Three types of plasma ion sources designed, manufactured and optimized in the Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority are introduced. Different means were investigated...Three types of plasma ion sources designed, manufactured and optimized in the Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority are introduced. Different means were investigated to generate the discharge current and ion beam current extracted from the plasma. The various plasmas described include a DC glow discharge plasma, an arc discharge plasma and a radio frequency discharge plasma.展开更多
An ionic liquid ion source(ILIS)is a kind of high brightness ion source capable of providing high-speed positive or negative ion beams.This paper presents a miniaturized ILIS based on an array of porous metal strips.T...An ionic liquid ion source(ILIS)is a kind of high brightness ion source capable of providing high-speed positive or negative ion beams.This paper presents a miniaturized ILIS based on an array of porous metal strips.The porous emitter array,integrated with seven 10 mm long strips,is fabricated using wire electrical discharge machining(WEDM)combined with electrochemical etching.The assembled ILIS is 30 mm×30 mm×17.5 mm in size and weighs less than 25 g.A series of experiments,including anⅠ-Ⅴcharacteristic test,a retarding potential analyzer(RPA)test,and a spatial plume distribution test,have been conducted in vacuo to characterize the performance of the ILIS.Results show that the emitted current is up to about 800μA and ion transparency is as high as 94%.Besides,RPA curves reveal that the total fragmentation rate of the emitted particles accounts for 48.8%in positive mode and 59.8%in negative mode.Further,with the increase in applied acceleration voltage,the voltage loss rises while the energy efficiency decreases.It is also found that the plume perpendicular to the strips has a higher divergence than the one parallel to the strips.A numerical simulation by COMSOL reveals that the electric field distribution between the two electrodes results in such a spatial plume profile.展开更多
Synchronous output of one beam line's two megawatt hot cathode bucket ion sources is required when Neutral Beam Injector (NBI) works on the Experimental Advanced Supercon- ducting Tokamak (EAST). Neutral Beam Inj...Synchronous output of one beam line's two megawatt hot cathode bucket ion sources is required when Neutral Beam Injector (NBI) works on the Experimental Advanced Supercon- ducting Tokamak (EAST). Neutral Beam Injector Control System (NBICS) realizes synchronous output and asynchronous output of two ion sources with network communication and hardware triggers. And the synchronous time can be set by operator. In synchronous mode, two megawatt hot cathode bucket ion sources can produce neutral beams at any relative time with higher energy than two sources' asynchronous output. Two megawatt hot cathode bucket ion sources' synchronous output makes an important contribution to NBI system of 4-8 MW with 10-100 s pulse length and provides more and better parameters for EAST physical experiments.展开更多
A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber,for neutral beam injecti...A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber,for neutral beam injection system in CFETR.In this model,the electron effective collision frequency and the ion mobility at high E-fields are employed,for accurate simulation of discharges at low pressures(0.3 Pa-2 Pa)and high powers(40 kW-100 kW).The results indicate that when the high E-field ion mobility is taken into account,the electron density is about four times higher than the value in the low E-field case.In addition,the influences of the magnetic field,pressure and power on the electron density and electron temperature are demonstrated.It is found that the electron density and electron temperature in the xz-plane along permanent magnet side become much more asymmetric when magnetic field enhances.However,the plasma parameters in the yz-plane without permanent magnet side are symmetric no matter the magnetic field is applied or not.Besides,the maximum of the electron density first increases and then decreases with magnetic field,while the electron temperature at the bottom of the expansion region first decreases and then almost keeps constant.As the pressure increases from 0.3 Pa to 2 Pa,the electron density becomes higher,with the maximum moving upwards to the driver region,and the symmetry of the electron temperature in the xz-plane becomes much better.As power increases,the electron density rises,whereas the spatial distribution is similar.It can be summarized that the magnetic field and gas pressure have great influence on the symmetry of the plasma parameters,while the power only has little effect.展开更多
A systematic research on the electron deposition process in the JAEA 10 A ion source is carried out by using a particle-in-cell/Monte Carlo collision simulation, which is based on a full three-dimensional self-develop...A systematic research on the electron deposition process in the JAEA 10 A ion source is carried out by using a particle-in-cell/Monte Carlo collision simulation, which is based on a full three-dimensional self-developed code. Two parts are studied. One is the space and energy distribution of fast and slow electrons, the other is the vibration excitation collisions between electrons and hydrogen moleculars. The results show that the inhomogeneity of electrons comes from the Y direction drift of the fast electrons (Te ≥25 eV) due to the action of the magnetic fields. This drift also increases the number of vibration excitation collisions in the -Y direction, and results in the increase of Ha in the -Y direction, eventually leading to the -Y drift of H^-. It explains the spatial non-uniformity in the JAEA 10 A ion source.展开更多
In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion s...In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion source.Through the finite element analysis method,the electrostatic analyses of insulators and grid plates were carried out,the material and structure parameters of insulators were determined.The maximum electric field around each insulator is about 4 kV/mm,and the maximum electric field between grids is about 14 kV/mm,which can meet the 120 keV withstand voltage holding.The insulation system for the positive ion source accelerator with 120 keV is designed,and the connection and basic parameters of insulators and support flanges are analyzed and determined.展开更多
In order to extract parallel beam from ion sources,it's necessary to design suitable electrode configurations in extraction zone.Taking the effect of the space-charge into account,the electrode configurations shou...In order to extract parallel beam from ion sources,it's necessary to design suitable electrode configurations in extraction zone.Taking the effect of the space-charge into account,the electrode configurations should vary with beam current density.A means of calculating extraction configuration of parallel beam with certain current density has been evolved from the space-charge limited current.By solving Poisson equation and Laplace equation,the potential distribution close to the strip beam has been gotten.展开更多
The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational develo...The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational development and utilization of water resources and planning of ecological environment protection.With the expansion and diversification of human activities,the quality of surface rivers will be more directly affected.Therefore,it is of great significance to pay attention to the hydrochemical characteristics of plateau surface rivers and the influence of human activities on their circulation and evolution.In this study,surface water in the Duoqu basin of Jinsha River located in Hengduan mountain region of Eastern Tibet was selected as the representative case.Twenty-three groups of surface water samples were collected to analyze the hydrochemical characteristics and ion sources based on correlation analysis,piper trigram,gibbs model,hydrogen and oxygen isotopic techniques.The results suggest the following:(1)The pH showed slight alkalinity with the value ranged from 7.25 to 8.62.Ca^(2+),Mg^(2+)and HCO_(3)^(–)were the main cations and anions.HCO_(3)^(-)Ca and HCO_(3)^(-)Ca·Mg were the primary hydrochemical types for the surface water of Duoqu River.The correlation analysis showed that TDS had the most significant correlation with Ca^(2+),Mg^(2+)and HCO_(3)^(–).Analysis on hydrogen and oxygen isotopes indicated that the surface rivers were mainly recharged by atmospheric precipitation and glacial melt water in this study area.(2)The surface water had a certain reverse cation alternating adsorption,and surface water ions were mainly derived from rock weathering,mainly controlled by weathering and dissolution of carbonates,and secondly by silicates and sodium rocks.(3)The influence of human activities was weak,while the development of cinnabar minerals had a certain impact on the hydrochemistry characteristics,which was the main factor for causing the increase of SO_(4)^(2–).The densely populated county towns and temples with frequent incense burning activities may cause some anomalies of surface water quality.At present,the Duoqu River watershed had gone through a certain influence of mineral exploitation,so the hydrological cycle and river eco-environment at watershed scale will still bound to be change.The results could provide basic support for better understanding water balance evolution as well as the ecological protection of Duoqu River watershed.展开更多
As clearly demonstrated at several laboratories,the performances of electron-cyclotron resonance (ECR)ion sources can be enhanced by increasing the physical sizes(volumes)of embedded ECR zones.En- larged ECR zones hav...As clearly demonstrated at several laboratories,the performances of electron-cyclotron resonance (ECR)ion sources can be enhanced by increasing the physical sizes(volumes)of embedded ECR zones.En- larged ECR zones have been achieved by engineering the central magnetic field region of these sources so they are uniformly-distributed"volumes"in resonance with single-frequency rf power.Alternatively,the number of ECR surfaces in conventional minimum-B geometry sources can be increased by heating their plasmas with multiple,discrete frequency microwave radiation.Broadband rf power offers a simple,low cost and arguably more effective means for increasing the physical sizes of the ECR zones within the latter source type.In this article,theoretical arguments are made in support of the volume effect and the charge-state enhancing ef- fects of broadband microwave radiation(bandwidth:200MHz)plasma heating are demonstrated by comparing the high-charge-states of Ar ion beams,produced by powering a conventional minimum-B geometry,6.4GHz ECR ion source,equipped with a biased disk,with those produced by conventional bandwidth(bandwidth:~1.5MHz)radiation.展开更多
A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in fr...A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring(absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid(EG) current and H-current are increased when the absorber is introduced.展开更多
Ion beam technology is used widely in many fields such as electric, material, optics, medicine, biology and so on. At the same time, it brings some huge technological effects and economical benefits, especially for th...Ion beam technology is used widely in many fields such as electric, material, optics, medicine, biology and so on. At the same time, it brings some huge technological effects and economical benefits, especially for the optical applocations. According for the technology, the properties of high accuarate spectral analyzer also can be improved by manufacturing the lage-area holographic ion beam eathing(HIBE) grating. Simultaneously, as one of the parts of ion beam technology, the developments of ion beam sources have some important effects to content the demands of ion beam technology such as large ion beam flux, excellent optical qualities. In this paper, an ion beam source called inductively coupled plasma(ICP) ion beam source was introduced, and the extractor system, the application prospect were also discussed.展开更多
A new electron impact storage ion source has been designed for time of flight mass spectrometers with a high mass resolving power and high sensitivity. Because of the storage and compressing focus of the source, the o...A new electron impact storage ion source has been designed for time of flight mass spectrometers with a high mass resolving power and high sensitivity. Because of the storage and compressing focus of the source, the overall performance of the instrument has been improved greatly with a mass resolving power up to 3 500. The conditions of the second order of the focus are given and the storage ability is proved. The competer simulations and experiment results are given, too.展开更多
In the design of negative hydrogen ion sources,a magnetic filter field of tens of Gauss at the expansion region is essential to reduce the electron temperature,which usually results in a magnetic field of around 10 Ga...In the design of negative hydrogen ion sources,a magnetic filter field of tens of Gauss at the expansion region is essential to reduce the electron temperature,which usually results in a magnetic field of around 10 Gauss in the driver region,destabilizing the discharge.The magnetic shield technique is proposed in this work to reduce the magnetic field in the driver region and improve the discharge characteristics.In this paper,a three-dimensional fluid model is developed within COMSOL to study the influence of the magnetic shield on the generation and transport of plasmas in the negative hydrogen ion source.It is found that when the magnetic shield material is applied at the interface of the expansion region and the driver region,the electron density can be effectively increased.For instance,the maximum of the electron density is 6.7×10^(17)m^(-3)in the case without the magnetic shield,and the value increases to 9.4×10^(17)m^(-3)when the magnetic shield is introduced.展开更多
Huazhong University of Science and Technology has developed an experimental setup of a radio frequency(RF) driven negative hydrogen ion source,to investigate the physics of production and extraction of the H^(-)ions f...Huazhong University of Science and Technology has developed an experimental setup of a radio frequency(RF) driven negative hydrogen ion source,to investigate the physics of production and extraction of the H^(-)ions for neutral beam injection in nuclear fusion reactors.The main design parameters of the ion source are:RF power ≤40 kW;extraction voltage ≤10kV;accelerator voltage ≤20 kV.This paper gives an overview of the progress of the ion source with particular emphasis on some issues.The RF driver and source plasma are analyzed and optimized in terms of impedance matching,plasma characteristics and power coupling.In regard to the simulation analysis,a plasma model based on the particle-in-cell method and a beam trajectory model considering beam stripping loss are developed to investigate the plasma and negative ions transport inside the ion source.Furthermore,a collisional radiative model of H and H2is built for plasma optical diagnosis.展开更多
A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping m...A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.展开更多
Collinear laser spectroscopy is a powerful tool for studying the nuclear spins,electromagnetic moments,and charge radii of exotic nuclei.To study the nuclear properties of unstable nuclei at the Beijing Radioactive Io...Collinear laser spectroscopy is a powerful tool for studying the nuclear spins,electromagnetic moments,and charge radii of exotic nuclei.To study the nuclear properties of unstable nuclei at the Beijing Radioactive Ion-beam Facility(BRIF)and the future High Intensity Heavy-ion Accelerator Facility(HIAF),we developed a collinear laser spectroscopy apparatus integrated with an offline laser ablation ion source and a laser system.The overall performance of this state-of-the-art technique was evaluated,and the system was commissioned using a bunched stable ion beam.The high-resolution optical spectra for the 4s ^(2)S_(1/2)→4p^(2)P_(3/2)(D2)ionic transition of ^(40;42;44;48)Ca isotopes were successfully measured.The extracted isotope shifts relative to ^(40)Ca showed excellent agreement with the literature values.This system is now ready for use at radioactive ion beam facilities such as the BRIF and paves the way for the further development of higher-sensitivity collinear resonance ionization spectroscopy techniques.展开更多
Neutral beam injection is one of the main plasma heating methods in nuclear fusion devices. In order to support the scientific study of the Experimental Advanced Superconducting Tokamak (EAST), a megawatt-level high...Neutral beam injection is one of the main plasma heating methods in nuclear fusion devices. In order to support the scientific study of the Experimental Advanced Superconducting Tokamak (EAST), a megawatt-level high current ion source is designed and manufactured in the ASIPP, and the progress and preliminary test results will be presented in this paper.展开更多
The neutral beam injection (NBI) system is one of the most important auxiliary plasma heating and current driving methods for fusion device. A high power ion beam of 3 MW with 80 keV beam energy in 0.5 s beam durati...The neutral beam injection (NBI) system is one of the most important auxiliary plasma heating and current driving methods for fusion device. A high power ion beam of 3 MW with 80 keV beam energy in 0.5 s beam duration and a long pulse ion beam of 4 s with 50 keV beam energy ion beam extraction were achieved on the EAST neutral beam injector on the teststand. The preliminary results show that the EAST-NBI system was developed successfully on schedule.展开更多
As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and...As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi- threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.展开更多
文摘Three types of plasma ion sources designed, manufactured and optimized in the Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority are introduced. Different means were investigated to generate the discharge current and ion beam current extracted from the plasma. The various plasmas described include a DC glow discharge plasma, an arc discharge plasma and a radio frequency discharge plasma.
基金supported by National Natural Science Foundation of China(No.52075334)。
文摘An ionic liquid ion source(ILIS)is a kind of high brightness ion source capable of providing high-speed positive or negative ion beams.This paper presents a miniaturized ILIS based on an array of porous metal strips.The porous emitter array,integrated with seven 10 mm long strips,is fabricated using wire electrical discharge machining(WEDM)combined with electrochemical etching.The assembled ILIS is 30 mm×30 mm×17.5 mm in size and weighs less than 25 g.A series of experiments,including anⅠ-Ⅴcharacteristic test,a retarding potential analyzer(RPA)test,and a spatial plume distribution test,have been conducted in vacuo to characterize the performance of the ILIS.Results show that the emitted current is up to about 800μA and ion transparency is as high as 94%.Besides,RPA curves reveal that the total fragmentation rate of the emitted particles accounts for 48.8%in positive mode and 59.8%in negative mode.Further,with the increase in applied acceleration voltage,the voltage loss rises while the energy efficiency decreases.It is also found that the plume perpendicular to the strips has a higher divergence than the one parallel to the strips.A numerical simulation by COMSOL reveals that the electric field distribution between the two electrodes results in such a spatial plume profile.
文摘Synchronous output of one beam line's two megawatt hot cathode bucket ion sources is required when Neutral Beam Injector (NBI) works on the Experimental Advanced Supercon- ducting Tokamak (EAST). Neutral Beam Injector Control System (NBICS) realizes synchronous output and asynchronous output of two ion sources with network communication and hardware triggers. And the synchronous time can be set by operator. In synchronous mode, two megawatt hot cathode bucket ion sources can produce neutral beams at any relative time with higher energy than two sources' asynchronous output. Two megawatt hot cathode bucket ion sources' synchronous output makes an important contribution to NBI system of 4-8 MW with 10-100 s pulse length and provides more and better parameters for EAST physical experiments.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFE0300106)the National Natural Science Foundation of China(Grant No.12075049)the Fundamental Research Funds for the Central Universities,China(Grant Nos.DUT20LAB201 and DUT21LAB110).
文摘A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber,for neutral beam injection system in CFETR.In this model,the electron effective collision frequency and the ion mobility at high E-fields are employed,for accurate simulation of discharges at low pressures(0.3 Pa-2 Pa)and high powers(40 kW-100 kW).The results indicate that when the high E-field ion mobility is taken into account,the electron density is about four times higher than the value in the low E-field case.In addition,the influences of the magnetic field,pressure and power on the electron density and electron temperature are demonstrated.It is found that the electron density and electron temperature in the xz-plane along permanent magnet side become much more asymmetric when magnetic field enhances.However,the plasma parameters in the yz-plane without permanent magnet side are symmetric no matter the magnetic field is applied or not.Besides,the maximum of the electron density first increases and then decreases with magnetic field,while the electron temperature at the bottom of the expansion region first decreases and then almost keeps constant.As the pressure increases from 0.3 Pa to 2 Pa,the electron density becomes higher,with the maximum moving upwards to the driver region,and the symmetry of the electron temperature in the xz-plane becomes much better.As power increases,the electron density rises,whereas the spatial distribution is similar.It can be summarized that the magnetic field and gas pressure have great influence on the symmetry of the plasma parameters,while the power only has little effect.
基金supported by the National Natural Science Foundation of China(Grant No.11176032)the China Academy of Engineering Physics(CAEP)THz Science and Technology Foundation(Grant No.CAEPTHZ201209)+1 种基金the Scientific Reserch Fund of Sichuan Provincial Education Department,China(GrantNo.12ZA183)the Southwest University of Science and Technology Doctor Fund,China(Grant No.13zx7106)
文摘A systematic research on the electron deposition process in the JAEA 10 A ion source is carried out by using a particle-in-cell/Monte Carlo collision simulation, which is based on a full three-dimensional self-developed code. Two parts are studied. One is the space and energy distribution of fast and slow electrons, the other is the vibration excitation collisions between electrons and hydrogen moleculars. The results show that the inhomogeneity of electrons comes from the Y direction drift of the fast electrons (Te ≥25 eV) due to the action of the magnetic fields. This drift also increases the number of vibration excitation collisions in the -Y direction, and results in the increase of Ha in the -Y direction, eventually leading to the -Y drift of H^-. It explains the spatial non-uniformity in the JAEA 10 A ion source.
基金supported by National Natural Science Foundation of China(No.11975261)。
文摘In order to support the physical research on the EAST tokamak,a new positive ion source with designed beam energy of 120 keV was proposed to be developed.Accelerator structure is one of the key components of the ion source.Through the finite element analysis method,the electrostatic analyses of insulators and grid plates were carried out,the material and structure parameters of insulators were determined.The maximum electric field around each insulator is about 4 kV/mm,and the maximum electric field between grids is about 14 kV/mm,which can meet the 120 keV withstand voltage holding.The insulation system for the positive ion source accelerator with 120 keV is designed,and the connection and basic parameters of insulators and support flanges are analyzed and determined.
文摘In order to extract parallel beam from ion sources,it's necessary to design suitable electrode configurations in extraction zone.Taking the effect of the space-charge into account,the electrode configurations should vary with beam current density.A means of calculating extraction configuration of parallel beam with certain current density has been evolved from the space-charge limited current.By solving Poisson equation and Laplace equation,the potential distribution close to the strip beam has been gotten.
基金financially supported by the Geological Survey Project of China Geological Survey(DD20230077,DD20230456,DD20230424)。
文摘The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational development and utilization of water resources and planning of ecological environment protection.With the expansion and diversification of human activities,the quality of surface rivers will be more directly affected.Therefore,it is of great significance to pay attention to the hydrochemical characteristics of plateau surface rivers and the influence of human activities on their circulation and evolution.In this study,surface water in the Duoqu basin of Jinsha River located in Hengduan mountain region of Eastern Tibet was selected as the representative case.Twenty-three groups of surface water samples were collected to analyze the hydrochemical characteristics and ion sources based on correlation analysis,piper trigram,gibbs model,hydrogen and oxygen isotopic techniques.The results suggest the following:(1)The pH showed slight alkalinity with the value ranged from 7.25 to 8.62.Ca^(2+),Mg^(2+)and HCO_(3)^(–)were the main cations and anions.HCO_(3)^(-)Ca and HCO_(3)^(-)Ca·Mg were the primary hydrochemical types for the surface water of Duoqu River.The correlation analysis showed that TDS had the most significant correlation with Ca^(2+),Mg^(2+)and HCO_(3)^(–).Analysis on hydrogen and oxygen isotopes indicated that the surface rivers were mainly recharged by atmospheric precipitation and glacial melt water in this study area.(2)The surface water had a certain reverse cation alternating adsorption,and surface water ions were mainly derived from rock weathering,mainly controlled by weathering and dissolution of carbonates,and secondly by silicates and sodium rocks.(3)The influence of human activities was weak,while the development of cinnabar minerals had a certain impact on the hydrochemistry characteristics,which was the main factor for causing the increase of SO_(4)^(2–).The densely populated county towns and temples with frequent incense burning activities may cause some anomalies of surface water quality.At present,the Duoqu River watershed had gone through a certain influence of mineral exploitation,so the hydrological cycle and river eco-environment at watershed scale will still bound to be change.The results could provide basic support for better understanding water balance evolution as well as the ecological protection of Duoqu River watershed.
基金Supported by the U.S.Department of Energy under contract DE-AC05-00OR22725 with UT-Battelle,LLC
文摘As clearly demonstrated at several laboratories,the performances of electron-cyclotron resonance (ECR)ion sources can be enhanced by increasing the physical sizes(volumes)of embedded ECR zones.En- larged ECR zones have been achieved by engineering the central magnetic field region of these sources so they are uniformly-distributed"volumes"in resonance with single-frequency rf power.Alternatively,the number of ECR surfaces in conventional minimum-B geometry sources can be increased by heating their plasmas with multiple,discrete frequency microwave radiation.Broadband rf power offers a simple,low cost and arguably more effective means for increasing the physical sizes of the ECR zones within the latter source type.In this article,theoretical arguments are made in support of the volume effect and the charge-state enhancing ef- fects of broadband microwave radiation(bandwidth:200MHz)plasma heating are demonstrated by comparing the high-charge-states of Ar ion beams,produced by powering a conventional minimum-B geometry,6.4GHz ECR ion source,equipped with a biased disk,with those produced by conventional bandwidth(bandwidth:~1.5MHz)radiation.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)National Natural Science Foundation of China(No.11975264)。
文摘A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring(absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid(EG) current and H-current are increased when the absorber is introduced.
文摘Ion beam technology is used widely in many fields such as electric, material, optics, medicine, biology and so on. At the same time, it brings some huge technological effects and economical benefits, especially for the optical applocations. According for the technology, the properties of high accuarate spectral analyzer also can be improved by manufacturing the lage-area holographic ion beam eathing(HIBE) grating. Simultaneously, as one of the parts of ion beam technology, the developments of ion beam sources have some important effects to content the demands of ion beam technology such as large ion beam flux, excellent optical qualities. In this paper, an ion beam source called inductively coupled plasma(ICP) ion beam source was introduced, and the extractor system, the application prospect were also discussed.
文摘A new electron impact storage ion source has been designed for time of flight mass spectrometers with a high mass resolving power and high sensitivity. Because of the storage and compressing focus of the source, the overall performance of the instrument has been improved greatly with a mass resolving power up to 3 500. The conditions of the second order of the focus are given and the storage ability is proved. The competer simulations and experiment results are given, too.
基金supported by the National Key R&D Program of China(No.2017YFE0300106)National Natural Science Foundation of China(No.12075049)the Fundamental Research Funds for the Central Universities(Nos.DUT20LAB201 and DUT21LAB110)。
文摘In the design of negative hydrogen ion sources,a magnetic filter field of tens of Gauss at the expansion region is essential to reduce the electron temperature,which usually results in a magnetic field of around 10 Gauss in the driver region,destabilizing the discharge.The magnetic shield technique is proposed in this work to reduce the magnetic field in the driver region and improve the discharge characteristics.In this paper,a three-dimensional fluid model is developed within COMSOL to study the influence of the magnetic shield on the generation and transport of plasmas in the negative hydrogen ion source.It is found that when the magnetic shield material is applied at the interface of the expansion region and the driver region,the electron density can be effectively increased.For instance,the maximum of the electron density is 6.7×10^(17)m^(-3)in the case without the magnetic shield,and the value increases to 9.4×10^(17)m^(-3)when the magnetic shield is introduced.
基金supported by the National Key R&D Program of China(No.2017YFE0300105)National Natural Science Foundation of China(Nos.11775088 and 12005074)the Fundamental Research Funds for the Central Universities,HUST(No.2021XXJS013)
文摘Huazhong University of Science and Technology has developed an experimental setup of a radio frequency(RF) driven negative hydrogen ion source,to investigate the physics of production and extraction of the H^(-)ions for neutral beam injection in nuclear fusion reactors.The main design parameters of the ion source are:RF power ≤40 kW;extraction voltage ≤10kV;accelerator voltage ≤20 kV.This paper gives an overview of the progress of the ion source with particular emphasis on some issues.The RF driver and source plasma are analyzed and optimized in terms of impedance matching,plasma characteristics and power coupling.In regard to the simulation analysis,a plasma model based on the particle-in-cell method and a beam trajectory model considering beam stripping loss are developed to investigate the plasma and negative ions transport inside the ion source.Furthermore,a collisional radiative model of H and H2is built for plasma optical diagnosis.
基金supported by the National Key R&D Program of China (No. 2017YFE0300106)National Natural Science Foundation of China (Nos. 11935005 and 12075049)the Fundamental Research Funds for the Central Universities(Nos. DUT21TD104 and DUT21LAB110)。
文摘A radio-frequency(RF) inductively coupled negative hydrogen ion source(NHIS) has been adopted in the China Fusion Engineering Test Reactor(CFETR) to generate negative hydrogen ions.By incorporating the level-lumping method into a three-dimensional fluid model,the volume production and transportation of H^(-) in the NHIS,which consists of a cylindrical driver region and a rectangular expansion chamber,are investigated self-consistently at a large input power(40 k W) and different pressures(0.3–2.0 Pa).The results indicate that with the increase of pressure,the H^(-) density at the bottom of the expansion region first increases and then decreases.In addition,the effect of the magnetic filter is examined.It is noteworthy that a significant increase in the H^(-) density is observed when the magnetic filter is introduced.As the permanent magnets move towards the driver region,the H^(-) density decreases monotonically and the asymmetry is enhanced.This study contributes to the understanding of H-distribution under various conditions and facilitates the optimization of volume production of negative hydrogen ions in the NHIS.
基金supported by the National Natural Science Foundation of China(Nos.12027809,U1967201,11875073,11875074 and 11961141003)National Key R&D Program of China(No.2018YFA0404403)+1 种基金China National Nuclear Corporation(No.FA18000201)the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2019ZZ02).
文摘Collinear laser spectroscopy is a powerful tool for studying the nuclear spins,electromagnetic moments,and charge radii of exotic nuclei.To study the nuclear properties of unstable nuclei at the Beijing Radioactive Ion-beam Facility(BRIF)and the future High Intensity Heavy-ion Accelerator Facility(HIAF),we developed a collinear laser spectroscopy apparatus integrated with an offline laser ablation ion source and a laser system.The overall performance of this state-of-the-art technique was evaluated,and the system was commissioned using a bunched stable ion beam.The high-resolution optical spectra for the 4s ^(2)S_(1/2)→4p^(2)P_(3/2)(D2)ionic transition of ^(40;42;44;48)Ca isotopes were successfully measured.The extracted isotope shifts relative to ^(40)Ca showed excellent agreement with the literature values.This system is now ready for use at radioactive ion beam facilities such as the BRIF and paves the way for the further development of higher-sensitivity collinear resonance ionization spectroscopy techniques.
基金supported by National Natural Science Foundation of China (Nos.10875146,11075183)the Knowledge Innovation Program of the Chinese Academy of Sciences (study of the physical characteristic of arc power feedback control for the high current ion source)
文摘Neutral beam injection is one of the main plasma heating methods in nuclear fusion devices. In order to support the scientific study of the Experimental Advanced Superconducting Tokamak (EAST), a megawatt-level high current ion source is designed and manufactured in the ASIPP, and the progress and preliminary test results will be presented in this paper.
基金supported by National Natural Science Foundation of China(No.11075188)the Knowledge Innovation Program of the Chinese Academy of Sciences(Study of the physical characteristics of arc power feedback control for the high current ion source)
文摘The neutral beam injection (NBI) system is one of the most important auxiliary plasma heating and current driving methods for fusion device. A high power ion beam of 3 MW with 80 keV beam energy in 0.5 s beam duration and a long pulse ion beam of 4 s with 50 keV beam energy ion beam extraction were achieved on the EAST neutral beam injector on the teststand. The preliminary results show that the EAST-NBI system was developed successfully on schedule.
基金the NBI team and the partial support of National Natural Science Foundation of China (No. 61363019)National Natural Science Foundation of Qinghai Province (No. 2014-ZJ-718)
文摘As the key ion source component of nuclear fusion auxiliary heating devices, the radio frequency (RF) ion source is developed and applied gradually to offer a source plasma with the advantages of ease of control and high reliability. In addition, it easily achieves long-pulse steady-state operation. During the process of the development and testing of the RF ion source, a lot of original experimental data will be generated. Therefore, it is necessary to develop a stable and reliable computer data acquisition and processing application system for realizing the functions of data acquisition, storage, access, and real-time monitoring. In this paper, the development of a data acquisition and processing application system for the RF ion source is presented. The hardware platform is based on the PXI system and the software is programmed on the LabVIEW development environment. The key technologies that are used for the implementation of this software programming mainly include the long-pulse data acquisition technology, multi- threading processing technology, transmission control communication protocol, and the Lempel-Ziv-Oberhumer data compression algorithm. Now, this design has been tested and applied on the RF ion source. The test results show that it can work reliably and steadily. With the help of this design, the stable plasma discharge data of the RF ion source are collected, stored, accessed, and monitored in real-time. It is shown that it has a very practical application significance for the RF experiments.