)on interfacial debondings in SCCS has become a prominent research area.Multi-channel analysis of surface waves(MASW)has been validated as an effective NDT technique for interfacial debonding detection for SCCS.However,the feasibility of MASW must be validated using experimental measurements.This study establishes a high-frequency data synchronous acquisition system with 32 channels to perform comparative verification experiments in depth.First,the current sensing approaches for high-frequency vibration and stress waves are summarized.Secondly,three types of contact sensors,namely,piezoelectric lead-zirconate-titanate(PZT)patches,accelerometers,and ultrasonic transducers,are selected for MASW measurement.Then,the selection and optimization of the force hammer head are performed.Comparative experiments are carried out for the optimal selection of ultrasonic transducers,PZT patches,and accelerometers for MASW measurement.In addition,the influence of different pasting methods on the output signal of the sensor array is discussed.Experimental results indicate that optimized PZT patches,acceleration sensors,and ultrasonic transducers can provide efficient data acquisition for MASW-based non-destructive experiments.The research findings in this study lay a solid foundation for analyzing the recognition accuracy of contact MASW measurement using different sensor arrays.
基金Sponsored by the General Armament Department Advanced Research Project (20101019)
文摘Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its microscopic computational model was established. The interface mechanical response was modeled by the bilinear cohesive zone model. The effects of interface properties and particle sizes on the macroscopic mechanical behavior were investigated. Numerical simulation of debonding damage evolution of composite propellant under finite deformation was carried out. The debonding damage nucleation, propagation mechanism and non-uniform distribution of microscopic stress-strain fields were discussed. The results show that the finite element simulation method based on microstructure model can effectively predict the trend of macroscopic mechanical behavior and particle/matrix debonding evolution process. It can be used for damage simulation and failure assessment of composite propellants.
文摘The analysis of the dynamic stress on the particle-matrix interface in particle-reinforced composite for the reason that this stress may lead to the microvoids' nucleation due to the interfacial debonding were studied. For simplification, a sphere containing a concentric rigid spherical particle was taken as the representative volume element (RVE). The Laplace transformation was used to derive the basic equations, and the analytical solutions were obtained by means of Hankel transformation. Moreover, the influences of the inertia and viscosity on the debonding damage were also discussed.
基金National Natural Science Foundation of China(U22B20131)for supporting this project.
文摘Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder.
基金Supported by the National Natural Science Foundation of China(51075204)the Graduate Innovation Foundation of Jiangsu Province(CX08B-133Z)the Doctoral Innovation Foundation of Nanjing University of Aeronautics and Astronautics(BCXJ08-05)~~
文摘The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data.
基金the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2018-ZX04044001-008)the National Natural Science Foundation of China(No.52075328).
文摘The hot forming behavior,failure mechanism,and microstructure evolution of in-situ TiB_(2)particle-reinforced 7075 aluminum matrix composite were investigated by isothermal compression test under different deformation conditions of deformation temperatures of 300−450℃ and strain rates of 0.001^(−1)s^(−1).The results demonstrate that the failure behavior of the composite exhibits both particle fracture and interface debonding at low temperature and high strain rate,and dimple rupture of the matrix at high temperature and low strain rate.Full dynamic recrystallization,which improves the composite formability,occurs under conditions of high temperature(450℃)and low strain rate(0.001 s^(−1));the grain size of the matrix after hot compression was significantly smaller than that of traditional 7075Al and ex-situ particle reinforced 7075Al matrix composite.Based on the flow stress curves,a constitutive model describing the relationship of the flow stress,true strain,strain rate and temperature was proposed.Furthermore,the processing maps based on both the dynamic material modeling(DMM)and modified DMM(MDMM)were established to analyze flow instability domain of the composite and optimize hot forming processing parameters.The optimum processing domain was determined at temperatures of 425−450℃ and strain rates of 0.001−0.01 s^(−1),in which the fine grain microstructure can be gained and particle crack and interface debonding can be avoided.
文摘This paper investigates the dynamic behavior of a buried rigid elliptic cylinder partially debonded from surrounding matrix under the action of anti-plane shear waves (SH waves). The debonding region is modeled as an elliptic arc-shaped interface crack with non-contacting faces. By using the wave function (Mathieu function) expansion method and introducing the dislocation density function as an unknown variable, the problem is reduced to a singular integral equation which is solved numerically to calculate the near and far fields of the problem. The resonance of the structure and the effects of various parameters on the resonance are discussed.
基金The project supported by the National Natural Science Foundation of China
文摘The paper describes use of self-consistent finite element method (SCFEM) for predicting effective properties of fiber composite with partially debonded interface. The effective longitudinal Young's modulus and shear modulus for unidirectional fiber reinforced composites with fiber-end cracks are calculated. Numerical results show that the effective properties are considerably influenced by the fiber-end cracks. The effects of microstructural parameters, such as fiber volume fraction, modulus ratio of the constituents and fiber aspect, on the effective properties of the composites were discussed.
基金the National Natural Science Foundation of China(Nos.10972097,11062007)Specialized Research Fund for the Doctoral Programof Higher Education of China(No.20101514120005)the Inner Mongolia Natural Science Foundation of China(No.2010MS0703)
文摘The strain distributions near the interface when the elbow steel fiber is pulled out from the half-mould concrete matrix are directly measured using a combined method of single fiber pull-out test and digital image correlation. Meanwhile, the real-time processes of the bonding, debonding and sliding at the interface are observed. The micro-mechanism of the strain localization in the failure process of interface when debonding occurs and the strengthening mechanism at the imbedded fiber are discussed. The experimental results show that the meso-scale strain localization gives rise to the localization of shear damage near the fiber interface. This strain localization characterized by the debonding process near the interface occurs, develops and moves gradually at an apparently regular interval. At the elbow part of the imbedded fiber, the peak value of the shearing stress occurs. But the primary debonding does not occur at this place because the strength of the shear damage is increased at the local area of the elbow part in the concrete, displaying an apparent reinforced effect at the end of the fiber.
基金Jiangsu Postdoctoral Science Foundation (0902013C)Innovation Foundation for Young Teachers in University of Aeronautics and Astronautics (Y1024-054)
文摘A multiscale method for simulating the dynamic response of ceramic matrix composite (CMC) with matrix cracks is developed. At the global level, the finite element method is employed to simulate the dynamic response of a CMC beam. While at the local level, the multiscale mechanical method is used to estimate the stress/strain response of the material. A distributed computing system is developed to speed up the simulation. The simulation of dynamic response of a Nicalon/CAS-II beam being subjected to harmonic loading is performed as a numerical example. The results show that both the stress/strain responses under tension and compressive loading are nonlinear. These conditions result in a different response compared with that of elastic beam, such as: 1) the displacement response is not symmetric about the axis of time; 2) in the condition of small external load, the response at first order natural frequency is limited within a finite range; 3) decreasing the matrix crack space will increase the displace- ment response of the beam.