Industrial Internet of Things(IIoT)service providers have become increasingly important in the manufacturing industry due to their ability to gather and process vast amounts of data from connected devices,enabling man...Industrial Internet of Things(IIoT)service providers have become increasingly important in the manufacturing industry due to their ability to gather and process vast amounts of data from connected devices,enabling manufacturers to improve operational efficiency,reduce costs,and enhance product quality.These platforms provide manufacturers with real-time visibility into their production processes and supply chains,allowing them to optimize operations and make informed decisions.In addition,IIoT service providers can help manufacturers create new revenue streams through the development of innovative products and services and enable them to leverage the benefits of emerging technologies such as Artificial Intelligence(AI)and machine learning.Overall,the implementation of IIoT platforms in the manufacturing industry is crucial for companies seeking to remain competitive and meet the ever-increasing demands of customers in the digital age.In this study,the evaluation criteria to be considered in the selection of IIoT service provider in small andmedium-sized(SME)manufacturing enterprises will be determined and IIoT service providers alternatives will be evaluated using the technique for order preference by similarity to an ideal solution(TOPSIS)method based on circular intuitionistic fuzzy sets.Based on the assessments conducted in accordance with the literature review and expert consultations,a set of 8 selection criteria has been established.These criteria encompass industry expertise,customer support,flexibility and scalability,security,cost-effectiveness,reliability,data analytics,as well as compatibility and usability.Upon evaluating these criteria,it was observed that the security criterion holds the highest significance,succeeded by cost-effectiveness,data analytics,flexibility and scalability,reliability,and customer support criteria,in descending order of importance.Following the evaluation of seven distinct alternatives against these criteria,it was deduced that the A6 alternative,a German service provider,emerged as the most favorable option.The identical issue was addressed utilizing sensitivity analysis alongside various multi-criteria decision-making(MCDM)methods,and after comprehensive evaluation,the outcomes were assessed.Spearman’s correlation coefficient was computed to ascertain the association between the rankings derived from solving the problem using diverse MCDM methods.展开更多
The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper inves...The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper investigates the potential applications of intuitionistic fuzzy sets(IFS)with rough sets in the context of sparse data.When it comes to capture uncertain information emanating fromboth upper and lower approximations,these intuitionistic fuzzy rough numbers(IFRNs)are superior to intuitionistic fuzzy sets and pythagorean fuzzy sets,respectively.We use rough sets in conjunction with IFSs to develop several fairly aggregation operators and analyze their underlying properties.We present numerous impartial laws that incorporate the idea of proportionate dispersion in order to ensure that the membership and non-membership activities of IFRNs are treated equally within these principles.These operations lead to the development of the intuitionistic fuzzy rough weighted fairly aggregation operator(IFRWFA)and intuitionistic fuzzy rough ordered weighted fairly aggregation operator(IFRFOWA).These operators successfully adjust to membership and non-membership categories with fairness and subtlety.We highlight the unique qualities of these suggested aggregation operators and investigate their use in the multiattribute decision-making field.We use the intuitionistic fuzzy rough environment’s architecture to create a novel strategy in situation involving several decision-makers and non-weighted data.Additionally,we developed a novel technique by combining the IFSs with quaternion numbers.We establish a unique connection between alternatives and qualities by using intuitionistic fuzzy quaternion numbers(IFQNs).With the help of this framework,we can simulate uncertainty in real-world situations and address a number of decision-making problems.Using the examples we have released,we offer a sophisticated and systematically constructed illustrative scenario that is intricately woven with the complexity ofmedical evaluation in order to thoroughly assess the relevance and efficacy of the suggested methodology.展开更多
Fuzzy homomorphism is an important research content of fuzzy group theory, different fuzzy mappings will produce different fuzzy homomorphisms. In this paper, the fuzzy homomorphism of groups is generalized. Firstly, ...Fuzzy homomorphism is an important research content of fuzzy group theory, different fuzzy mappings will produce different fuzzy homomorphisms. In this paper, the fuzzy homomorphism of groups is generalized. Firstly, the θ-intuitionistic fuzzy mapping is defined, and the θ-intuitionistic fuzzy homomorphism of groups is obtained. The properties of intuitionistic fuzzy subgroups and intuitionistic fuzzy normal subgroups are studied under the θ-intuitionistic fuzzy homomorphism of groups, and the fundamental theorem of θ-intuitionistic fuzzy homomorphism is proved.展开更多
To address the fuzziness and variability in determining customer demand importance,a dynamic analysis method based on intuitionistic fuzzy numbers is proposed.First,selected customers use intuitionistic fuzzy numbers ...To address the fuzziness and variability in determining customer demand importance,a dynamic analysis method based on intuitionistic fuzzy numbers is proposed.First,selected customers use intuitionistic fuzzy numbers to represent the importance of each demand.Then,the preference information is aggregated using customer weights and time period weights through the intuitionistic fuzzy ordered weighted average operator,yielding a dynamic vector of the subjective importance of the demand index.Finally,the feasibility of the proposed method is demonstrated through an application example of a vibrating sorting screen.展开更多
Attribute reduction,also known as feature selection,for decision information systems is one of the most pivotal issues in machine learning and data mining.Approaches based on the rough set theory and some extensions w...Attribute reduction,also known as feature selection,for decision information systems is one of the most pivotal issues in machine learning and data mining.Approaches based on the rough set theory and some extensions were proved to be efficient for dealing with the problemof attribute reduction.Unfortunately,the intuitionistic fuzzy sets based methods have not received much interest,while these methods are well-known as a very powerful approach to noisy decision tables,i.e.,data tables with the low initial classification accuracy.Therefore,this paper provides a novel incremental attribute reductionmethod to dealmore effectivelywith noisy decision tables,especially for highdimensional ones.In particular,we define a new reduct and then design an original attribute reduction method based on the distance measure between two intuitionistic fuzzy partitions.It should be noted that the intuitionistic fuzzypartitiondistance iswell-knownas aneffectivemeasure todetermine important attributes.More interestingly,an incremental formula is also developed to quickly compute the intuitionistic fuzzy partition distance in case when the decision table increases in the number of objects.This formula is then applied to construct an incremental attribute reduction algorithm for handling such dynamic tables.Besides,some experiments are conducted on real datasets to show that our method is far superior to the fuzzy rough set based methods in terms of the size of reduct and the classification accuracy.展开更多
Intuitionistic fuzzy numbers incorporate the membership and non-membership degrees.In contrast,Z-numbers consist of restriction components,with the existence of a reliability component describing the degree of certain...Intuitionistic fuzzy numbers incorporate the membership and non-membership degrees.In contrast,Z-numbers consist of restriction components,with the existence of a reliability component describing the degree of certainty for the restriction.The combination of intuitionistic fuzzy numbers and Z-numbers produce a new type of fuzzy numbers,namely intuitionistic Z-numbers(IZN).The strength of IZN is their capability of better handling the uncertainty compared to Zadeh's Z-numbers since both components of Z-numbers are charac-terized by the membership and non-membership functions,exhibiting the degree of the hesitancy of decision-makers.This paper presents the application of such numbers in fuzzy multi-criteria decision-making problems.A decision-making model is proposed using the trapezoidal intuitionistic fuzzy power ordered weighted average as the aggregation function and the ranking function to rank the alternatives.The proposed model is then implemented in a supplier selection problem.The obtained ranking is compared to the existing models based on Z-numbers.The results show that the ranking order is slightly different from the existing models.Sensitivity analysis is performed to validate the obtained ranking.The sensitivity analysis result shows that the best supplier is obtained using the proposed model with 80%to 100%consistency despite the drastic change of criteria weights.Intuitionistic Z-numbers play a very important role in describing the uncertainty in the decision makers’opinions in solving decision-making problems.展开更多
In this manuscript,our goal is to introduce the notion of intuitionistic extended fuzzy b-metric-like spaces.We establish some fixed point theorems in this setting.Also,we plot some graphs of an example of obtained re...In this manuscript,our goal is to introduce the notion of intuitionistic extended fuzzy b-metric-like spaces.We establish some fixed point theorems in this setting.Also,we plot some graphs of an example of obtained result for better understanding.We use the concepts of continuous triangular norms and continuous triangular conorms in an intuitionistic fuzzy metric-like space.Triangular norms are used to generalize with the probability distribution of triangle inequality in metric space conditions.Triangular conorms are known as dual operations of triangular norms.The obtained results boost the approaches of existing ones in the literature and are supported by some examples and applications.展开更多
Blockchain is one of the innovative and disruptive technologies that has a wide range of applications in multiple industries beyond cryptocurrency.The widespread adoption of blockchain technology in various industries...Blockchain is one of the innovative and disruptive technologies that has a wide range of applications in multiple industries beyond cryptocurrency.The widespread adoption of blockchain technology in various industries has shown its potential to solve challenging business problems,as well as the possibility to create new business models which can increase a firm’s competitiveness.Due to the novelty of the technology,whereby many companies are still exploring potential use cases,and considering the complexity of blockchain technology,which may require huge changes to a company’s existing systems and processes,it is important for companies to carefully evaluate suitable use cases and determine if blockchain technology is the best solution for their specific needs.This research aims to provide an evaluation framework that determines the important dimensions of blockchain suitability assessment by identifying the key determinants of suitable use cases in a business context.In this paper,a novel approach that utilizes both qualitative(Delphi method)and quantitative(fuzzy set theory)methods has been proposed to objectively account for the uncertainty associated with data collection and the vagueness of subjective judgments.This work started by scanning available literature to identify major suitability dimensions and collected a range of criteria,indicators,and factors that had been previously identified for related purposes.Expert opinions were then gathered using a questionnaire to rank the importance and relevance of these elements to suitability decisions.Subsequently,the data were analyzed and we proceeded to integrate multi-criteria group decision-making(MCGDM)and intuitionistic fuzzy set(IFS)theory.The findings demonstrated a high level of agreement among experts,with the model being extremely sensitive to variances in expert assessments.Furthermore,the results helped to refine and select the most relevant suitability determinants under three important dimensions:functional suitability of the use case,organizational applicability,and ecosystem readiness.展开更多
The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized H...The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.展开更多
[目的]本文旨在解决在自然环境下不同成熟度苹果目标检测精度较低的问题。[方法]提出了一种改进的YOLOv5s模型SODSTR-YOLOv5s(YOLOv5s with small detection layer and omni-dimensional dynamic convolution and swin transformer bloc...[目的]本文旨在解决在自然环境下不同成熟度苹果目标检测精度较低的问题。[方法]提出了一种改进的YOLOv5s模型SODSTR-YOLOv5s(YOLOv5s with small detection layer and omni-dimensional dynamic convolution and swin transformer block),用于不同成熟度苹果检测。首先改进YOLOv5s的多尺度目标检测层,在Prediction中构建检测160×160特征图的检测头,提高小尺寸的不同成熟度苹果的检测精度;其次在Backbone结构中融合Swin Transformer Block,加强同级成熟度的苹果纹理特征融合,弱化纹理特征分布差异带来的消极影响,提高模型泛化能力;最后将Neck结构的Conv模块替换为动态卷积模块ODConv,细化局部特征映射,实现局部苹果细粒度特征的充分提取。基于不同成熟度苹果数据集进行试验,验证改进模型的性能。[结果]改进模型SODSTR-YOLOv5s检测的精确率、召回率、平均精度均值分别为89.1%、95.5%、93.6%,高、中、低成熟度苹果平均精度均值分别为94.1%、93.1%、93.7%,平均检测时间为16 ms,参数量为7.34 M。相比于YOLOv5s模型,改进模型SODSTR-YOLOv5s精确率、召回率、平均精度均值分别提高了3.8%、5.0%、2.9%,参数量和平均检测时间分别增加了0.32 M和5 ms。[结论]改进模型SODSTR-YOLOv5s提升了在自然环境下对不同成熟度苹果的检测能力,能较好地满足实际采摘苹果的检测要求。展开更多
针对煤矿高噪声、低照度、运动模糊与大批量煤矸混杂等复杂工况环境因素导致煤矸识别存在误检、漏检以及检测精度低的问题,提出一种基于CFS-YOLO算法的煤矸智能识别模型。采用ConvNeXt V2(Convolutional Neural Network with NeXt Units...针对煤矿高噪声、低照度、运动模糊与大批量煤矸混杂等复杂工况环境因素导致煤矸识别存在误检、漏检以及检测精度低的问题,提出一种基于CFS-YOLO算法的煤矸智能识别模型。采用ConvNeXt V2(Convolutional Neural Network with NeXt Units Version 2)特征提取模块替换主干网络末端的2个C3(Cross Stage Partial Bottle Neck Mudule)模块,通过将掩码自动编码器(Masked Autoencoders,MAE)和全局响应归一化(Global Response Normalization,GRN)层添加到ConvNeXt架构中,有效缓解特征崩溃问题以及保持特征在网络传递过程中的多样性;采用Focal-EIOU(Focal and Efficient Intersection Over Union)损失函数替换原CIOU(Computer Intersection Over Union)损失函数,通过其Focal-Loss机制和调整样本权重的方式优化边界框回归任务中的样本不平衡问题,提高模型的收敛速度和定位精度;添加无参注意力机制(Simple Attention Mechanism,SimAM)于主干网络每个C3模块的后端,凭借其注意力权重自适应调整策略,提升模型对尺度变化较大或低分辨率煤矸目标关键特征的提取能力。通过消融试验和对比试验验证所提CFS-YOLO模型的有效性与优越性。试验结果表明:CFS-YOLO模型对于煤矸在煤矿高噪声、低照度、运动模糊与大批量煤矸混杂等复杂环境下的检测效果均得到有效提高,模型的平均精度均值达到90.2%,相较于原YOLOv5s模型的平均精度均值提高了3.7%,平均检测速度达到90.09 FPS,可充分满足煤矸实时检测的需求。同时与YOLOv5s、YOLOv7-tiny与YOLOv8n等6种YOLO系列算法相比,CFS-YOLO模型对煤矿复杂环境的适应性最强且综合检测性能最佳,可为煤矸的智能高效分选提供技术支持。展开更多
文摘Industrial Internet of Things(IIoT)service providers have become increasingly important in the manufacturing industry due to their ability to gather and process vast amounts of data from connected devices,enabling manufacturers to improve operational efficiency,reduce costs,and enhance product quality.These platforms provide manufacturers with real-time visibility into their production processes and supply chains,allowing them to optimize operations and make informed decisions.In addition,IIoT service providers can help manufacturers create new revenue streams through the development of innovative products and services and enable them to leverage the benefits of emerging technologies such as Artificial Intelligence(AI)and machine learning.Overall,the implementation of IIoT platforms in the manufacturing industry is crucial for companies seeking to remain competitive and meet the ever-increasing demands of customers in the digital age.In this study,the evaluation criteria to be considered in the selection of IIoT service provider in small andmedium-sized(SME)manufacturing enterprises will be determined and IIoT service providers alternatives will be evaluated using the technique for order preference by similarity to an ideal solution(TOPSIS)method based on circular intuitionistic fuzzy sets.Based on the assessments conducted in accordance with the literature review and expert consultations,a set of 8 selection criteria has been established.These criteria encompass industry expertise,customer support,flexibility and scalability,security,cost-effectiveness,reliability,data analytics,as well as compatibility and usability.Upon evaluating these criteria,it was observed that the security criterion holds the highest significance,succeeded by cost-effectiveness,data analytics,flexibility and scalability,reliability,and customer support criteria,in descending order of importance.Following the evaluation of seven distinct alternatives against these criteria,it was deduced that the A6 alternative,a German service provider,emerged as the most favorable option.The identical issue was addressed utilizing sensitivity analysis alongside various multi-criteria decision-making(MCDM)methods,and after comprehensive evaluation,the outcomes were assessed.Spearman’s correlation coefficient was computed to ascertain the association between the rankings derived from solving the problem using diverse MCDM methods.
基金funded by King Khalid University through a large group research project under Grant Number R.G.P.2/449/44.
文摘The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper investigates the potential applications of intuitionistic fuzzy sets(IFS)with rough sets in the context of sparse data.When it comes to capture uncertain information emanating fromboth upper and lower approximations,these intuitionistic fuzzy rough numbers(IFRNs)are superior to intuitionistic fuzzy sets and pythagorean fuzzy sets,respectively.We use rough sets in conjunction with IFSs to develop several fairly aggregation operators and analyze their underlying properties.We present numerous impartial laws that incorporate the idea of proportionate dispersion in order to ensure that the membership and non-membership activities of IFRNs are treated equally within these principles.These operations lead to the development of the intuitionistic fuzzy rough weighted fairly aggregation operator(IFRWFA)and intuitionistic fuzzy rough ordered weighted fairly aggregation operator(IFRFOWA).These operators successfully adjust to membership and non-membership categories with fairness and subtlety.We highlight the unique qualities of these suggested aggregation operators and investigate their use in the multiattribute decision-making field.We use the intuitionistic fuzzy rough environment’s architecture to create a novel strategy in situation involving several decision-makers and non-weighted data.Additionally,we developed a novel technique by combining the IFSs with quaternion numbers.We establish a unique connection between alternatives and qualities by using intuitionistic fuzzy quaternion numbers(IFQNs).With the help of this framework,we can simulate uncertainty in real-world situations and address a number of decision-making problems.Using the examples we have released,we offer a sophisticated and systematically constructed illustrative scenario that is intricately woven with the complexity ofmedical evaluation in order to thoroughly assess the relevance and efficacy of the suggested methodology.
文摘Fuzzy homomorphism is an important research content of fuzzy group theory, different fuzzy mappings will produce different fuzzy homomorphisms. In this paper, the fuzzy homomorphism of groups is generalized. Firstly, the θ-intuitionistic fuzzy mapping is defined, and the θ-intuitionistic fuzzy homomorphism of groups is obtained. The properties of intuitionistic fuzzy subgroups and intuitionistic fuzzy normal subgroups are studied under the θ-intuitionistic fuzzy homomorphism of groups, and the fundamental theorem of θ-intuitionistic fuzzy homomorphism is proved.
文摘To address the fuzziness and variability in determining customer demand importance,a dynamic analysis method based on intuitionistic fuzzy numbers is proposed.First,selected customers use intuitionistic fuzzy numbers to represent the importance of each demand.Then,the preference information is aggregated using customer weights and time period weights through the intuitionistic fuzzy ordered weighted average operator,yielding a dynamic vector of the subjective importance of the demand index.Finally,the feasibility of the proposed method is demonstrated through an application example of a vibrating sorting screen.
基金funded by Hanoi University of Industry under Grant Number 27-2022-RD/HD-DHCN (URL:https://www.haui.edu.vn/).
文摘Attribute reduction,also known as feature selection,for decision information systems is one of the most pivotal issues in machine learning and data mining.Approaches based on the rough set theory and some extensions were proved to be efficient for dealing with the problemof attribute reduction.Unfortunately,the intuitionistic fuzzy sets based methods have not received much interest,while these methods are well-known as a very powerful approach to noisy decision tables,i.e.,data tables with the low initial classification accuracy.Therefore,this paper provides a novel incremental attribute reductionmethod to dealmore effectivelywith noisy decision tables,especially for highdimensional ones.In particular,we define a new reduct and then design an original attribute reduction method based on the distance measure between two intuitionistic fuzzy partitions.It should be noted that the intuitionistic fuzzypartitiondistance iswell-knownas aneffectivemeasure todetermine important attributes.More interestingly,an incremental formula is also developed to quickly compute the intuitionistic fuzzy partition distance in case when the decision table increases in the number of objects.This formula is then applied to construct an incremental attribute reduction algorithm for handling such dynamic tables.Besides,some experiments are conducted on real datasets to show that our method is far superior to the fuzzy rough set based methods in terms of the size of reduct and the classification accuracy.
基金funded by the Fundamental Research Grant Scheme under the Ministry of Higher Education Malaysia FRGS/1/2019/STG06/UMP/02/9.
文摘Intuitionistic fuzzy numbers incorporate the membership and non-membership degrees.In contrast,Z-numbers consist of restriction components,with the existence of a reliability component describing the degree of certainty for the restriction.The combination of intuitionistic fuzzy numbers and Z-numbers produce a new type of fuzzy numbers,namely intuitionistic Z-numbers(IZN).The strength of IZN is their capability of better handling the uncertainty compared to Zadeh's Z-numbers since both components of Z-numbers are charac-terized by the membership and non-membership functions,exhibiting the degree of the hesitancy of decision-makers.This paper presents the application of such numbers in fuzzy multi-criteria decision-making problems.A decision-making model is proposed using the trapezoidal intuitionistic fuzzy power ordered weighted average as the aggregation function and the ranking function to rank the alternatives.The proposed model is then implemented in a supplier selection problem.The obtained ranking is compared to the existing models based on Z-numbers.The results show that the ranking order is slightly different from the existing models.Sensitivity analysis is performed to validate the obtained ranking.The sensitivity analysis result shows that the best supplier is obtained using the proposed model with 80%to 100%consistency despite the drastic change of criteria weights.Intuitionistic Z-numbers play a very important role in describing the uncertainty in the decision makers’opinions in solving decision-making problems.
文摘In this manuscript,our goal is to introduce the notion of intuitionistic extended fuzzy b-metric-like spaces.We establish some fixed point theorems in this setting.Also,we plot some graphs of an example of obtained result for better understanding.We use the concepts of continuous triangular norms and continuous triangular conorms in an intuitionistic fuzzy metric-like space.Triangular norms are used to generalize with the probability distribution of triangle inequality in metric space conditions.Triangular conorms are known as dual operations of triangular norms.The obtained results boost the approaches of existing ones in the literature and are supported by some examples and applications.
文摘Blockchain is one of the innovative and disruptive technologies that has a wide range of applications in multiple industries beyond cryptocurrency.The widespread adoption of blockchain technology in various industries has shown its potential to solve challenging business problems,as well as the possibility to create new business models which can increase a firm’s competitiveness.Due to the novelty of the technology,whereby many companies are still exploring potential use cases,and considering the complexity of blockchain technology,which may require huge changes to a company’s existing systems and processes,it is important for companies to carefully evaluate suitable use cases and determine if blockchain technology is the best solution for their specific needs.This research aims to provide an evaluation framework that determines the important dimensions of blockchain suitability assessment by identifying the key determinants of suitable use cases in a business context.In this paper,a novel approach that utilizes both qualitative(Delphi method)and quantitative(fuzzy set theory)methods has been proposed to objectively account for the uncertainty associated with data collection and the vagueness of subjective judgments.This work started by scanning available literature to identify major suitability dimensions and collected a range of criteria,indicators,and factors that had been previously identified for related purposes.Expert opinions were then gathered using a questionnaire to rank the importance and relevance of these elements to suitability decisions.Subsequently,the data were analyzed and we proceeded to integrate multi-criteria group decision-making(MCGDM)and intuitionistic fuzzy set(IFS)theory.The findings demonstrated a high level of agreement among experts,with the model being extremely sensitive to variances in expert assessments.Furthermore,the results helped to refine and select the most relevant suitability determinants under three important dimensions:functional suitability of the use case,organizational applicability,and ecosystem readiness.
基金The National Natural Science Foundation of China (No70571087)the National Science Fund for Distinguished Young Scholarsof China (No70625005)
文摘The concept of the degree of similarity between interval-valued intuitionistic fuzzy sets (IVIFSs) is introduced, and some distance measures between IVIFSs are defined based on the Hamming distance, the normalized Hamming distance, the weighted Hamming distance, the Euclidean distance, the normalized Euclidean distance, and the weighted Euclidean distance, etc. Then, by combining the Hausdorff metric with the Hamming distance, the Euclidean distance and their weighted versions, two other similarity measures between IVIFSs, i. e., the weighted Hamming distance based on the Hausdorff metric and the weighted Euclidean distance based on the Hausdorff metric, are defined, and then some of their properties are studied. Finally, based on these distance measures, some similarity measures between IVIFSs are defined, and the similarity measures are applied to pattern recognitions with interval-valued intuitionistic fuzzy information.
文摘[目的]本文旨在解决在自然环境下不同成熟度苹果目标检测精度较低的问题。[方法]提出了一种改进的YOLOv5s模型SODSTR-YOLOv5s(YOLOv5s with small detection layer and omni-dimensional dynamic convolution and swin transformer block),用于不同成熟度苹果检测。首先改进YOLOv5s的多尺度目标检测层,在Prediction中构建检测160×160特征图的检测头,提高小尺寸的不同成熟度苹果的检测精度;其次在Backbone结构中融合Swin Transformer Block,加强同级成熟度的苹果纹理特征融合,弱化纹理特征分布差异带来的消极影响,提高模型泛化能力;最后将Neck结构的Conv模块替换为动态卷积模块ODConv,细化局部特征映射,实现局部苹果细粒度特征的充分提取。基于不同成熟度苹果数据集进行试验,验证改进模型的性能。[结果]改进模型SODSTR-YOLOv5s检测的精确率、召回率、平均精度均值分别为89.1%、95.5%、93.6%,高、中、低成熟度苹果平均精度均值分别为94.1%、93.1%、93.7%,平均检测时间为16 ms,参数量为7.34 M。相比于YOLOv5s模型,改进模型SODSTR-YOLOv5s精确率、召回率、平均精度均值分别提高了3.8%、5.0%、2.9%,参数量和平均检测时间分别增加了0.32 M和5 ms。[结论]改进模型SODSTR-YOLOv5s提升了在自然环境下对不同成熟度苹果的检测能力,能较好地满足实际采摘苹果的检测要求。
文摘针对煤矿高噪声、低照度、运动模糊与大批量煤矸混杂等复杂工况环境因素导致煤矸识别存在误检、漏检以及检测精度低的问题,提出一种基于CFS-YOLO算法的煤矸智能识别模型。采用ConvNeXt V2(Convolutional Neural Network with NeXt Units Version 2)特征提取模块替换主干网络末端的2个C3(Cross Stage Partial Bottle Neck Mudule)模块,通过将掩码自动编码器(Masked Autoencoders,MAE)和全局响应归一化(Global Response Normalization,GRN)层添加到ConvNeXt架构中,有效缓解特征崩溃问题以及保持特征在网络传递过程中的多样性;采用Focal-EIOU(Focal and Efficient Intersection Over Union)损失函数替换原CIOU(Computer Intersection Over Union)损失函数,通过其Focal-Loss机制和调整样本权重的方式优化边界框回归任务中的样本不平衡问题,提高模型的收敛速度和定位精度;添加无参注意力机制(Simple Attention Mechanism,SimAM)于主干网络每个C3模块的后端,凭借其注意力权重自适应调整策略,提升模型对尺度变化较大或低分辨率煤矸目标关键特征的提取能力。通过消融试验和对比试验验证所提CFS-YOLO模型的有效性与优越性。试验结果表明:CFS-YOLO模型对于煤矸在煤矿高噪声、低照度、运动模糊与大批量煤矸混杂等复杂环境下的检测效果均得到有效提高,模型的平均精度均值达到90.2%,相较于原YOLOv5s模型的平均精度均值提高了3.7%,平均检测速度达到90.09 FPS,可充分满足煤矸实时检测的需求。同时与YOLOv5s、YOLOv7-tiny与YOLOv8n等6种YOLO系列算法相比,CFS-YOLO模型对煤矿复杂环境的适应性最强且综合检测性能最佳,可为煤矸的智能高效分选提供技术支持。