The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are a...The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.展开更多
For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of inte...For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of interface mechanics for composite materials,the interface stresses of the vertical and horizontal joints,which are the two primary joints in the CJRM under triaxial compression,are studied,and their mathematical expressions are derived based on the superposition principle.Based on the obtained interface stresses of the vertical and horizontal joints in the CJRM,the crack initiation of the joint interface in the CJRM is studied using the maximum circumferential stress theory in fracture mechanics.Moreover,based on this investigation,the fracture behaviors of CJRM are analyzed.According to the results of similar material physical model tests for the CJRM,the theoretical study is verified.Finally,the influence of the mechanical parameters of the CJRM on the joint interface stress is discussed comprehensively.展开更多
This paper investigates the interface mechanical behavior of flexible piles with L_p/D>10 under lateral load and an overturning moment in monotonic loading conditions.To modify the beam-on-Winkler-foundation model ...This paper investigates the interface mechanical behavior of flexible piles with L_p/D>10 under lateral load and an overturning moment in monotonic loading conditions.To modify the beam-on-Winkler-foundation model of piles in offshore wind farms,the energy-based variational method is used.The soil is treated as a multi-layered elastic continuum with the assumption of three-dimensional displacements,the pile modeled as an Euler-Bernoulli beam.A series of cases using MATLAB programming was conducted to investigate the simplified equations of initial stiffness.The results indicated that the interaction between soil layers and the applied force position should be taken into account in calculating the horizontal soil resistance.Additionally,the distributed moment had a limiting effect on the lateral capacity of a flexible pile.Moreover,to account for the more realistic conditions of OWT systems,field data from the Donghai Bridge offshore wind farm were used.展开更多
Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the labo...Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the laboratory. The mechanical properties of the soil-root with branches interface is determined through the pullout-force and root-slippage curve (F-S curve). The results of investigating 24 Pinus tabulaeformis single roots and 55 P. tabulaeformis roots with branches demonstrated three kinds of pullout test failures: breakage failure on branching root, breakage failure on branching node, and pullout failure. The branch angle had a remarkable effect on the failure mode of the roots with branches: the maximum pullout force increased with the sum of the branch diameters and the branch angle. The peak slippage and the initial force had a positive correlation with the sum of the branch diameter. The sig- nificance test of correlation between branch angle and the initial force, however, showed they had no correlation. Branch angle and branch root diameter affect the anchorage properties between root system and soil. Therefore, it is important to investigate the anchorage mechanics of the roots with branches to understand the mechanism of root reinforcement and anchorage.展开更多
A tunnel-type anchorage(TTA)is one of the main components in suspension bridges:the bearing mechanism is a key problem.Investigating the deformation characteristics,development law,and failure phenomenon of a TTA unde...A tunnel-type anchorage(TTA)is one of the main components in suspension bridges:the bearing mechanism is a key problem.Investigating the deformation characteristics,development law,and failure phenomenon of a TTA under load can provide the theoretical basis for a robust design.Utilizing the TTA of the Jinsha River suspension bridge at Lijiang Shangri-La railway as a prototype,a laboratory model test of the TTA was carried out for three different contact conditions between the anchorage body and the surrounding rock.The stress and deformation distribution law of the anchorage body and its surrounding rock were studied,and the ultimate bearing capacity and failure mode of the TTA were analyzed.The test results show that the compressive stress level is highest at the rear part of the anchorage body.Moving away from the rear portion of the body,the stress decays in a negative exponential function.Based on the load transfer curve,the calculation formula for the shear stress on the contact surface between the anchorage body and the surrounding rock was derived,which shows that the distribution of the shear stress along the axial direction of the anchorage body is not uniform.The distance from the maximum value to the loading surface is approximately 1/3 of the length of the anchorage body,and the stress decreases as the distance from the loading surface increases.Furthermore,the contact condition between the anchorage body and surrounding rock has a great influence on the bearing capacity of the TTA.The increase in the anti-skid tooth ridge and radial anchor bolt can improve the cooperative working capacity of the anchorage body and the surrounding rock,which is approximately 50%higher than that of the flat contact condition.The main function of the anchor bolt is to increase the overall rigidity of the TTA.The contact condition between the anchorage body and the surrounding rock will lead to a change in the failure mode of the TTA.With an increase in the degree of contact,the failure mode will change from shear sliding along the interface to trumpet-shaped inverted cone-shaped failure extending into the surrounding rock.展开更多
To investigate the dynamic behavior and energy dissipation of the rock−concrete interface,dynamic splitting tests on bi-material discs were conducted by using the split Hopkinson pressure bar.The test results reveal t...To investigate the dynamic behavior and energy dissipation of the rock−concrete interface,dynamic splitting tests on bi-material discs were conducted by using the split Hopkinson pressure bar.The test results reveal that with the change of the interface inclination angles(θ),the influence of interface groove width on the bearing capacity of specimens also varies.Whenθincreases from 0°to 30°,the bearing capacity of the specimen increases first and then decreases with the rise of the interface groove width;the optimal groove width on the rock surface in this range of interface inclination angles is 5 mm.Whenθincreases from 45°to 90°,the bearing capacity of the specimen has no obvious change.Moreover,whenθincreases from 0°to 45°,the dissipated energy of the specimens rises obviously at first and then tends to be stable as the width of the interface groove increases.展开更多
Bio-nano interfaces between biological materials and functional nanodevices are of vital importance in relevant energy and information exchange processes, which thus demand an in-depth understanding. One of the critic...Bio-nano interfaces between biological materials and functional nanodevices are of vital importance in relevant energy and information exchange processes, which thus demand an in-depth understanding. One of the critical issues from the application viewpoint is the stability of the bio-nano hybrid under mechanical perturbations. In this work we explore mechanical responses of the interface between lipid bilayer and graphene under hydrostatic coating provides remarkable resistance to the pressure or indentation loads, We find that graphene loads, and the intercalated water layer offers additional protection. These findings are discussed based on molecular dynamics simulation results that elucidate the molecular level mechanisms, which provide a basis for the rational design of bionanotechnology- enabled aoolications such as biomedical devices and nanotheraoeutics.展开更多
This paper developed a hot Pressing aided exothermic synthesis (HPES) technique. to fabricate NiAl matrix composites containing 0 and 20 v.% TiB_2 particles. The conversion to the product was complete. and TiB_2 parti...This paper developed a hot Pressing aided exothermic synthesis (HPES) technique. to fabricate NiAl matrix composites containing 0 and 20 v.% TiB_2 particles. The conversion to the product was complete. and TiB_2 particles in the matrix were uniformly dispersed. The inter faces between nail and TiB_2 were atomically flat. sharp and free from any inter facial phases in most cases. In some cases. however. thin inter facial amorphous layers existed at NiAl/ TiB_2 interfaces. In addition, the microstructure and inter faces were highly thermal stable. In all processing states. the yield strengths at room temperature or at 1000℃ of the composite were approximately three times as strong as that of the unrein forced NiAl. The ambient fracture toughness of the composite was also superior to monolithic NiAl.展开更多
Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many prob...Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many problems have not been solved, such as the steel tube reinforced concrete pile composite interracial force learn performance research is still in the initial stage. In this paper, we mainly discuss the research methods of several interface mechanical properties and propose the possibility of studying the mechanical properties of the steel tube reinforced concrete composite pile by using the principle of ultrasonic speckle.展开更多
Intermetallic compounds produced in laser additive manufacturing are the main factors restricting the joint performance of dissimilar metals.To solve this problem,a dual molten pool interface interlocking mechanism wa...Intermetallic compounds produced in laser additive manufacturing are the main factors restricting the joint performance of dissimilar metals.To solve this problem,a dual molten pool interface interlocking mechanism was proposed in this study.Based on a dual molten pool interface interlocking mechanism,the dissimilar metals,aluminum alloy and stainless steel,were produced as single-layer and multilayer samples,using the wire-feed laser additive manufacturing directed energy deposition technology.The preferred parameters for the dual molten pool interface interlocking mechanism process of the dissimilar metals,aluminum alloy and stainless steel,were obtained.The matching relationship between the interface connection of dissimilar metals and the process parameters was established.The results demonstrated excellent mechanical occlusion at the connection interface and no apparent intermetallic compound layer.Good feature size and high microhardness were observed under a laser power of 660 W,a wire feeding speed of 55 mm/s,and a platform moving speed of 10 mm/s.Molecular dynamics simulations demonstrated a faster rate of aluminum diffusion in the aluminum alloy substrate to stainless steel under the action of the initial contact force than without the initial contact force.Thus,the dual molten pool interface interlocking mechanism can effectively reduce the intermetallic compound layer when dissimilar metals are connected in the aerospace field.展开更多
The interface mechanical behavior of a monopile is an important component of the overall offshore wind turbine structure design.Understanding the soil-structure interaction,particularly the initial soil-structure stif...The interface mechanical behavior of a monopile is an important component of the overall offshore wind turbine structure design.Understanding the soil-structure interaction,particularly the initial soil-structure stiffness,has a significant impact on the study of natural frequency and dynamic response of the monopile.In this paper,a simplified method for estimating the interface mechanical behavior of monopiles under initial lateral loads is proposed.Depending on the principle of minimum potential energy and virtual work theory,the functions of soil reaction components at the interface of monopiles are derived;MATLAB programming has been used to simplify the functions of the initial stiffness by fitting a large number of examples;then the functions are validated against the field test data and FDM results.This method can modify the modulus of the subgrade reaction in the p-y curve method for the monopile-supported offshore wind turbine system.展开更多
Photoelectrocatalytic seawater splitting is a promising low-cost method to produce green hydrogen in a large scale.The effects of Cl^(-)ions in seawater on the performance of a photoanode have been reported in previou...Photoelectrocatalytic seawater splitting is a promising low-cost method to produce green hydrogen in a large scale.The effects of Cl^(-)ions in seawater on the performance of a photoanode have been reported in previous studies.However,few researches have been done on the roles of Cl^(-)ions in a photocathode.Herein,for the first time,we find that Cl^(-)ions in the electrolyte improve the photocurrent of a Si/In_(2)S_(3) photocathode by 50% at-0.6 V_(RHE).An in-situ X-ray photoelectron spectroscopy(XPS)characterization combined with the time-of-flight secondary-ion mass spectrometry by simulating photoelectrochemical conditions was used to investigate the interface charge transfer mechanism.The results suggest that there is an In_(2)^(+3)S_(3-x)(OH)_(2x)layer on the surface of In_(2)S_(3) in the phosphate buffer solution(PBS)electrolyte,which plays a role as an interface charge transfer mediator in the Si/In_(2)S_(3) photocathode.The In_(2)^(+3)S_(3-x)(OH)_(2x)surface layer becomes In_(2)^(+3)S_(3-x)(Cl)_(2x)in the PBS electrolyte with NaCl and accelerates the charge transfer rate at the In_(2)S_(3)/electrolyte interface.These results offer a new concept of regulating interface charge transfer mediator to enhance the performance of photoelectrocatalytic seawater splitting for hydrogen production.展开更多
A series of 2D direct numerical simulations were performed with an accurate level set method for single drop impacts.The adopted ACLS method was validated to be efficient with perfect mass conservation in both normal ...A series of 2D direct numerical simulations were performed with an accurate level set method for single drop impacts.The adopted ACLS method was validated to be efficient with perfect mass conservation in both normal and oblique impacts.A square-root correction for neck bases was modified in accuracy as well as scope of applications.In addition,process of jet formation and evolution was studied to reveal internal dynamics in drop impacts.It's found that pressure gradient and vortex are coexisting and completive reasons for jet topology while the inclined angle has a significant effect on them.Mechanisms of jet formation and evolution are different in the front and back necks.With the help of PDF distribution and correction calculation,a compromise in the competition is observed.This work lays a solid foundation for further studies of dynamics in gas-liquid flows.展开更多
In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. A...In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.展开更多
Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In t...Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum- mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.展开更多
Self-pumping dressings(SPDs)have been developed as a new type of effective material for the drainage of excessive wound exudates based on the structure of asymmetric wettability.However,current SPDs are easy to lose t...Self-pumping dressings(SPDs)have been developed as a new type of effective material for the drainage of excessive wound exudates based on the structure of asymmetric wettability.However,current SPDs are easy to lose their asymmetric wettability due to the weak interfacial mechanical stability between the hydrophobic and hydrophilic layers.Herein,we report an integrated self-pumping organohydrogel dressing with aligned microchannels(SPD-AM),prepared by an ice-templating-assisted wetting-enabled-transfer(WET)polymerization strategy,that can accelerate the healing process of diabetic wounds.The WET polymerization strategy enables strong interfacial mechanical stability between the hydrophobic organogel and hydrophilic hydrogel layers.The aligned microchannels greatly improve the draining capability of SPDs.Taking a diabetic rat model as an example,the SPD-AM can significantly reduce the bacterial colonization with low inflammatory responses,enhance dermal remodeling by about 47.31%,and shorten wound closure time by about 1/5 compared with other dressings,ultimately accelerating diabetic wound healing.This study is valuable for developing next-generation SPDs with stable mechanical performance for clinical applications.展开更多
We outline problems and potential solutions for feasible human-machine interfaces using cable-based parallel manipulators for physiotherapy applications.From an engineering perspective,we discuss the design constraint...We outline problems and potential solutions for feasible human-machine interfaces using cable-based parallel manipulators for physiotherapy applications.From an engineering perspective,we discuss the design constraints related to acceptance by patients and physiotherapist users.To date,most designs have focused on mobile platforms that are designed to be operated as an end-effector connected to human limbs for direct patient interaction.Some specific examples are illustrated from the authors' experience with prototypes available at Laboratory of Robotics and Mechatronics (LARM),Italy.展开更多
The deformation and micro-voids formation mechanisms in ferrite / bainite( F / B) multi-phase steel with the volume fraction of bainite less than 50% were studied by numerical simulation and experimental observation...The deformation and micro-voids formation mechanisms in ferrite / bainite( F / B) multi-phase steel with the volume fraction of bainite less than 50% were studied by numerical simulation and experimental observation. The results show that the micro-strain concentrates at the soft / hard phase( F / B) interface in the multi-phase steel,which should be correlated with the mechanism of incoordinate deformation. During the necking of the steel,the micro-voids initially form around the F / B interface,which also form in ferrite and bainite with the severe strain. The micro-voids in bainite are more dense and finer than those in ferrite. The failure mechanism of bainite is the coalescence of micro-voids,and the failure mechanism of ferrite is the growth and tearing of micro-voids. Due to the different failure mechanisms of ferrite and bainite,a suitable part of soft phase would be beneficial to the capability of anti-failure of F / B multi-phase steel during the ductile fracture.展开更多
Stop-start vehicles(SSVs)represent a potential alternative for improving internal combustion engine(ICE)efficiency.SSVs provide ICEs with the functionality of turning the engine off during traffic halts and restarting...Stop-start vehicles(SSVs)represent a potential alternative for improving internal combustion engine(ICE)efficiency.SSVs provide ICEs with the functionality of turning the engine off during traffic halts and restarting it without intervention by the driver.This strategy reduces fuel consumption,especially in dense urban traffic areas,and contributes to emissions reduction to meet green emissions targets.The most widely adopted SSV system has a mechanical interface to connect the electric starter motor to the ICE,which requires increased robustness compared with standard starting motors.This requirement allows the motor to withstand a higher number of engine start cycles compared with a standard starting motor.Nevertheless,it is a critical problem for wider adoption of SSVs.As SSV systems usually are based on the conventional starting system,its durability and noise remains a critical issue to be addressed by automakers.The typical pinion-ring gear interface uses intermittent gear meshing to form a transient coupling interface.The research reported here presents the development of an innovative mechanical interface for starting systems,called the permanent coupling(PC)-type interface,which reduces noise and increases durability compared with the existing design.The results obtained by a functional prototype of the PC-type mechanical interface confirm the feasibility of the proposed concept.The methodology is based on a product development process integrated with lumped-parameter modeling and virtual simulation aimed at reducing failures during prototype test-ing.The new mechanical interface was proven to be a good candidate for increasing the use of SSVs in the automotive market.展开更多
The effect of phosphate on adsorption and oxidation of catechol, 1,2-dihydroxybenzene,in a heterogeneous Fenton system was investigated. In situ attenuated total reflectance infrared spectroscopy(ATR-FTIR) was used ...The effect of phosphate on adsorption and oxidation of catechol, 1,2-dihydroxybenzene,in a heterogeneous Fenton system was investigated. In situ attenuated total reflectance infrared spectroscopy(ATR-FTIR) was used to monitor the surface speciation at the nano-Fe_3O_4 catalyst surface. The presence of phosphate decreased the removal rate of catechol and the abatement of dissolved organic compounds, as well as the decomposition of H2O2. This effect of phosphate was mainly due to its strong reaction with surface sites on the iron oxide catalyst. At neutral and acid pH, phosphate could displace the adsorbed catechol from the surface of catalyst and also could compete for surface sites with H2O2. In situ IR spectra indicated the formation of iron phosphate precipitation at the catalyst surface. The iron phosphate surface species may affect the amount of iron atoms taking part in the catalytic decomposition of H2O2 and formation of hydroxyl radicals,and inhibit the catalytic ability of Fe3O4 catalyst. Therefore, phosphate ions worked as stabilizer and inhibitor in a heterogeneous Fenton reaction at the same time, in effect leading to an increase in oxidation efficiency in this study. However, before use of phosphate as pH buffer or H2O2 stabilizer in a heterogeneous Fenton system, the possible inhibitory effect of phosphate on the actual removal of organic pollutants should be fully considered.展开更多
基金Project supported by the National Natural Science Foundation of China(No.12372005)。
文摘The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state.
基金funding support from National Natural Science Foundation of China(Grant No.41831278).
文摘For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of interface mechanics for composite materials,the interface stresses of the vertical and horizontal joints,which are the two primary joints in the CJRM under triaxial compression,are studied,and their mathematical expressions are derived based on the superposition principle.Based on the obtained interface stresses of the vertical and horizontal joints in the CJRM,the crack initiation of the joint interface in the CJRM is studied using the maximum circumferential stress theory in fracture mechanics.Moreover,based on this investigation,the fracture behaviors of CJRM are analyzed.According to the results of similar material physical model tests for the CJRM,the theoretical study is verified.Finally,the influence of the mechanical parameters of the CJRM on the joint interface stress is discussed comprehensively.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.52201324,52078128,and 52278355)the Natural Science Foundation of the Jiangsu Higher Education Institution of China (Grant No.22KJB560015)。
文摘This paper investigates the interface mechanical behavior of flexible piles with L_p/D>10 under lateral load and an overturning moment in monotonic loading conditions.To modify the beam-on-Winkler-foundation model of piles in offshore wind farms,the energy-based variational method is used.The soil is treated as a multi-layered elastic continuum with the assumption of three-dimensional displacements,the pile modeled as an Euler-Bernoulli beam.A series of cases using MATLAB programming was conducted to investigate the simplified equations of initial stiffness.The results indicated that the interaction between soil layers and the applied force position should be taken into account in calculating the horizontal soil resistance.Additionally,the distributed moment had a limiting effect on the lateral capacity of a flexible pile.Moreover,to account for the more realistic conditions of OWT systems,field data from the Donghai Bridge offshore wind farm were used.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.YX2010-20)the National Natural Science Foundation of China(No.31570708,No.30901162)the Open Projects Foundation of Key Laboratory of Soil and Water Conservation&Desertification Combat(Beijing Forestry University),Ministry of Education of China(No.201002)
文摘Roots play an important role in stabilizing and strengthening soil. This article aims to study the mechanical properties of the interface between soil and roots with branches, using the pullout test method in the laboratory. The mechanical properties of the soil-root with branches interface is determined through the pullout-force and root-slippage curve (F-S curve). The results of investigating 24 Pinus tabulaeformis single roots and 55 P. tabulaeformis roots with branches demonstrated three kinds of pullout test failures: breakage failure on branching root, breakage failure on branching node, and pullout failure. The branch angle had a remarkable effect on the failure mode of the roots with branches: the maximum pullout force increased with the sum of the branch diameters and the branch angle. The peak slippage and the initial force had a positive correlation with the sum of the branch diameter. The sig- nificance test of correlation between branch angle and the initial force, however, showed they had no correlation. Branch angle and branch root diameter affect the anchorage properties between root system and soil. Therefore, it is important to investigate the anchorage mechanics of the roots with branches to understand the mechanism of root reinforcement and anchorage.
基金supported by the National Natural Science Foundation (Grant No. 51408495)Key R & D projects in Sichuan Province (2020YFG0123)
文摘A tunnel-type anchorage(TTA)is one of the main components in suspension bridges:the bearing mechanism is a key problem.Investigating the deformation characteristics,development law,and failure phenomenon of a TTA under load can provide the theoretical basis for a robust design.Utilizing the TTA of the Jinsha River suspension bridge at Lijiang Shangri-La railway as a prototype,a laboratory model test of the TTA was carried out for three different contact conditions between the anchorage body and the surrounding rock.The stress and deformation distribution law of the anchorage body and its surrounding rock were studied,and the ultimate bearing capacity and failure mode of the TTA were analyzed.The test results show that the compressive stress level is highest at the rear part of the anchorage body.Moving away from the rear portion of the body,the stress decays in a negative exponential function.Based on the load transfer curve,the calculation formula for the shear stress on the contact surface between the anchorage body and the surrounding rock was derived,which shows that the distribution of the shear stress along the axial direction of the anchorage body is not uniform.The distance from the maximum value to the loading surface is approximately 1/3 of the length of the anchorage body,and the stress decreases as the distance from the loading surface increases.Furthermore,the contact condition between the anchorage body and surrounding rock has a great influence on the bearing capacity of the TTA.The increase in the anti-skid tooth ridge and radial anchor bolt can improve the cooperative working capacity of the anchorage body and the surrounding rock,which is approximately 50%higher than that of the flat contact condition.The main function of the anchor bolt is to increase the overall rigidity of the TTA.The contact condition between the anchorage body and the surrounding rock will lead to a change in the failure mode of the TTA.With an increase in the degree of contact,the failure mode will change from shear sliding along the interface to trumpet-shaped inverted cone-shaped failure extending into the surrounding rock.
基金supported by the National Natural Science Foundation of China (No.41772313)the National Natural Science Foundation for Young Scientists of China (No.52104111)+3 种基金the Hunan Science and Technology Planning Project,China (No.2019RS3001)the Natural Science Foundation of Hunan Province,China (No.2021JJ30819)Key Science and Technology Project of Guangxi Transportation Industry (Research on fine blasting and disaster control technology of mountain expressway tunnel),Chinathe financial contribution and convey their appreciation for supporting this basic research。
文摘To investigate the dynamic behavior and energy dissipation of the rock−concrete interface,dynamic splitting tests on bi-material discs were conducted by using the split Hopkinson pressure bar.The test results reveal that with the change of the interface inclination angles(θ),the influence of interface groove width on the bearing capacity of specimens also varies.Whenθincreases from 0°to 30°,the bearing capacity of the specimen increases first and then decreases with the rise of the interface groove width;the optimal groove width on the rock surface in this range of interface inclination angles is 5 mm.Whenθincreases from 45°to 90°,the bearing capacity of the specimen has no obvious change.Moreover,whenθincreases from 0°to 45°,the dissipated energy of the specimens rises obviously at first and then tends to be stable as the width of the interface groove increases.
基金supported by the National Natural Science Foundation of China (11222217 and 11472150)
文摘Bio-nano interfaces between biological materials and functional nanodevices are of vital importance in relevant energy and information exchange processes, which thus demand an in-depth understanding. One of the critical issues from the application viewpoint is the stability of the bio-nano hybrid under mechanical perturbations. In this work we explore mechanical responses of the interface between lipid bilayer and graphene under hydrostatic coating provides remarkable resistance to the pressure or indentation loads, We find that graphene loads, and the intercalated water layer offers additional protection. These findings are discussed based on molecular dynamics simulation results that elucidate the molecular level mechanisms, which provide a basis for the rational design of bionanotechnology- enabled aoolications such as biomedical devices and nanotheraoeutics.
文摘This paper developed a hot Pressing aided exothermic synthesis (HPES) technique. to fabricate NiAl matrix composites containing 0 and 20 v.% TiB_2 particles. The conversion to the product was complete. and TiB_2 particles in the matrix were uniformly dispersed. The inter faces between nail and TiB_2 were atomically flat. sharp and free from any inter facial phases in most cases. In some cases. however. thin inter facial amorphous layers existed at NiAl/ TiB_2 interfaces. In addition, the microstructure and inter faces were highly thermal stable. In all processing states. the yield strengths at room temperature or at 1000℃ of the composite were approximately three times as strong as that of the unrein forced NiAl. The ambient fracture toughness of the composite was also superior to monolithic NiAl.
文摘Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many problems have not been solved, such as the steel tube reinforced concrete pile composite interracial force learn performance research is still in the initial stage. In this paper, we mainly discuss the research methods of several interface mechanical properties and propose the possibility of studying the mechanical properties of the steel tube reinforced concrete composite pile by using the principle of ultrasonic speckle.
基金supported by the National Natural Science Foundation of China(Grant No.51901162)the support of the National Talent Program of China。
文摘Intermetallic compounds produced in laser additive manufacturing are the main factors restricting the joint performance of dissimilar metals.To solve this problem,a dual molten pool interface interlocking mechanism was proposed in this study.Based on a dual molten pool interface interlocking mechanism,the dissimilar metals,aluminum alloy and stainless steel,were produced as single-layer and multilayer samples,using the wire-feed laser additive manufacturing directed energy deposition technology.The preferred parameters for the dual molten pool interface interlocking mechanism process of the dissimilar metals,aluminum alloy and stainless steel,were obtained.The matching relationship between the interface connection of dissimilar metals and the process parameters was established.The results demonstrated excellent mechanical occlusion at the connection interface and no apparent intermetallic compound layer.Good feature size and high microhardness were observed under a laser power of 660 W,a wire feeding speed of 55 mm/s,and a platform moving speed of 10 mm/s.Molecular dynamics simulations demonstrated a faster rate of aluminum diffusion in the aluminum alloy substrate to stainless steel under the action of the initial contact force than without the initial contact force.Thus,the dual molten pool interface interlocking mechanism can effectively reduce the intermetallic compound layer when dissimilar metals are connected in the aerospace field.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52201324,52078128,and52278355)the Natural Science Foundation of the Jiangsu Higher Education Institution of China(Grant No.22KJB560015)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX21_1794)。
文摘The interface mechanical behavior of a monopile is an important component of the overall offshore wind turbine structure design.Understanding the soil-structure interaction,particularly the initial soil-structure stiffness,has a significant impact on the study of natural frequency and dynamic response of the monopile.In this paper,a simplified method for estimating the interface mechanical behavior of monopiles under initial lateral loads is proposed.Depending on the principle of minimum potential energy and virtual work theory,the functions of soil reaction components at the interface of monopiles are derived;MATLAB programming has been used to simplify the functions of the initial stiffness by fitting a large number of examples;then the functions are validated against the field test data and FDM results.This method can modify the modulus of the subgrade reaction in the p-y curve method for the monopile-supported offshore wind turbine system.
基金supported by the National Natural Science Foundation of China(22279052)the China Postdoctoral Science Foundation(2023M741613)。
文摘Photoelectrocatalytic seawater splitting is a promising low-cost method to produce green hydrogen in a large scale.The effects of Cl^(-)ions in seawater on the performance of a photoanode have been reported in previous studies.However,few researches have been done on the roles of Cl^(-)ions in a photocathode.Herein,for the first time,we find that Cl^(-)ions in the electrolyte improve the photocurrent of a Si/In_(2)S_(3) photocathode by 50% at-0.6 V_(RHE).An in-situ X-ray photoelectron spectroscopy(XPS)characterization combined with the time-of-flight secondary-ion mass spectrometry by simulating photoelectrochemical conditions was used to investigate the interface charge transfer mechanism.The results suggest that there is an In_(2)^(+3)S_(3-x)(OH)_(2x)layer on the surface of In_(2)S_(3) in the phosphate buffer solution(PBS)electrolyte,which plays a role as an interface charge transfer mediator in the Si/In_(2)S_(3) photocathode.The In_(2)^(+3)S_(3-x)(OH)_(2x)surface layer becomes In_(2)^(+3)S_(3-x)(Cl)_(2x)in the PBS electrolyte with NaCl and accelerates the charge transfer rate at the In_(2)S_(3)/electrolyte interface.These results offer a new concept of regulating interface charge transfer mediator to enhance the performance of photoelectrocatalytic seawater splitting for hydrogen production.
基金Supported by the National Natural Science Foundation of China(91541202,51276163)
文摘A series of 2D direct numerical simulations were performed with an accurate level set method for single drop impacts.The adopted ACLS method was validated to be efficient with perfect mass conservation in both normal and oblique impacts.A square-root correction for neck bases was modified in accuracy as well as scope of applications.In addition,process of jet formation and evolution was studied to reveal internal dynamics in drop impacts.It's found that pressure gradient and vortex are coexisting and completive reasons for jet topology while the inclined angle has a significant effect on them.Mechanisms of jet formation and evolution are different in the front and back necks.With the help of PDF distribution and correction calculation,a compromise in the competition is observed.This work lays a solid foundation for further studies of dynamics in gas-liquid flows.
基金funded by China Scholarship Council (No. 201406460053)
文摘In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.
基金supported by the National Natural Science Foundation of China(11222217)the State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics(MCMS-0414G01)
文摘Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum- mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.
基金supported by the National Natural Science Foundation of China(22035008,21972155,22002177,and 22205244)Youth Innovation Promotion Association,Chinese Academy of Sciences(CAS)(2022027)+1 种基金CAS-Croucher Funding Scheme for Joint LaboratoriesChina Postdoctoral Science Foundation(2022M713225)。
文摘Self-pumping dressings(SPDs)have been developed as a new type of effective material for the drainage of excessive wound exudates based on the structure of asymmetric wettability.However,current SPDs are easy to lose their asymmetric wettability due to the weak interfacial mechanical stability between the hydrophobic and hydrophilic layers.Herein,we report an integrated self-pumping organohydrogel dressing with aligned microchannels(SPD-AM),prepared by an ice-templating-assisted wetting-enabled-transfer(WET)polymerization strategy,that can accelerate the healing process of diabetic wounds.The WET polymerization strategy enables strong interfacial mechanical stability between the hydrophobic organogel and hydrophilic hydrogel layers.The aligned microchannels greatly improve the draining capability of SPDs.Taking a diabetic rat model as an example,the SPD-AM can significantly reduce the bacterial colonization with low inflammatory responses,enhance dermal remodeling by about 47.31%,and shorten wound closure time by about 1/5 compared with other dressings,ultimately accelerating diabetic wound healing.This study is valuable for developing next-generation SPDs with stable mechanical performance for clinical applications.
基金supported by the research project RORAS 2 of the Mediterranean Program funded by INRIA,France
文摘We outline problems and potential solutions for feasible human-machine interfaces using cable-based parallel manipulators for physiotherapy applications.From an engineering perspective,we discuss the design constraints related to acceptance by patients and physiotherapist users.To date,most designs have focused on mobile platforms that are designed to be operated as an end-effector connected to human limbs for direct patient interaction.Some specific examples are illustrated from the authors' experience with prototypes available at Laboratory of Robotics and Mechatronics (LARM),Italy.
基金Item Sponsored by National Basic Research Program of China(2010CB630801)
文摘The deformation and micro-voids formation mechanisms in ferrite / bainite( F / B) multi-phase steel with the volume fraction of bainite less than 50% were studied by numerical simulation and experimental observation. The results show that the micro-strain concentrates at the soft / hard phase( F / B) interface in the multi-phase steel,which should be correlated with the mechanism of incoordinate deformation. During the necking of the steel,the micro-voids initially form around the F / B interface,which also form in ferrite and bainite with the severe strain. The micro-voids in bainite are more dense and finer than those in ferrite. The failure mechanism of bainite is the coalescence of micro-voids,and the failure mechanism of ferrite is the growth and tearing of micro-voids. Due to the different failure mechanisms of ferrite and bainite,a suitable part of soft phase would be beneficial to the capability of anti-failure of F / B multi-phase steel during the ductile fracture.
基金ZEN S.A.Indus-tria Metalurgica(www.zensa.com.br)for sponsoring and funding the project.
文摘Stop-start vehicles(SSVs)represent a potential alternative for improving internal combustion engine(ICE)efficiency.SSVs provide ICEs with the functionality of turning the engine off during traffic halts and restarting it without intervention by the driver.This strategy reduces fuel consumption,especially in dense urban traffic areas,and contributes to emissions reduction to meet green emissions targets.The most widely adopted SSV system has a mechanical interface to connect the electric starter motor to the ICE,which requires increased robustness compared with standard starting motors.This requirement allows the motor to withstand a higher number of engine start cycles compared with a standard starting motor.Nevertheless,it is a critical problem for wider adoption of SSVs.As SSV systems usually are based on the conventional starting system,its durability and noise remains a critical issue to be addressed by automakers.The typical pinion-ring gear interface uses intermittent gear meshing to form a transient coupling interface.The research reported here presents the development of an innovative mechanical interface for starting systems,called the permanent coupling(PC)-type interface,which reduces noise and increases durability compared with the existing design.The results obtained by a functional prototype of the PC-type mechanical interface confirm the feasibility of the proposed concept.The methodology is based on a product development process integrated with lumped-parameter modeling and virtual simulation aimed at reducing failures during prototype test-ing.The new mechanical interface was proven to be a good candidate for increasing the use of SSVs in the automotive market.
基金supported by the National Natural Science Foundation of China(Nos.21107125,21577160,51290282,51221892)the National Basic Research Program(973s)of China(No.2011CB933704)the Hjalmar Lundbom Research Center at Lulea niversity of Technology
文摘The effect of phosphate on adsorption and oxidation of catechol, 1,2-dihydroxybenzene,in a heterogeneous Fenton system was investigated. In situ attenuated total reflectance infrared spectroscopy(ATR-FTIR) was used to monitor the surface speciation at the nano-Fe_3O_4 catalyst surface. The presence of phosphate decreased the removal rate of catechol and the abatement of dissolved organic compounds, as well as the decomposition of H2O2. This effect of phosphate was mainly due to its strong reaction with surface sites on the iron oxide catalyst. At neutral and acid pH, phosphate could displace the adsorbed catechol from the surface of catalyst and also could compete for surface sites with H2O2. In situ IR spectra indicated the formation of iron phosphate precipitation at the catalyst surface. The iron phosphate surface species may affect the amount of iron atoms taking part in the catalytic decomposition of H2O2 and formation of hydroxyl radicals,and inhibit the catalytic ability of Fe3O4 catalyst. Therefore, phosphate ions worked as stabilizer and inhibitor in a heterogeneous Fenton reaction at the same time, in effect leading to an increase in oxidation efficiency in this study. However, before use of phosphate as pH buffer or H2O2 stabilizer in a heterogeneous Fenton system, the possible inhibitory effect of phosphate on the actual removal of organic pollutants should be fully considered.