High-resolution underwater digital elevation models(DEMs)are important for water and soil conservation,hydrological analysis,and river channel dredging.In this work,the underwater topography of the Panjing River in Sh...High-resolution underwater digital elevation models(DEMs)are important for water and soil conservation,hydrological analysis,and river channel dredging.In this work,the underwater topography of the Panjing River in Shanghai,China,was measured by an unmanned surface vessel.Five different interpolation methods were used to generate the underwater DEM and their precision and applicability for different underwater landforms were analyzed through cross-validation.The results showed that there was a positive correlation between the interpolation error and the terrain surface roughness.The five interpolation methods were all appropriate for the survey area,but their accuracy varied with different surface roughness.Based on the analysis results,an integrated approach was proposed to automatically select the appropriate interpolation method according to the different surface roughness in the surveying area.This approach improved the overall interpolation precision.The suggested technique provides a reference for the selection of interpolationmethods for underwater DEMdata.展开更多
In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subar...In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.展开更多
The shear behavior of large-scale weak intercalation shear zones(WISZs)often governs the stability of foundations,rock slopes,and underground structures.However,due to their wide distribution,undulating morphology,com...The shear behavior of large-scale weak intercalation shear zones(WISZs)often governs the stability of foundations,rock slopes,and underground structures.However,due to their wide distribution,undulating morphology,complex fabrics,and varying degrees of contact states,characterizing the shear behavior of natural and complex large-scale WISZs precisely is challenging.This study proposes an analytical method to address this issue,based on geological fieldwork and relevant experimental results.The analytical method utilizes the random field theory and Kriging interpolation technique to simplify the spatial uncertainties of the structural and fabric features for WISZs into the spatial correlation and variability of their mechanical parameters.The Kriging conditional random field of the friction angle of WISZs is embedded in the discrete element software 3DEC,enabling activation analysis of WISZ C2 in the underground caverns of the Baihetan hydropower station.The results indicate that the activation scope of WISZ C2 induced by the excavation of underground caverns is approximately 0.5e1 times the main powerhouse span,showing local activation.Furthermore,the overall safety factor of WISZ C2 follows a normal distribution with an average value of 3.697.展开更多
This paper deals with the simultaneous inversion of velocity distribution and interface positions in a laterally heterogeneous medium using seismic travel time data. Due to the application of variable ...This paper deals with the simultaneous inversion of velocity distribution and interface positions in a laterally heterogeneous medium using seismic travel time data. Due to the application of variable step length and linear interpolation techniques (for both theoretical travel times and the partial derivative matrix), the computing speed is increased greatly. As compared with other domestic computing programs of this kind, it is five times or more faster than others. Besides reflected waves, the transmitted waves can also be used to form the partial derivative matrix of travel times with respect to interface positions. So this method can make full use of the information about interface positions contained in various transmitted waves and speed up the convergence rate. Digital tests and processing results of real data indicate the feasibility and effectiveness of the method and its program.展开更多
The Istanbul GPS Triangulation Network(IGTN) and the Istanbul Levelling Network(ILN),established in2006,provide data for the determination of a local GNSS/levelling geoid model.These networks’ measurements were done ...The Istanbul GPS Triangulation Network(IGTN) and the Istanbul Levelling Network(ILN),established in2006,provide data for the determination of a local GNSS/levelling geoid model.These networks’ measurements were done separately on both the Asian and European sides of the Bosphorus Strait in the vicinity of Istanbul.To connect these regions for those networks,a Valley Cross Levelling(VCL) data set,acquired in 1986 and 2004,was used.The use of this VCL data set was challenging in calculating the Istanbul geoid model,primarily because of its errors.In this study,this challenge was overcome through newly collected VCL data in 2010,allowing for the readjustment of the ILN and the newly collected VCL data set.The Istanbul geoid model was computed using soft computing techniques including the adaptive-network-based fuzzy inference system(ANFIS) and the artificial neural networks(ANNs).The resulting Istanbul GNSS/levelling geoid model is shown to be more reliable when compared with the model computed using conventional interpolation techniques.展开更多
In this paper, a new higher order Wilson element is presented, and the convergence is proved. Then the interpolation postprocessing technique is used to obtain the global superconvergence and posterior error estimate ...In this paper, a new higher order Wilson element is presented, and the convergence is proved. Then the interpolation postprocessing technique is used to obtain the global superconvergence and posterior error estimate of higher accuracy of this new element for the Sobolev type equations.展开更多
Present work is exploring the influence of land cover on channel morphology in 34 headwater catchments of the lateritic belt of West Bengal.Non-parametric tests(Mann-Whitney U and Kruskal-Wallis)and multivariate analy...Present work is exploring the influence of land cover on channel morphology in 34 headwater catchments of the lateritic belt of West Bengal.Non-parametric tests(Mann-Whitney U and Kruskal-Wallis)and multivariate analysis(Principal Component Analysis and Canonical Discriminant Function models)have successfully differentiated the performance of land cover on channel morphology adjustment among the three groups of headwater streams(forested,transitional,and agricultural)on the Kunur River Basin(KRB).Spatial Interpolation Techniques reveal that intense land-use change,particularly forest conversion to agricultural land,is significantly increasing channel widths(269%)and cross-section area(78%),whereas agricultural channels become shallower(40%)than would be predicted from forested streams.Catchments with the dominance of forest and agricultural land are classified as‘C′and‘B′types of streams respectively,as per Rosgen's Stream Classification Model.Finally,the work claimed that transitional stream group is the definitive area to exaggerate the river restoration plan to stabilize the anthropogenic deformation on channel morphology.展开更多
基金supported by the NationalNatural Science Foundation of China(Grant No.42102318)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘High-resolution underwater digital elevation models(DEMs)are important for water and soil conservation,hydrological analysis,and river channel dredging.In this work,the underwater topography of the Panjing River in Shanghai,China,was measured by an unmanned surface vessel.Five different interpolation methods were used to generate the underwater DEM and their precision and applicability for different underwater landforms were analyzed through cross-validation.The results showed that there was a positive correlation between the interpolation error and the terrain surface roughness.The five interpolation methods were all appropriate for the survey area,but their accuracy varied with different surface roughness.Based on the analysis results,an integrated approach was proposed to automatically select the appropriate interpolation method according to the different surface roughness in the surveying area.This approach improved the overall interpolation precision.The suggested technique provides a reference for the selection of interpolationmethods for underwater DEMdata.
基金supported by the National Natural Science Foundation of China (NSFC) [grant number. 61871414]。
文摘In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.
基金support from the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of China(Grant No.U1865203)the Innovation Team of Changjiang River Scientific Research Institute(Grant Nos.CKSF2021715/YT and CKSF2023305/YT)。
文摘The shear behavior of large-scale weak intercalation shear zones(WISZs)often governs the stability of foundations,rock slopes,and underground structures.However,due to their wide distribution,undulating morphology,complex fabrics,and varying degrees of contact states,characterizing the shear behavior of natural and complex large-scale WISZs precisely is challenging.This study proposes an analytical method to address this issue,based on geological fieldwork and relevant experimental results.The analytical method utilizes the random field theory and Kriging interpolation technique to simplify the spatial uncertainties of the structural and fabric features for WISZs into the spatial correlation and variability of their mechanical parameters.The Kriging conditional random field of the friction angle of WISZs is embedded in the discrete element software 3DEC,enabling activation analysis of WISZ C2 in the underground caverns of the Baihetan hydropower station.The results indicate that the activation scope of WISZ C2 induced by the excavation of underground caverns is approximately 0.5e1 times the main powerhouse span,showing local activation.Furthermore,the overall safety factor of WISZ C2 follows a normal distribution with an average value of 3.697.
文摘This paper deals with the simultaneous inversion of velocity distribution and interface positions in a laterally heterogeneous medium using seismic travel time data. Due to the application of variable step length and linear interpolation techniques (for both theoretical travel times and the partial derivative matrix), the computing speed is increased greatly. As compared with other domestic computing programs of this kind, it is five times or more faster than others. Besides reflected waves, the transmitted waves can also be used to form the partial derivative matrix of travel times with respect to interface positions. So this method can make full use of the information about interface positions contained in various transmitted waves and speed up the convergence rate. Digital tests and processing results of real data indicate the feasibility and effectiveness of the method and its program.
基金the Fulbright Foundationsupported by The Scientific and Technological Research Council of Turkey with the grant number115Y237
文摘The Istanbul GPS Triangulation Network(IGTN) and the Istanbul Levelling Network(ILN),established in2006,provide data for the determination of a local GNSS/levelling geoid model.These networks’ measurements were done separately on both the Asian and European sides of the Bosphorus Strait in the vicinity of Istanbul.To connect these regions for those networks,a Valley Cross Levelling(VCL) data set,acquired in 1986 and 2004,was used.The use of this VCL data set was challenging in calculating the Istanbul geoid model,primarily because of its errors.In this study,this challenge was overcome through newly collected VCL data in 2010,allowing for the readjustment of the ILN and the newly collected VCL data set.The Istanbul geoid model was computed using soft computing techniques including the adaptive-network-based fuzzy inference system(ANFIS) and the artificial neural networks(ANNs).The resulting Istanbul GNSS/levelling geoid model is shown to be more reliable when compared with the model computed using conventional interpolation techniques.
基金the National Natural Science Foundation of China(10671184)
文摘In this paper, a new higher order Wilson element is presented, and the convergence is proved. Then the interpolation postprocessing technique is used to obtain the global superconvergence and posterior error estimate of higher accuracy of this new element for the Sobolev type equations.
基金University Grand Commission,New Delhi,India,for the financial support as Junior Research Fellowship[Award Letter No.:F.15-6(DEC.,2012)/2013(NET),UGC Ref.No.3224/(NET-DEC.2012)]to carry out the research work presented in this paper.
文摘Present work is exploring the influence of land cover on channel morphology in 34 headwater catchments of the lateritic belt of West Bengal.Non-parametric tests(Mann-Whitney U and Kruskal-Wallis)and multivariate analysis(Principal Component Analysis and Canonical Discriminant Function models)have successfully differentiated the performance of land cover on channel morphology adjustment among the three groups of headwater streams(forested,transitional,and agricultural)on the Kunur River Basin(KRB).Spatial Interpolation Techniques reveal that intense land-use change,particularly forest conversion to agricultural land,is significantly increasing channel widths(269%)and cross-section area(78%),whereas agricultural channels become shallower(40%)than would be predicted from forested streams.Catchments with the dominance of forest and agricultural land are classified as‘C′and‘B′types of streams respectively,as per Rosgen's Stream Classification Model.Finally,the work claimed that transitional stream group is the definitive area to exaggerate the river restoration plan to stabilize the anthropogenic deformation on channel morphology.