A high-performance terahertz Schottky barrier diode(SBD)with an inverted trapezoidal epitaxial cross-sectional structure featuring high varactor characteristics and reverse breakdown characteristics is reported in thi...A high-performance terahertz Schottky barrier diode(SBD)with an inverted trapezoidal epitaxial cross-sectional structure featuring high varactor characteristics and reverse breakdown characteristics is reported in this paper.Inductively coupled plasma dry etching and dissolution wet etching are used to define the profile of the epitaxial layer,by which the voltage-dependent variation trend of the thickness of the metal-semiconductor contact depletion layer is modified.The simulation of the inverted trapezoidal epitaxial cross-section SBD is also conducted to explain the physical mechanism of the electric field and space charge region area.Compared with the normal structure,the grading coefficient M increases from 0.47 to 0.52,and the capacitance modulation ratio(C^(max)/C_(min))increases from 6.70 to 7.61.The inverted trapezoidal epitaxial cross-section structure is a promising approach to improve the variable-capacity ratio by eliminating the accumulation of charge at the Schottky electrode edge.A 190 GHz frequency doubler based on the inverted trapezoidal epitaxial cross-section SBD also shows a doubling efficiency of 35%compared to that 30%of a normal SBD.展开更多
The effects of various surface roughness geometrical properties including roughness height(5%,10%,15%),number(3,6),and shape(rectangular and triangular)on the flow and heat transfer of slip-flow in trapezoidal microch...The effects of various surface roughness geometrical properties including roughness height(5%,10%,15%),number(3,6),and shape(rectangular and triangular)on the flow and heat transfer of slip-flow in trapezoidal microchannels were investigated.The effects of mentioned parameters on the heat transfer coefficient through the microchannel,average Nusselt number and pressure drop for Reynolds number of 5,10,15 and 20 were examined.The obtained results showed that increasing the roughness height and number increases the pressure drop due to higher stagnation effects before and after roughness elements and decreases the Nusselt number due to higher recirculation zones effects than obstruction effects.The most reduction in Nusselt number and the most increment in pressure drop occur at the roughness height of 15%,roughness number of 6 and Reynolds number of 20 by about 10.6%and 52.8%than the smooth microchannel respectively.展开更多
In this paper,the anisotropic etching process of Si(100) wafers in tetramethyl ammonium hydroxide(TMAH) solution with isopropyl alcohol(IPA) is investigated in detail. An inverted trapezoidal pattern is developed. A s...In this paper,the anisotropic etching process of Si(100) wafers in tetramethyl ammonium hydroxide(TMAH) solution with isopropyl alcohol(IPA) is investigated in detail. An inverted trapezoidal pattern is developed. A series of experiments are performed by changing TMAH concentration,IPA concentration,etching temperature and etching time. The structure of inverted trapezoidal patterns and roughness of the bottom surface are characterized by scanning electron microscopy(SEM) and atomic force microscopy(AFM). The results show that with TMAH concentration increases,the roughness of bottom surface will decrease. The addition of IPA into TMAH solution improves the morphology of the bottom surface significantly. Low temperature is beneficial to get a smooth bottom surface. Furthermore,etching time can change the bottom surface roughness. A model is proposed to explain the etching processes. The hillock area ratio of the bottom surface has the same tendency as the etching area ratio. Finally,smooth silicon inverted trapezoidal patterns are obtained for epitaxial growth of Ga N-based light emitting diode(LED) devices.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.61871072)。
文摘A high-performance terahertz Schottky barrier diode(SBD)with an inverted trapezoidal epitaxial cross-sectional structure featuring high varactor characteristics and reverse breakdown characteristics is reported in this paper.Inductively coupled plasma dry etching and dissolution wet etching are used to define the profile of the epitaxial layer,by which the voltage-dependent variation trend of the thickness of the metal-semiconductor contact depletion layer is modified.The simulation of the inverted trapezoidal epitaxial cross-section SBD is also conducted to explain the physical mechanism of the electric field and space charge region area.Compared with the normal structure,the grading coefficient M increases from 0.47 to 0.52,and the capacitance modulation ratio(C^(max)/C_(min))increases from 6.70 to 7.61.The inverted trapezoidal epitaxial cross-section structure is a promising approach to improve the variable-capacity ratio by eliminating the accumulation of charge at the Schottky electrode edge.A 190 GHz frequency doubler based on the inverted trapezoidal epitaxial cross-section SBD also shows a doubling efficiency of 35%compared to that 30%of a normal SBD.
文摘The effects of various surface roughness geometrical properties including roughness height(5%,10%,15%),number(3,6),and shape(rectangular and triangular)on the flow and heat transfer of slip-flow in trapezoidal microchannels were investigated.The effects of mentioned parameters on the heat transfer coefficient through the microchannel,average Nusselt number and pressure drop for Reynolds number of 5,10,15 and 20 were examined.The obtained results showed that increasing the roughness height and number increases the pressure drop due to higher stagnation effects before and after roughness elements and decreases the Nusselt number due to higher recirculation zones effects than obstruction effects.The most reduction in Nusselt number and the most increment in pressure drop occur at the roughness height of 15%,roughness number of 6 and Reynolds number of 20 by about 10.6%and 52.8%than the smooth microchannel respectively.
基金supported by the National Natural Science Foundation of China(Nos.51472229,61422405,51202238,61306051 and 61474109)the “100 Talent Program” of Chinese Academy of Sciencesthe Opening Funding of State Key Lab of Silicon Materials(No.SKL2014-4)
文摘In this paper,the anisotropic etching process of Si(100) wafers in tetramethyl ammonium hydroxide(TMAH) solution with isopropyl alcohol(IPA) is investigated in detail. An inverted trapezoidal pattern is developed. A series of experiments are performed by changing TMAH concentration,IPA concentration,etching temperature and etching time. The structure of inverted trapezoidal patterns and roughness of the bottom surface are characterized by scanning electron microscopy(SEM) and atomic force microscopy(AFM). The results show that with TMAH concentration increases,the roughness of bottom surface will decrease. The addition of IPA into TMAH solution improves the morphology of the bottom surface significantly. Low temperature is beneficial to get a smooth bottom surface. Furthermore,etching time can change the bottom surface roughness. A model is proposed to explain the etching processes. The hillock area ratio of the bottom surface has the same tendency as the etching area ratio. Finally,smooth silicon inverted trapezoidal patterns are obtained for epitaxial growth of Ga N-based light emitting diode(LED) devices.