Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic compositio...Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.展开更多
This study aims at identifying the microevolutionary processes responsible for the onset of the remarkable phylogeographic structure already recorded for the endangered giant clam Tridacna squamosa across its distribu...This study aims at identifying the microevolutionary processes responsible for the onset of the remarkable phylogeographic structure already recorded for the endangered giant clam Tridacna squamosa across its distribution range.For this purpose,the evolutionary,biogeographic and demographic histories of the species were comprehensively reconstructed in a mitochondrial dataset comprising nearly the whole available published cytochrome c oxidase 1 gene sequences of T.squamosa.Relatively higher level of genetic diversification was unveiled within T.squamosa,in comparison to earlier macro-geographic investigations,whereby five mitochondrial clusters were delineated.The resulting divergent gene pools in the Red Sea,western Indian Ocean,Indo-Malay Archipelago and western Pacific were found to be driven by Early Pleistocene glacial vicariance events among refugial lineages.Accentuated genetic diversification of the species across the Indo-Malay Archipelago was successively triggered by historical dispersal event during the Mid-Pleistocene MIS19c interglacial.This latter historical event might have also enabled genetically distinct giant clams from the Indo-Malay Archipelago to subsequently colonize the western Pacific,accounting for the genetic diversity hotspot detected within this region(comprising three divergent mitochondrial clusters).Late Pleistocene demographic expansion of T.squamosa,during the Last Interglacial period,could have contributed to forging spatial distribution of the so far delineated genetic entities across the Indo-Western Pacific.Overall,being resilient to major climate shifts during the Pleistocene through adaptation and consequent diversification,T.squamosa could be used as a model species to track the impact of climate change on genetic variability and structure of marine species.In particular,the new information,provided in this investigation,may help with understanding and/or predicting the consequences of ongoing global warming on genetic polymorphism of endangered coral reef species among which Tridacna sp.are listed as ecologically important.展开更多
Palaeoclimatic and palaeoenvironmental reconstructions of the Cryogenian Period have attracted attention in relation to the debated“Snowball Earth”hypothesis and the early evolution of metazoan life.The carbon cycle...Palaeoclimatic and palaeoenvironmental reconstructions of the Cryogenian Period have attracted attention in relation to the debated“Snowball Earth”hypothesis and the early evolution of metazoan life.The carbon cycle and redox conditions of the Sturtian-Marinoan non-glacial interval have been subjected to much controversy in the past decades because of the lack of a high-resolution stratigraphic correlation scheme.As one of the typical Sturtian-Marinoan interglacial deposits,the Datangpo Formation was widely distributed in South China with shales continuously deposited.The previous zircon dating data of the Datangpo Formation provide important ages for global constrain of the Sturtian-Marinoan non-glacial interval.Here we present a high-resolution straitigraphic study of the organic carbon isotopes of the Datangpo Formation from a drill core section in northern Guizhou Province.Based on measured episodicδ^(13)C_(org) perturbations,three positive shifts and three negative excursions are identified.Aδ^(13)C_(org)-based chemostratigraphic correlation scheme is proposed herein that works well for the Datangpo Formation regionally.Meanwhile,theδ^(13)C_(org) vertical gradients changed dynamically throughout the formation.This discovery implies that a significant ocean circulation overturn might have occurred in the upper Datangpo Formation,coinciding with the potential oxygenation.展开更多
Two versions of the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System model(CASFGOALS),version f3-L and g3,are used to simulate the two interglacial epochs of the mid-Holocene and the Last Inter...Two versions of the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System model(CASFGOALS),version f3-L and g3,are used to simulate the two interglacial epochs of the mid-Holocene and the Last Interglacial in phase 4 of the Paleoclimate Modelling Intercomparison Project(PMIP4),which aims to study the impact of changes in orbital parameters on the Earth’s climate.Following the PMIP4 experimental protocols,four simulations for the mid-Holocene and two simulations for the Last Interglacial have been completed,and all the data,including monthly and daily outputs for the atmospheric,oceanic,land and sea-ice components,have been released on the Earth System Grid Federation(ESGF)node.These datasets contribute to PMIP4 and CMIP6(phase 6 of the Coupled Model Intercomparison Project)by providing the variables necessary for the two interglacial periods.In this paper,the basic information of the CAS-FGOALS models and the protocols for the two interglacials are briefly described,and the datasets are validated using proxy records.Results suggest that the CAS-FGOALS models capture the large-scale changes in the climate system in response to changes in solar insolation during the interglacial epochs,including warming in mid-to-high latitudes,changes in the hydrological cycle,the seasonal variation in the extent of sea ice,and the damping of interannual variabilities in the tropical Pacific.Meanwhile,disagreements within and between the models and the proxy data are also presented.These datasets will help the modeling and the proxy data communities with a better understanding of model performance and biases in paleoclimate simulations.展开更多
The climate of the Earth has been oscillating between mega warm periods and mega cold periods for 3,000 Ma. Each mega cold period included alternating major warm and cold events. The present mega cold period commenced...The climate of the Earth has been oscillating between mega warm periods and mega cold periods for 3,000 Ma. Each mega cold period included alternating major warm and cold events. The present mega cold period commenced about 44 Ma in the polar re- gions as the seas cooled following the loss of the circum-equatorial ocean. Before then, a mega warm period lasted for more than 200 Ma. The frequency of the major cold events within the present mega cold period is increasing, with each continent being un- der the influence of a different set of climatic controls. There are many causes of these shifts in climate, ranging from fluctuating meridional ocean currents, rearrangement of tectonic plates, and changes in ocean gateways. These are enhanced by a combination of Milankovitch cycles and many other medium to small oscillations and cyclic controls that cause the daily, monthly, and season- al fluctuations in weather. Examples are given of how these can cause a change from cold to warm events, or vice versa, at pre- sent-day or mega scales, aided by eustatic changes in sea levels and changes in the distribution of air masses, sea ice, and snow.展开更多
The Last Interglacial Period strata in the Milanggouwan section in the Salawusu River valley on the Ordos Plateau, China, have 8.5 sedimentary cycles composed alternately of eolian dune sands, fluvio-lacustrine facies...The Last Interglacial Period strata in the Milanggouwan section in the Salawusu River valley on the Ordos Plateau, China, have 8.5 sedimentary cycles composed alternately of eolian dune sands, fluvio-lacustrine facies and paleosols. Based on comprehensive analyses on the distribution of magnetic susceptibility and CaCO3 and paleo-ecology indicated by fossils in the region, it is considered that the sedimentation cycles resulted from dry-cold and warm-humid climate fluctuations. Magnetic susceptibility values and CaCO3 contents in stratigraphic sectors I, III, V and II, IV basically respectively present peaks and low vales, and the former three can in time correlate with MIS5a, MIS5c and MIS5e successively and the latter two with MIS5b and MIS5d. In addition, some horizons of eolian dune sands and the low vales of their magnetic susceptibility and CaCO3 are also correlated with 6 periods of cooling events indicated by the higher content of foraminifer Neogloboquadrina pachyderma (S.) documented in the V29—191 drill in the North Atlantic and the cold events recorded by δ 18O in the ice cores in GRIP, especially with 9 periods of dust events in Chinese Loess Plateau.展开更多
Research on climate changes between the last interglacial period and Holocene renders a speculation on the tendency of present climate. Fully understanding the nature of the changes will play a significant role in a b...Research on climate changes between the last interglacial period and Holocene renders a speculation on the tendency of present climate. Fully understanding the nature of the changes will play a significant role in a better understanding of global climate change. This work discussed the climate change of the last interglacial period and Holocene in Beijing area to discover the mechanism of local palaeo-climate change. The palaeo-vegetation of the last interglacial period in Xishan Mountain of Beijing was reconstructed by pollen analysis and thermo-luminescence dating to represent the change of palaeo-climate and palaeo-environment. Palaeo-vegetation indicators demonstrated that the climate change of the last interglacial period included 6 stages and was homologous to that reflected by the records from deep sea depositions and polar ice cores, respectively corresponding to Marine Isotope Stage (MIS) 5e, 5d, 5c, 5b, 5a and the interim from MIS5 to MIS4 from the early to the late. Millennial climate abrupt events occurred in MIS 5e, which had an agreement with the records of GRIP. In addition, a climate warming event appeared in the interim from MIS5 to MIS4 and it also was found in other regions of the world. Compared with the vegetation and environment indicators of Holocene in Beijing area, it was found that the vegetation, climate and environment of the last glacial period were better than those of Holocene. The climate abrupt events not only appeared in the last interglacial period and MIS 5e, but also occurred in Holocene, whose mechanism and pattern were analogical. After analyzing the records of millennial climate abrupt change events from this work, Ice Cores and others, it was concluded that climate was instability in the interglacial period.展开更多
The discovery of the giant Anyue gas field in Sichuan Basin gives petroleum explorers confidence to find oil and gas in Proterozoic to Cambrian.Based on the reconstruction of tectonic setting and the analysis of major...The discovery of the giant Anyue gas field in Sichuan Basin gives petroleum explorers confidence to find oil and gas in Proterozoic to Cambrian.Based on the reconstruction of tectonic setting and the analysis of major geological events in Mesoproterozoic-Neoproterozoic,the petroleum geological conditions of Proterozoic to Cambrian are discussed in this paper from three aspects,i.e.source rocks,reservoir conditions,and the type and efficiency of play.It is found that lower organisms boomed in the interglacial epoch from Mesoproterozoic-Neoproterozoic to Eopaleozoic when the organic matters concentrated and high quality source rocks formed.Sinian-Cambrian microbial rock and grain-stone banks overlapped with multiple-period constructive digenesis may form large-scale reservoir rocks.However,because of the anoxic event and weak weathering effect in Eopaleozoic-Mesoproterozoic,the reservoirs are generally poor in quality,and only the reservoirs that suffered weathering and leaching may have the opportunity to form dissolution-reconstructed reservoirs.There are large rifts formed during Mesoproterozoic-Neoproterozoic in Huabei Craton,Yangtze Craton,and Tarim Craton in China,and definitely source rocks in the rifts,while whether there are favorite source-reservoir plays depends on circumstance.The existence of Sinian-Cambrian effective play has been proved in Upper Yangtze area.The effectiveness of source-reservoir plays in Huabei area depends on two factors:(1)the effectiveness of secondary play formed by Proterozoic source rock and Paleozoic,Mesozoic,Cenozoic reservoir rocks;(2)the matching between reservoirs formed by reconstruction from Mesoproterozoic-Neoproterozoic to Eopaleozoic and the inner hydrocarbon kitchens with late hydrocarbon generation.As for Tarim Basin,the time of Proterozoic and the original basin should be analyzed before the evaluation of the effective play.To sum up,Proterozoic to Cambrian in the three craton basins in China is a potential exploration formation,which deserves further investigation and research.展开更多
Study of the climate variability in the past and present, and correlating those with changes in the distribution range of species has attracted considerable research interest. The genus Ablepharus consists of 10 recog...Study of the climate variability in the past and present, and correlating those with changes in the distribution range of species has attracted considerable research interest. The genus Ablepharus consists of 10 recognized species, of which A. bivittatus, A. grayanus and A. pannonicus are documented from Iran. In the present study, we modeled with MaxEnt the potential distribution areas and determined the suitable habitats in past (mid-Holocene [MH], and the Last Interglacial [LIG]) and their current distribution for two species of snake-eyed skinks (A. grayanus and A. pannonicus) separately. Models of the species indicated good fit by the average high area under the curve (AUC) values (A. grayanus = 0.929 4- 0.087 and A. pannonicus = 0.979 4- 0.007). Precipitation of the driest quarter of the year, mean temperature of the coldest quarter of the year, and precipitation of the driest month variables made important contributions to A. grayanus. Two important climate variables contributed importantly to A. pannonicus; temperature seasonality, and mean temperature of the wettest quarter of the year, and one topographic variable, slope. We conclude that these variables form a natural barrier for species dispersal. The MH and the LGM models indicated a larger suitable area than the current distribution.展开更多
Marine Isotope Stage 11(MIS 11; ca. 423-362 ka) is generally considered to be the best analogue for the present interglacial(Holocene), and investigation of it will improve our understanding of current climate var...Marine Isotope Stage 11(MIS 11; ca. 423-362 ka) is generally considered to be the best analogue for the present interglacial(Holocene), and investigation of it will improve our understanding of current climate variability and assist in predictions of future climate change. However, many recent studies primarily focus on the structure and duration of MIS 11. Little research has focused on climate warmth and stability recorded in the Chinese loess-paleosol sequences(LPS) during the S4 paleosol formation(equivalent to MIS 11). On the basis of previous work, this study presents a high-resolution record(ca. 75 a/cm) that spans from MIS 1 to MIS 15, as preserved in the thickest known Jingyuan loess section on the western Chinese Loess Plateau(CLP). This LPS is almost 165 m thick and was sampled from the upper part of L6 to the modern soil at 2-cm depth intervals. Measurements of magnetic susceptibility, mean grain size and >63 μm particle content, carbonate content, total organic carbon, and soil color of samples were made to reconstruct the paleoclimate variation, and a grain-size age model was used to constrain the chronological framework. The primary results show that a generally warm-humid climate dominated the S4 paleosol development, but the climate condition was extremely unstable during the whole of MIS 11. Two obviously different climate regimes controlled the MIS 11 climate variation: the early part of MIS 11 was extremely warm and stable, but the latter part was relatively cool(non-glacial) and unstable. This climate pattern was consistent with records on the central CLP and wavelet analysis suggested that it was forced by the 65°N insolation variability modulated by a quasi-100-ka cycle. In addition, a multi-proxy comparative study on the climate conditions during S0 to S5 paleosol development indicates that the period of S4 development might be the warmest interglacial of the past 650 ka. However, the climate condition during S4 development was not the most humid episode as recorded in Xifeng and Luochuan loess sections on the central CLP. On the contrary, it was drier than both the MIS 15 and the present interglacial on the western CLP, which is somewhat similar to the present climate pattern on the central CLP.展开更多
Modern meteorological observations have proved that climate change in the northeast Tibet plateau is characteristic of alternations of plateau summer and winter monsoons, and climate change in Chinese Loess plateau is...Modern meteorological observations have proved that climate change in the northeast Tibet plateau is characteristic of alternations of plateau summer and winter monsoons, and climate change in Chinese Loess plateau is geared by variations of East Asian summer and winter monsoon strengths. A transitional zone between regions dominated by plateau monsoon and East Asian monsoon respectively is located at around 110°E in China. The two monsoon systems are driven by different forcing aspects.Here we show the two climatic systems change during the last interglacial period (IG) by examining geological records. Two aeolian loess\|paleosol sequences,one is located in northeast Tibet plateau closed to Xining and the other one in the northwest Loess plateau closed to Huanxian, were investigated. Age frames of the paleosol and intercalated loess are achieved by Thermoluminescence dating, palaeomagnetic measurements and stratigraphy correlation. Samples taken from Huanxian section were at 5cm intervals, and samples from Xining section were taken at every 10cm. The samples were measured for magnetic susceptibility (MS), rubidium/strontium value (Rb/Sr), Calcium carbonate content (CaCO\-3) and grain\|size distribution (GS). Detail time scale is obtained by two steps. First, correlate MS curves with deep\|sea oxygen isotope time series of stage 4,5 and 6 of Martinson et al (1987) to assign ages of boundaries of stratigraphic units. Second, linearly interpolate ages between the obtained ages and therefore get age of each sampling point.展开更多
The temperature anomaly and dust concentrations recorded from central Antarctic ice core records display a strong negative correlation. The dust concentration recorded from an ice core in central Antarctica is 50-70 t...The temperature anomaly and dust concentrations recorded from central Antarctic ice core records display a strong negative correlation. The dust concentration recorded from an ice core in central Antarctica is 50-70 times higher during glacial periods than interglacial periods. This study investigated the impact of dust aerosol on glacial-interglacial climate, using a zonal energy balance model and dust concentration data from an Antarctica ice core. Two important effects of dust, the direct radiative effect and dust-albedo feedback, were considered. On the one hand, the direct radiative effect of dust significantly cooled the climate during the glacial period, with cooling during the last glacial maximum being as much as 2.05℃ in Antarctica. On the other hand, dust deposition onto the ice decreased the surface albedo over Antarctica, leading to increased absorption of solar radiation, inducing a positive feedback that warmed the region by as much as about 0.9℃ during the glacial period. However, cooling by the direct dust effect was found to be the controlling effect for the glacial climate and may be the major influence on the strong negative correlation between temperature and dust concentration during glacial periods.展开更多
Ouvéa Island in New Caledonia emerges as a new sea level standard. It has excellent morphological records of former sea level positions at interglacial high-stands as well as records of Holocene changes in sea le...Ouvéa Island in New Caledonia emerges as a new sea level standard. It has excellent morphological records of former sea level positions at interglacial high-stands as well as records of Holocene changes in sea level from a maximum at about +1.5 m via a significant +70 cm level of sub-recent, probably 17<sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> century, age to a stable to falling sea level in present time.</span>展开更多
This research paper analyses the grain-size characteristics of the Quaternary deposits at Xingshan near Siping, Jilin province in China by employing graphic measures to study the grain size distribution and its mode o...This research paper analyses the grain-size characteristics of the Quaternary deposits at Xingshan near Siping, Jilin province in China by employing graphic measures to study the grain size distribution and its mode of transport and deposition. The Quaternary deposits at Xingshan lie unconformable on Cretaceous rocks made of siltstone, mudstone and sandstone. The average grain size is between 8.06 to 8.55Φ (0.002 6 ~0.003 7 mm). The Quaternary deposits at Xingshan mainly compose of very fine silt to clay. The compositions of the grade are clay 63% and silt 37%. The clay size components are weathered debris transported and deposited by flowing water from the SE highlands or hills to the low lying NW Xingshan plains whereas the silty components accumulated by aoelian process. The Quaternary deposits at Xingshan accumulated in the middle and late Pleistocene interglacial periods from (459.12~39.03) ka to (88.92~7.56) ka. The standard deviation ranged from 0.96 to 1.36Φ, indicating that the sediments are moderately to poorly sorted, Coefficient of skewness ranged from 0.16~0.31 with an average skewness of 0.218, (Positively skewed towards fine). Kurtosis values (0.84~1.05) from the grain size distribution and visual inspection of the frequency curves indicate platykurtic to mesokurtic curves and unimodal to bimodal grain-size distribution. The type of deposit formation is sand dune and the source is at a distal from its provenance.展开更多
The climatic and environmental variations since the Last Interglaciation are reconstructed based on the study of the upper 268 m of the 309-m-long Guliya ice core. Five stages can be distinguished since the Last Inter...The climatic and environmental variations since the Last Interglaciation are reconstructed based on the study of the upper 268 m of the 309-m-long Guliya ice core. Five stages can be distinguished since the Last Interglaciation from the δ18O record in the Guliya ice core: Stage 1 (Deglaciation), Stage 2 (the Last Glacial Maximum), Stage 3 (interstadial), Stage 4 (interstadial in the early glacial maximum) and Stage 5 (the Last Interglaciation). Stage 5 can be divided further into 5 substages; a, b, c, d, e. The δ18O record in the Guliya ice core indicates clearly the close correlation between the temperature variation on the Tibetan Plateau and the solar activities. The study indicates that the solar activity is a main forcing to the climatic variation on the Tibetan Plateau. Through a comparison of the ice core record in Guliya with that in the Greenland and the Antarctic, it can be found that the variation of large temperature variation events in different parts of the world is generally the same, but the variation amplitude of temperature is different.展开更多
Based on a δ180 chronology, rare earth elements (REE) and other typical elements in sediments from core MD06-3047 in the western Philippine Sea were analyzed to constrain the provenances of the sediments and invest...Based on a δ180 chronology, rare earth elements (REE) and other typical elements in sediments from core MD06-3047 in the western Philippine Sea were analyzed to constrain the provenances of the sediments and investigate quantitative changes in the Asian eolian input to the study area over the last 700 ka. Among the competing processes that might affect REE compositions, sediment provenance is the most important one. Provenance analysis suggests that the study sediments have two provenance end-members; local volcanic sources are dominant, and eolian dust from the Asian continent has a smaller contribution. During glacial periods, eolian input to the western Philippine Sea was enhanced. In contrast, material supply from local volcanics in- creased during interglacial periods. Changes in eolian input to the study area were probably related to the strength of the East Asian winter monsoon (EAWM) as well as aridity in the Asian continent on an orbital time scale, and were partly influenced by local control factors on shorter time scales. Therefore, we propose that the present study expands the application of the REE-based method for quantitatively estimating the eolian component from the mid-latitude northern Pacific to the low-latitude western Pacific. Additionally, the study preliminarily confirms the influence of EAWM-transported eolian materi- al on sedimentation in the western Philippine Sea since 700 ka.展开更多
Significant uncertainties remain regarding the temporal evolution of natural vegetation during the Quaternary, and drivers of past vegetation change, on the Chinese Loess Plateau (CLP). This study presents analyses ...Significant uncertainties remain regarding the temporal evolution of natural vegetation during the Quaternary, and drivers of past vegetation change, on the Chinese Loess Plateau (CLP). This study presents analyses of total organic carbon isotopic composition (TOC) and n-alkane ratios (C31/C27) from the Lingtai loess-palaeosol sequence on the central CLP over the last 450 kyr. The results demonstrate that the vegetation in this region comprised a mix of C3 and C4 plants of herb and woody growth-form. C3 plants dominated for most of the last 450 kyr, but this did not lead to extensive forest. C3 woody plants were more abundant in MIS9 (S3 period) and MIS5 (S 1 period) during warm and humid climate conditions. Herbs increased in the region since 130 kyr, possibly as a result of increased aridity. On the orbital timescales, there was a reduction of C3 herbal plants in MIS 11 ($4) than in M1S 12 (L5), and in Holocene than in the last glacial period. Our isotope and n-alkane proxy records are in agreement with Artemisia pollen changes in the region, which is/was the dominant species in this area and varying due to different heat and water conditions between glacial and interglacial periods. Though the climate in MIS1 (SO) was similar to that in MIS11 (S4), a significant increase in woody plants during the Holocene suggests the impact of human activities and ecological effects of changes in fire activity.展开更多
The selection of high-resolution loess sections is needed in order to determine the climatic variability of the East Asian Monsoon during the last interglacial. Two sequences of S1 on the eastern and west-ern sides of...The selection of high-resolution loess sections is needed in order to determine the climatic variability of the East Asian Monsoon during the last interglacial. Two sequences of S1 on the eastern and west-ern sides of the Liupan Mountain were both composed of five paleosol layers and four loess layers,indicating that there were five strong summer monsoon events and four strong winter monsoon events in MIS5. This corresponds with other records of the East Asian Monsoon,along with NGRIP and the North Atlantic records,implying that the climate of the Northern Hemisphere was very instable during the last interglacial. Two layers of paleosols and one layer of loess had developed during MIS5a and MIS5c. Compared with MIS5e,the climate in MIS5a and MIS5c fluctuated more intensively on a millen-nial scale,whereas the climate was relatively stable in MIS5e.展开更多
The high-resolution quantitative analysis of the planktonic foraminifera and the δ18O records of the section between 96.49– 137.6 mcd at ODP Site 1144 on the continental slope of northern South China Sea reveals an ...The high-resolution quantitative analysis of the planktonic foraminifera and the δ18O records of the section between 96.49– 137.6 mcd at ODP Site 1144 on the continental slope of northern South China Sea reveals an abrupt cooling event of sea surface temperature (SST) during the last interglacial (MIS 5.5, i.e. 5e). The dropping range of the winter SST may come to 7.5°C corresponding to 1.2‰ of the δ18O value of sea surface water. This event is comparable with those discovered in the west Europe and the northern Atlantic Ocean, but expressed in a more intensive way. It is inferred that this event may have been induced by middle- to low-latitude processes rather than by polar ice sheet change. Since the Kuroshio-index speciesPulleniatina obliquiloculata displayed the most distinct change at the event, it may also be related to the paleoceanographic change of the low-latitude area in the western Pacific Ocean. This event can be considered as one of “Younger Dryas-style coolings” and is indicative of climate variability of the last interglacial stage.展开更多
THE climatic instability was found by the oxygen isotope record in Greenland ice core(Green-land Ice Project(GRIP))during the Last Interglacial Period.It is regarded as greatprogress in research on the past global...THE climatic instability was found by the oxygen isotope record in Greenland ice core(Green-land Ice Project(GRIP))during the Last Interglacial Period.It is regarded as greatprogress in research on the past global climatic change.The δ<sup>18</sup>O record reveals that thereexist two obvious cold events in the Eemian period,equivalent to substage 5e,and they werefurther confirmed by the lake record from Europe.But these shifts are not found in the icecore GISP2 and in the North Atlantic deep-sea sediment,casting doubt on whether展开更多
基金Supported by the National Natural Science Foundation of China(41802177,42272188,42303056)PetroChina Prospective and Basic Technological Project(2022DJ0507)+1 种基金Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04)National Natural Science of Sichuan Province(23NSFSC546)。
文摘Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.
文摘This study aims at identifying the microevolutionary processes responsible for the onset of the remarkable phylogeographic structure already recorded for the endangered giant clam Tridacna squamosa across its distribution range.For this purpose,the evolutionary,biogeographic and demographic histories of the species were comprehensively reconstructed in a mitochondrial dataset comprising nearly the whole available published cytochrome c oxidase 1 gene sequences of T.squamosa.Relatively higher level of genetic diversification was unveiled within T.squamosa,in comparison to earlier macro-geographic investigations,whereby five mitochondrial clusters were delineated.The resulting divergent gene pools in the Red Sea,western Indian Ocean,Indo-Malay Archipelago and western Pacific were found to be driven by Early Pleistocene glacial vicariance events among refugial lineages.Accentuated genetic diversification of the species across the Indo-Malay Archipelago was successively triggered by historical dispersal event during the Mid-Pleistocene MIS19c interglacial.This latter historical event might have also enabled genetically distinct giant clams from the Indo-Malay Archipelago to subsequently colonize the western Pacific,accounting for the genetic diversity hotspot detected within this region(comprising three divergent mitochondrial clusters).Late Pleistocene demographic expansion of T.squamosa,during the Last Interglacial period,could have contributed to forging spatial distribution of the so far delineated genetic entities across the Indo-Western Pacific.Overall,being resilient to major climate shifts during the Pleistocene through adaptation and consequent diversification,T.squamosa could be used as a model species to track the impact of climate change on genetic variability and structure of marine species.In particular,the new information,provided in this investigation,may help with understanding and/or predicting the consequences of ongoing global warming on genetic polymorphism of endangered coral reef species among which Tridacna sp.are listed as ecologically important.
基金Special thanks to Erik Tihelka for improving the English.This study was supported by the National Natural Science Foundation of China(41602126)the China Geological Survey(DD20160018,DD20221661)+1 种基金the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0706)Liu Bao-jun Academician Research Funds subsidized by Chengdu Center of China Geological Survey.
文摘Palaeoclimatic and palaeoenvironmental reconstructions of the Cryogenian Period have attracted attention in relation to the debated“Snowball Earth”hypothesis and the early evolution of metazoan life.The carbon cycle and redox conditions of the Sturtian-Marinoan non-glacial interval have been subjected to much controversy in the past decades because of the lack of a high-resolution stratigraphic correlation scheme.As one of the typical Sturtian-Marinoan interglacial deposits,the Datangpo Formation was widely distributed in South China with shales continuously deposited.The previous zircon dating data of the Datangpo Formation provide important ages for global constrain of the Sturtian-Marinoan non-glacial interval.Here we present a high-resolution straitigraphic study of the organic carbon isotopes of the Datangpo Formation from a drill core section in northern Guizhou Province.Based on measured episodicδ^(13)C_(org) perturbations,three positive shifts and three negative excursions are identified.Aδ^(13)C_(org)-based chemostratigraphic correlation scheme is proposed herein that works well for the Datangpo Formation regionally.Meanwhile,theδ^(13)C_(org) vertical gradients changed dynamically throughout the formation.This discovery implies that a significant ocean circulation overturn might have occurred in the upper Datangpo Formation,coinciding with the potential oxygenation.
基金This study was supported by the National Key R&D Program for Developing Basic Sciences(Grant Nos.2016YFC1401401 and 2016YFC1401601)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDA19060102 and XDB42000000)the National Natural Science Foundation of China(Grants Nos.91958201,41530426,41576025,41576026,41776030,41931183,41976026 and 41376002).
文摘Two versions of the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System model(CASFGOALS),version f3-L and g3,are used to simulate the two interglacial epochs of the mid-Holocene and the Last Interglacial in phase 4 of the Paleoclimate Modelling Intercomparison Project(PMIP4),which aims to study the impact of changes in orbital parameters on the Earth’s climate.Following the PMIP4 experimental protocols,four simulations for the mid-Holocene and two simulations for the Last Interglacial have been completed,and all the data,including monthly and daily outputs for the atmospheric,oceanic,land and sea-ice components,have been released on the Earth System Grid Federation(ESGF)node.These datasets contribute to PMIP4 and CMIP6(phase 6 of the Coupled Model Intercomparison Project)by providing the variables necessary for the two interglacial periods.In this paper,the basic information of the CAS-FGOALS models and the protocols for the two interglacials are briefly described,and the datasets are validated using proxy records.Results suggest that the CAS-FGOALS models capture the large-scale changes in the climate system in response to changes in solar insolation during the interglacial epochs,including warming in mid-to-high latitudes,changes in the hydrological cycle,the seasonal variation in the extent of sea ice,and the damping of interannual variabilities in the tropical Pacific.Meanwhile,disagreements within and between the models and the proxy data are also presented.These datasets will help the modeling and the proxy data communities with a better understanding of model performance and biases in paleoclimate simulations.
文摘The climate of the Earth has been oscillating between mega warm periods and mega cold periods for 3,000 Ma. Each mega cold period included alternating major warm and cold events. The present mega cold period commenced about 44 Ma in the polar re- gions as the seas cooled following the loss of the circum-equatorial ocean. Before then, a mega warm period lasted for more than 200 Ma. The frequency of the major cold events within the present mega cold period is increasing, with each continent being un- der the influence of a different set of climatic controls. There are many causes of these shifts in climate, ranging from fluctuating meridional ocean currents, rearrangement of tectonic plates, and changes in ocean gateways. These are enhanced by a combination of Milankovitch cycles and many other medium to small oscillations and cyclic controls that cause the daily, monthly, and season- al fluctuations in weather. Examples are given of how these can cause a change from cold to warm events, or vice versa, at pre- sent-day or mega scales, aided by eustatic changes in sea levels and changes in the distribution of air masses, sea ice, and snow.
基金supported by the National Basic Research Program of China(Grant 2004CB720200)the National Natural Science Foundation of China(Grant 49971009)the Chinese Academy of Sciences(Grant KZCX2-SW-118).
文摘The Last Interglacial Period strata in the Milanggouwan section in the Salawusu River valley on the Ordos Plateau, China, have 8.5 sedimentary cycles composed alternately of eolian dune sands, fluvio-lacustrine facies and paleosols. Based on comprehensive analyses on the distribution of magnetic susceptibility and CaCO3 and paleo-ecology indicated by fossils in the region, it is considered that the sedimentation cycles resulted from dry-cold and warm-humid climate fluctuations. Magnetic susceptibility values and CaCO3 contents in stratigraphic sectors I, III, V and II, IV basically respectively present peaks and low vales, and the former three can in time correlate with MIS5a, MIS5c and MIS5e successively and the latter two with MIS5b and MIS5d. In addition, some horizons of eolian dune sands and the low vales of their magnetic susceptibility and CaCO3 are also correlated with 6 periods of cooling events indicated by the higher content of foraminifer Neogloboquadrina pachyderma (S.) documented in the V29—191 drill in the North Atlantic and the cold events recorded by δ 18O in the ice cores in GRIP, especially with 9 periods of dust events in Chinese Loess Plateau.
文摘Research on climate changes between the last interglacial period and Holocene renders a speculation on the tendency of present climate. Fully understanding the nature of the changes will play a significant role in a better understanding of global climate change. This work discussed the climate change of the last interglacial period and Holocene in Beijing area to discover the mechanism of local palaeo-climate change. The palaeo-vegetation of the last interglacial period in Xishan Mountain of Beijing was reconstructed by pollen analysis and thermo-luminescence dating to represent the change of palaeo-climate and palaeo-environment. Palaeo-vegetation indicators demonstrated that the climate change of the last interglacial period included 6 stages and was homologous to that reflected by the records from deep sea depositions and polar ice cores, respectively corresponding to Marine Isotope Stage (MIS) 5e, 5d, 5c, 5b, 5a and the interim from MIS5 to MIS4 from the early to the late. Millennial climate abrupt events occurred in MIS 5e, which had an agreement with the records of GRIP. In addition, a climate warming event appeared in the interim from MIS5 to MIS4 and it also was found in other regions of the world. Compared with the vegetation and environment indicators of Holocene in Beijing area, it was found that the vegetation, climate and environment of the last glacial period were better than those of Holocene. The climate abrupt events not only appeared in the last interglacial period and MIS 5e, but also occurred in Holocene, whose mechanism and pattern were analogical. After analyzing the records of millennial climate abrupt change events from this work, Ice Cores and others, it was concluded that climate was instability in the interglacial period.
基金Supported by the China National Science and Technology Major Project(2016ZX05004)
文摘The discovery of the giant Anyue gas field in Sichuan Basin gives petroleum explorers confidence to find oil and gas in Proterozoic to Cambrian.Based on the reconstruction of tectonic setting and the analysis of major geological events in Mesoproterozoic-Neoproterozoic,the petroleum geological conditions of Proterozoic to Cambrian are discussed in this paper from three aspects,i.e.source rocks,reservoir conditions,and the type and efficiency of play.It is found that lower organisms boomed in the interglacial epoch from Mesoproterozoic-Neoproterozoic to Eopaleozoic when the organic matters concentrated and high quality source rocks formed.Sinian-Cambrian microbial rock and grain-stone banks overlapped with multiple-period constructive digenesis may form large-scale reservoir rocks.However,because of the anoxic event and weak weathering effect in Eopaleozoic-Mesoproterozoic,the reservoirs are generally poor in quality,and only the reservoirs that suffered weathering and leaching may have the opportunity to form dissolution-reconstructed reservoirs.There are large rifts formed during Mesoproterozoic-Neoproterozoic in Huabei Craton,Yangtze Craton,and Tarim Craton in China,and definitely source rocks in the rifts,while whether there are favorite source-reservoir plays depends on circumstance.The existence of Sinian-Cambrian effective play has been proved in Upper Yangtze area.The effectiveness of source-reservoir plays in Huabei area depends on two factors:(1)the effectiveness of secondary play formed by Proterozoic source rock and Paleozoic,Mesozoic,Cenozoic reservoir rocks;(2)the matching between reservoirs formed by reconstruction from Mesoproterozoic-Neoproterozoic to Eopaleozoic and the inner hydrocarbon kitchens with late hydrocarbon generation.As for Tarim Basin,the time of Proterozoic and the original basin should be analyzed before the evaluation of the effective play.To sum up,Proterozoic to Cambrian in the three craton basins in China is a potential exploration formation,which deserves further investigation and research.
基金Razi University(Kermanshah-Iran) authorities for the financial support during the field work
文摘Study of the climate variability in the past and present, and correlating those with changes in the distribution range of species has attracted considerable research interest. The genus Ablepharus consists of 10 recognized species, of which A. bivittatus, A. grayanus and A. pannonicus are documented from Iran. In the present study, we modeled with MaxEnt the potential distribution areas and determined the suitable habitats in past (mid-Holocene [MH], and the Last Interglacial [LIG]) and their current distribution for two species of snake-eyed skinks (A. grayanus and A. pannonicus) separately. Models of the species indicated good fit by the average high area under the curve (AUC) values (A. grayanus = 0.929 4- 0.087 and A. pannonicus = 0.979 4- 0.007). Precipitation of the driest quarter of the year, mean temperature of the coldest quarter of the year, and precipitation of the driest month variables made important contributions to A. grayanus. Two important climate variables contributed importantly to A. pannonicus; temperature seasonality, and mean temperature of the wettest quarter of the year, and one topographic variable, slope. We conclude that these variables form a natural barrier for species dispersal. The MH and the LGM models indicated a larger suitable area than the current distribution.
基金joint supported by the National Natural Science Foundation of China (41401226, 41271024)the China Postdoctoral Science Foundation (2015M570865)
文摘Marine Isotope Stage 11(MIS 11; ca. 423-362 ka) is generally considered to be the best analogue for the present interglacial(Holocene), and investigation of it will improve our understanding of current climate variability and assist in predictions of future climate change. However, many recent studies primarily focus on the structure and duration of MIS 11. Little research has focused on climate warmth and stability recorded in the Chinese loess-paleosol sequences(LPS) during the S4 paleosol formation(equivalent to MIS 11). On the basis of previous work, this study presents a high-resolution record(ca. 75 a/cm) that spans from MIS 1 to MIS 15, as preserved in the thickest known Jingyuan loess section on the western Chinese Loess Plateau(CLP). This LPS is almost 165 m thick and was sampled from the upper part of L6 to the modern soil at 2-cm depth intervals. Measurements of magnetic susceptibility, mean grain size and &gt;63 μm particle content, carbonate content, total organic carbon, and soil color of samples were made to reconstruct the paleoclimate variation, and a grain-size age model was used to constrain the chronological framework. The primary results show that a generally warm-humid climate dominated the S4 paleosol development, but the climate condition was extremely unstable during the whole of MIS 11. Two obviously different climate regimes controlled the MIS 11 climate variation: the early part of MIS 11 was extremely warm and stable, but the latter part was relatively cool(non-glacial) and unstable. This climate pattern was consistent with records on the central CLP and wavelet analysis suggested that it was forced by the 65°N insolation variability modulated by a quasi-100-ka cycle. In addition, a multi-proxy comparative study on the climate conditions during S0 to S5 paleosol development indicates that the period of S4 development might be the warmest interglacial of the past 650 ka. However, the climate condition during S4 development was not the most humid episode as recorded in Xifeng and Luochuan loess sections on the central CLP. On the contrary, it was drier than both the MIS 15 and the present interglacial on the western CLP, which is somewhat similar to the present climate pattern on the central CLP.
文摘Modern meteorological observations have proved that climate change in the northeast Tibet plateau is characteristic of alternations of plateau summer and winter monsoons, and climate change in Chinese Loess plateau is geared by variations of East Asian summer and winter monsoon strengths. A transitional zone between regions dominated by plateau monsoon and East Asian monsoon respectively is located at around 110°E in China. The two monsoon systems are driven by different forcing aspects.Here we show the two climatic systems change during the last interglacial period (IG) by examining geological records. Two aeolian loess\|paleosol sequences,one is located in northeast Tibet plateau closed to Xining and the other one in the northwest Loess plateau closed to Huanxian, were investigated. Age frames of the paleosol and intercalated loess are achieved by Thermoluminescence dating, palaeomagnetic measurements and stratigraphy correlation. Samples taken from Huanxian section were at 5cm intervals, and samples from Xining section were taken at every 10cm. The samples were measured for magnetic susceptibility (MS), rubidium/strontium value (Rb/Sr), Calcium carbonate content (CaCO\-3) and grain\|size distribution (GS). Detail time scale is obtained by two steps. First, correlate MS curves with deep\|sea oxygen isotope time series of stage 4,5 and 6 of Martinson et al (1987) to assign ages of boundaries of stratigraphic units. Second, linearly interpolate ages between the obtained ages and therefore get age of each sampling point.
基金jointly supported by the National Basic Research Program of China(Grant No.2012CB955301)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2012-124)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)
文摘The temperature anomaly and dust concentrations recorded from central Antarctic ice core records display a strong negative correlation. The dust concentration recorded from an ice core in central Antarctica is 50-70 times higher during glacial periods than interglacial periods. This study investigated the impact of dust aerosol on glacial-interglacial climate, using a zonal energy balance model and dust concentration data from an Antarctica ice core. Two important effects of dust, the direct radiative effect and dust-albedo feedback, were considered. On the one hand, the direct radiative effect of dust significantly cooled the climate during the glacial period, with cooling during the last glacial maximum being as much as 2.05℃ in Antarctica. On the other hand, dust deposition onto the ice decreased the surface albedo over Antarctica, leading to increased absorption of solar radiation, inducing a positive feedback that warmed the region by as much as about 0.9℃ during the glacial period. However, cooling by the direct dust effect was found to be the controlling effect for the glacial climate and may be the major influence on the strong negative correlation between temperature and dust concentration during glacial periods.
文摘Ouvéa Island in New Caledonia emerges as a new sea level standard. It has excellent morphological records of former sea level positions at interglacial high-stands as well as records of Holocene changes in sea level from a maximum at about +1.5 m via a significant +70 cm level of sub-recent, probably 17<sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> century, age to a stable to falling sea level in present time.</span>
文摘This research paper analyses the grain-size characteristics of the Quaternary deposits at Xingshan near Siping, Jilin province in China by employing graphic measures to study the grain size distribution and its mode of transport and deposition. The Quaternary deposits at Xingshan lie unconformable on Cretaceous rocks made of siltstone, mudstone and sandstone. The average grain size is between 8.06 to 8.55Φ (0.002 6 ~0.003 7 mm). The Quaternary deposits at Xingshan mainly compose of very fine silt to clay. The compositions of the grade are clay 63% and silt 37%. The clay size components are weathered debris transported and deposited by flowing water from the SE highlands or hills to the low lying NW Xingshan plains whereas the silty components accumulated by aoelian process. The Quaternary deposits at Xingshan accumulated in the middle and late Pleistocene interglacial periods from (459.12~39.03) ka to (88.92~7.56) ka. The standard deviation ranged from 0.96 to 1.36Φ, indicating that the sediments are moderately to poorly sorted, Coefficient of skewness ranged from 0.16~0.31 with an average skewness of 0.218, (Positively skewed towards fine). Kurtosis values (0.84~1.05) from the grain size distribution and visual inspection of the frequency curves indicate platykurtic to mesokurtic curves and unimodal to bimodal grain-size distribution. The type of deposit formation is sand dune and the source is at a distal from its provenance.
基金Project supported by the Climbing Program of the State Eighth Five-Year Plan and the National Natural Science Foundation of China
文摘The climatic and environmental variations since the Last Interglaciation are reconstructed based on the study of the upper 268 m of the 309-m-long Guliya ice core. Five stages can be distinguished since the Last Interglaciation from the δ18O record in the Guliya ice core: Stage 1 (Deglaciation), Stage 2 (the Last Glacial Maximum), Stage 3 (interstadial), Stage 4 (interstadial in the early glacial maximum) and Stage 5 (the Last Interglaciation). Stage 5 can be divided further into 5 substages; a, b, c, d, e. The δ18O record in the Guliya ice core indicates clearly the close correlation between the temperature variation on the Tibetan Plateau and the solar activities. The study indicates that the solar activity is a main forcing to the climatic variation on the Tibetan Plateau. Through a comparison of the ice core record in Guliya with that in the Greenland and the Antarctic, it can be found that the variation of large temperature variation events in different parts of the world is generally the same, but the variation amplitude of temperature is different.
基金supported by the Public Science and Technology Research Funds Projects of the OceanState Oceanic Administration of the People’s Republic of China(Grant No.201005003)+1 种基金the National Natural Science Foundation of China(Grant Nos.41376064,41230959,41106043,and 41076033)the National Basic Research Program of China(Grant No.2007CB815903)
文摘Based on a δ180 chronology, rare earth elements (REE) and other typical elements in sediments from core MD06-3047 in the western Philippine Sea were analyzed to constrain the provenances of the sediments and investigate quantitative changes in the Asian eolian input to the study area over the last 700 ka. Among the competing processes that might affect REE compositions, sediment provenance is the most important one. Provenance analysis suggests that the study sediments have two provenance end-members; local volcanic sources are dominant, and eolian dust from the Asian continent has a smaller contribution. During glacial periods, eolian input to the western Philippine Sea was enhanced. In contrast, material supply from local volcanics in- creased during interglacial periods. Changes in eolian input to the study area were probably related to the strength of the East Asian winter monsoon (EAWM) as well as aridity in the Asian continent on an orbital time scale, and were partly influenced by local control factors on shorter time scales. Therefore, we propose that the present study expands the application of the REE-based method for quantitatively estimating the eolian component from the mid-latitude northern Pacific to the low-latitude western Pacific. Additionally, the study preliminarily confirms the influence of EAWM-transported eolian materi- al on sedimentation in the western Philippine Sea since 700 ka.
基金supported by the National Natural Science Foundation of China(Grant No.41172149)the Science Fund for Creative Research Groups of NSFC(Grant No.41321062)the National Key Basic Research Program of China(Grant No.2015CB953804)
文摘Significant uncertainties remain regarding the temporal evolution of natural vegetation during the Quaternary, and drivers of past vegetation change, on the Chinese Loess Plateau (CLP). This study presents analyses of total organic carbon isotopic composition (TOC) and n-alkane ratios (C31/C27) from the Lingtai loess-palaeosol sequence on the central CLP over the last 450 kyr. The results demonstrate that the vegetation in this region comprised a mix of C3 and C4 plants of herb and woody growth-form. C3 plants dominated for most of the last 450 kyr, but this did not lead to extensive forest. C3 woody plants were more abundant in MIS9 (S3 period) and MIS5 (S 1 period) during warm and humid climate conditions. Herbs increased in the region since 130 kyr, possibly as a result of increased aridity. On the orbital timescales, there was a reduction of C3 herbal plants in MIS 11 ($4) than in M1S 12 (L5), and in Holocene than in the last glacial period. Our isotope and n-alkane proxy records are in agreement with Artemisia pollen changes in the region, which is/was the dominant species in this area and varying due to different heat and water conditions between glacial and interglacial periods. Though the climate in MIS1 (SO) was similar to that in MIS11 (S4), a significant increase in woody plants during the Holocene suggests the impact of human activities and ecological effects of changes in fire activity.
基金Supported by the "973" Project (Grant No. 2005CB422001)the National Natural Science Foundation of China (Grant Nos. 40471016 and 40401007)the Doctoral Foundation of Ministry of Education, China (Grant No. 20030730017).
文摘The selection of high-resolution loess sections is needed in order to determine the climatic variability of the East Asian Monsoon during the last interglacial. Two sequences of S1 on the eastern and west-ern sides of the Liupan Mountain were both composed of five paleosol layers and four loess layers,indicating that there were five strong summer monsoon events and four strong winter monsoon events in MIS5. This corresponds with other records of the East Asian Monsoon,along with NGRIP and the North Atlantic records,implying that the climate of the Northern Hemisphere was very instable during the last interglacial. Two layers of paleosols and one layer of loess had developed during MIS5a and MIS5c. Compared with MIS5e,the climate in MIS5a and MIS5c fluctuated more intensively on a millen-nial scale,whereas the climate was relatively stable in MIS5e.
基金the National Natural Science Foundation of China (Grant No. 4999560).
文摘The high-resolution quantitative analysis of the planktonic foraminifera and the δ18O records of the section between 96.49– 137.6 mcd at ODP Site 1144 on the continental slope of northern South China Sea reveals an abrupt cooling event of sea surface temperature (SST) during the last interglacial (MIS 5.5, i.e. 5e). The dropping range of the winter SST may come to 7.5°C corresponding to 1.2‰ of the δ18O value of sea surface water. This event is comparable with those discovered in the west Europe and the northern Atlantic Ocean, but expressed in a more intensive way. It is inferred that this event may have been induced by middle- to low-latitude processes rather than by polar ice sheet change. Since the Kuroshio-index speciesPulleniatina obliquiloculata displayed the most distinct change at the event, it may also be related to the paleoceanographic change of the low-latitude area in the western Pacific Ocean. This event can be considered as one of “Younger Dryas-style coolings” and is indicative of climate variability of the last interglacial stage.
文摘THE climatic instability was found by the oxygen isotope record in Greenland ice core(Green-land Ice Project(GRIP))during the Last Interglacial Period.It is regarded as greatprogress in research on the past global climatic change.The δ<sup>18</sup>O record reveals that thereexist two obvious cold events in the Eemian period,equivalent to substage 5e,and they werefurther confirmed by the lake record from Europe.But these shifts are not found in the icecore GISP2 and in the North Atlantic deep-sea sediment,casting doubt on whether