This study investigates the coupling response of cables inside a metal cavity under X-ray irradiation using the finite-difference time-domain method,particle simulation method,and transmission-line equation to solve t...This study investigates the coupling response of cables inside a metal cavity under X-ray irradiation using the finite-difference time-domain method,particle simulation method,and transmission-line equation to solve the electromagnetic field inside the cavity and load voltage at the cable terminal under X-ray excitation.The results show that under a strong ionizing radiation environment of 1 J/cm^(2),a strong electromagnetic environment is generated inside the cavity.The cable shielding layer terminal couples a voltage of 15.32 V,whereas the core wire terminal couples a voltage of 0.31 V.Under strong X-ray irradiation,the metal cavity not only fails to provide electromagnetic shielding,but also introduces new electromagnetic interference.This study also provides a method for reducing the number of emitted electrons by adding low-Z materials,which can effectively reduce the coupled electric field and voltage.展开更多
In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduce...In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection.展开更多
Objective To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation(IR).Methods Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora...Objective To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation(IR).Methods Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora A inhibitor MLN8237(MLN)and/or p21 depletion by small interfering RNA(si RNA).Cell cycle distribution was determined using flow cytometry and a fluorescent ubiquitin-based cell cycle indicator(FUCCI)system combined with histone H3 phosphorylation at Ser10(p S10 H3)detection.Senescence was assessed using senescence-associated-β-galactosidase(SA-β-Gal),Ki67,andγH2AX staining.Protein expression levels were determined using western blotting.Results Tumor cells suffered severe DNA damage and underwent G2 arrest after IR treatment.The damaged cells did not successfully enter M phase nor were they stably blocked at G2 phase but underwent mitotic skipping and entered G1 phase as tetraploid cells,ultimately leading to senescence in G1.During this process,the p53/p21 pathway is hyperactivated.Accompanying p21 accumulation,Aurora A kinase levels declined sharply.MLN treatment confirmed that Aurora A kinase activity is essential for mitosis skipping and senescence induction.Conclusion Persistent p21 activation during IR-induced G2 phase blockade drives Aurora A kinase degradation,leading to senescence via mitotic skipping.展开更多
Nuclear safety is a global growing concern,where ionizing radiation(IR)is a major injury factor resulting in serious damage to organisms.The detection of IR is usually conducted with physical dosimeters;however,biolog...Nuclear safety is a global growing concern,where ionizing radiation(IR)is a major injury factor resulting in serious damage to organisms.The detection of IR is usually conducted with physical dosimeters;however,biological IR detection methods are deficient.Here,a living composite hydrogel consisting of engineered bacteria and gelatin/sodium alginate was 3D-printed for the biological detection of IR.Three strains of PrecA::egfp gene circuit-containing engineered Escherichia coli were constructed with IR-dependent fluorescence,and the DH5αstrain was finally selected due to its highest radiation response and fluorescence.Engineered bacteria were loaded in a series of gelatin/sodium alginate matrix hydrogels with different rheology,3D printability and bacterial applicability.A high-gelatin-content hydrogel containing 10%gelatin/1.25%sodium alginatewas optimal.The optimal living composite hydrogelwas 3D-printedwith the special bioink,which reported significant green fluorescence underγ-ray radiation.The living composite hydrogel provides a biological strategy for the detection of environmental ionizing radiation.展开更多
AIM: To examine the protection of ferulic acid(FA) against ionizing radiation(IR)-induced lens injury in rats, as well as the underlying mechanisms.METHODS: FA(50 mg/kg) was administered to rats for 4 consecutive days...AIM: To examine the protection of ferulic acid(FA) against ionizing radiation(IR)-induced lens injury in rats, as well as the underlying mechanisms.METHODS: FA(50 mg/kg) was administered to rats for 4 consecutive days before they were given 10 Gy γ-radiation, as well as for 3 consecutive days afterward. Two weeks after radiation, the eye tissues were collected. Histological alterations were evaluated by hematoxylineosin staining. Enzyme linked immunosorbent assay(ELISA) was utilized to assess the activities of glutathione reductase(GR) and superoxide dismutase(SOD), as well as the levels of glutathione(GSH) and malondialdehyde(MDA) in the lenses. The protein and m RNA levels of Bcl-2, caspase-3, Bax, heme oxygenase-1(HO-1), and glutamatecysteine ligase catalytic subunit(GCLC) were quantified using Western blot and quantitative reverse transcription polymerase chain reaction, respectively. With nuclear extracts, the nuclear factor erythroid-2 related factor(Nrf2) protein expressions in the nuclei were also measured.RESULTS: Rats exposed to IR showed lens histological alterations which could be alleviated by FA. FA treatment reversed apoptosis-related markers in IR-induced lens, as evidenced by lower levels of Bax and caspase-3 and higher level of Bcl-2. Furthermore, IR induced oxidative damage manifested by decreased GSH level, increased MDA level, and decreased SOD and GR activities. FA boosted nuclear translocation of Nrf2 and increased the expressions of HO-1 and GCLC to inhibit oxidative stress, as evidenced by an increase in GSH, a decrease in MDA, and an increase in GR and SOD activities.CONCLUSION: FA may work well in preventing and treating IR-induced cataract through promoting the Nrf2 signal pathway to attenuate oxidative damage and cell apoptosis.展开更多
This study deal with interactions between thermal and radiative energy flow in experimental situations of varying complexity. Of special interest is how IR energy, re-emitted from CO<sub>2</sub> gas, behav...This study deal with interactions between thermal and radiative energy flow in experimental situations of varying complexity. Of special interest is how IR energy, re-emitted from CO<sub>2</sub> gas, behaves in an earth/atmosphere simulated setup. Such an experiment was performed by Hermann Harde and Michael Schnell where they show that IR radiation emitted from CO<sub>2</sub> can warm a small black-body metal plate. In a control experiment, we verified this result. However, in their experiment, the amount of IR radiation from the heating element was strongly attenuated. In a modified experiment, where IR emission from the heating source is present, no heating but a slight cooling of a black object is found when air is replaced by CO<sub>2</sub>. The modified experimental situation is also more like the earth/atmosphere situation. The presence of IR radiation from a heated surface (like when the sun heats the earth’s surface) strongly attenuates the heating ability of increasing backscatter from increased amount of CO<sub>2</sub> in the atmosphere. This result has consequences for the climate change models used by IPCC.展开更多
The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the ...The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.展开更多
The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA)....The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA). The TK6 cell line has the native p53 tumor-suppressor gene, whereas WTK1 cells contain a p53 mutation. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. The impact of irradiation on these two cell lines was investigated using probes that target specific regions on chromosomes associated with subtelomeric regions. Results indicate that WTK1 and TK6 are impacted differently after irradiation, and that each cell line presents its own unique MLPA profile. The most notable differences are the appearance of a number of probes in the post-irradiated MLPA profile that are not present in the controls, and two unique probe signals only seen in WTK1 cells. These results build on our previous studies that indicate how different human cell lines can be affected by radiation in significantly different ways depending on the presence or absence of wild type p53.展开更多
We have a single cell assay (SCA) to study repair of primarily single-stranded DNA breaks after in vitro ionizing radiation in children with systemic lupus erythematosus (SLE), juvenile rheumatoid arthritis (RA), prog...We have a single cell assay (SCA) to study repair of primarily single-stranded DNA breaks after in vitro ionizing radiation in children with systemic lupus erythematosus (SLE), juvenile rheumatoid arthritis (RA), progressive systemic sclerosis(PSS),and dermatomyositis. Patients with SLE, JRA, and PSS had significantly greater damage after 150 rads and 30 minutes incubation than did controls as assessed by comet length migration of damaged DNA. The average comet length in SLE was 42μm,in JRA was 40μm,and in PSS was 36μm, each of which was significantly greater than controls with an aver age comet length of 18μm (P<0.001,<0.001,and,CO.005 respectively).Patients with dermatomyositis (DMY) had an average comet length of 22 μm, which was similar to controls. In addition,the DNA damage was not repaired in as many cells from patients with autoimmune diseases. By 30 minutes after irradiation,64% of control PBL had re turned to a normal configuration. In contrast, only 18% of SLE PBL, 15% of JRA PBL,6% of PSS PBL returned to normal configuration (P<0.005);in dermatomyositis, 50%of the cells had completely repaired their DNA, which was similar to controls.These studies indicate that DNA repair is defective in patients with SLE,JRA, and PSS.Understanding this DNA repair defect may provide a new diagnostic tool and also aid in understanding the pathogenesis of these disorders.展开更多
Measurements of gamma radiation (200 keV to 10 MeV) were performed between May 25 to September 30 2016 at ITA (Technological Institute of Aeronautics) in Sao Jose dos Campos, SP, Brazil. Detector and associated el...Measurements of gamma radiation (200 keV to 10 MeV) were performed between May 25 to September 30 2016 at ITA (Technological Institute of Aeronautics) in Sao Jose dos Campos, SP, Brazil. Detector and associated electronics were previously calibrated in the laboratory of ITA using radioactive sources Cs-137, Po-210 and Sr-90. These sources provide gamma-ray energies in 0.662 keV alpha particles of 5.4 MeV and 0.90 keV electrons, respectively. Detector is a scintillator Sodium Iodide activated with Thallium [NaI(Tl)] associated to a photomultiplier and electronic devices which gather, store, distribute and structure data so users can analyze them. During the period of May-September, the experimental set was installed in an open room on a tower 25 meters above the ground. Measurements indicated variations of ionizing radiation in function of dry weather, rain, cold fronts passes and presence of fog in the area; the sample time interval was minute by minute. This study discusses the analysis and the dynamics of how to measure meteorological parameters using an ionizing radiation system.展开更多
As we enter the new millennium, population explosion, increasing worldwide energy demands and rapid global increase in ionizing radiation are all now threatening our fragile environment like no other time in known his...As we enter the new millennium, population explosion, increasing worldwide energy demands and rapid global increase in ionizing radiation are all now threatening our fragile environment like no other time in known history. There is an urgent need for research and education to focus on the complex and direct link between ionizing radiation and its irreversible impact on the environment. Hence, nuclear energy and ionizing radiation issues can no longer be viewed in isolation. Historical facts and official reports prove that a code of ethics did not previously exist in nuclear industry: the risks of ionizing radiation are too great and unpredictable. Elimination of existing man-made ionizing radiation sources in this century is untenable and unsustainable. The intent of this paper is to review and demonstrate that 'Atoms for Peace' is a false and unethical enterprise, and offers insights into the social and ethical aspects of ionizing radiation as a result of nuclear power development. The unethical nature of nuclear weapons, along with risk perception and ethical dilemmas of atom for peace, nuclear weapon tests, the International Atomic Energy Agency, the Nuclear Non-Proliferation Treaty, the International Court of Justice's opinion and the World Economic Forum-Global Risk Landscape will be discussed.展开更多
We measured the IR back radiation using a relatively low-cost experimental setup and a test chamber with increasing CO2 concentrations starting with a pure N2 atmosphere against a temperature-controlled black referenc...We measured the IR back radiation using a relatively low-cost experimental setup and a test chamber with increasing CO2 concentrations starting with a pure N2 atmosphere against a temperature-controlled black reference background. The results confirm estimations within this work and previous finding about CO2-induced infrared radiation saturation within realistic atmospheric conditions. We used this setup also to study thermal forcing effects with stronger and rare greenhouse gases against a clear night sky. Our results and their interpretation are another indication for having a more critical approach in climate modelling and against monocausal interpretation of climate indices only caused by anthropogenic greenhouse gas emissions. Basic physics combined with measurements and data taken from the literature allow us to conclude that CO2 induced infrared back-radiation must follow an asymptotic logarithmic-like behavior, which is also widely accepted in the climate-change community. The important question of climate sensitivity by doubling current CO2 concentrations is estimated to be below 1˚C. This value is important when the United Nations consider climate change as an existential threat and many governments intend rigorously to reduce net greenhouse gas emissions, led by an ambitious European Union inspired by IPCC assessments is targeting for more than 55% in 2030 and up to 100% in 2050 [1]. But probably they should also listen to experts [2] [3] who found that all these predictions have considerable flaws in basic models, data and impact scenarios.展开更多
Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current...Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current, threshold voltage shift, and transconductance of the devices are monitored before and after T-ray irradiation. Different device bias conditions are used during irradiation. The experiment results show that TID radiation effects on nMOS devices are very sensitive to their layout structures. The impact of the layout on TID effects on pMOS devices is slight and can be neglected.展开更多
Aim: To study the effect of the combined use of genistein and ionizing radiation (IR) on prostate DU145 cancer cells. Methods: DU145, an androgen-independent human prostate cancer cell line, was used in the experiment...Aim: To study the effect of the combined use of genistein and ionizing radiation (IR) on prostate DU145 cancer cells. Methods: DU145, an androgen-independent human prostate cancer cell line, was used in the experiment. Clonogenic assay was used to compare the survival of DU145 cells after treatments with genistein alone and in combination with graded IR. Apoptosis was assayed by DNA ladder and TUNEL stain. Cell cycle alterations were observed by flow cytometry and related protein expressions by immunoblotting. Results: Clonogenic assay demonstrated that genistein, even at low to medium concentrations, enhanced the radiosensitivity of DU145 cells. Twenty-four hours after treatment with IR and/or genistein, apoptosis was mainly seen with genistein at high concentrations and was minimally related to IR. At 72 h, apoptosis also occurred in treatment with lower concentration of genistein, especially when combined with IR. While both IR and genistein led to G2/M cell cycle arrest, combination of them further increased the DU145 cells at G2/M phase. This Gz/M arrest was largely maintained at 72 h, accompanied by increasing apoptosis and hyperdiploid cell population. Cell-cycle related protein analysis disclosed biphasic changes in cyclin B1 and less dramatically cdc-2, but stably elevated p21cipl levels with increasing genistein concentrations. Conclusion: Genistein enhanced the radiosensitivity of DU145 prostate cancer cells. The mechanisms might be involved in the increased apoptosis, prolonged cell cycle arrest and impaired damage repair.展开更多
Sodium butyrate is a histone deacetylase inhibitor that affects various types of brain damages.To investigate the effects of sodium butyrate on hippocampal dysfunction that occurs after whole-brain irradiation in anim...Sodium butyrate is a histone deacetylase inhibitor that affects various types of brain damages.To investigate the effects of sodium butyrate on hippocampal dysfunction that occurs after whole-brain irradiation in animal models and the effect of sodium butyrate on radiation exposure-induced cognitive impairments,adult C57BL/6 mice were intraperitoneally treated with 0.6 g/kg sodium butyrate before exposure to 10 Gy cranial irradiation.Cognitive impairment in adult C57BL/6 mice was evaluated via an object recognition test 30 days after irradiation.We also detected the expression levels of neurogenic cell markers(doublecortin)and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor.Radiation-exposed mice had decreased cognitive function and hippocampal doublecortin and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression.Sodium butyrate pretreatment reversed these changes.These findings suggest that sodium butyrate can improve radiation-induced cognitive dysfunction through inhibiting the decrease in hippocampal phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression.The study procedures were approved by the Institutional Animal Care and Use Committee of Korea Institute of Radiological Medical Sciences(approval No.KIRAMS16-0002)on December 30,2016.展开更多
Intraoperative imaging is vital for accurate placement of instrumentation in spine surgery. However, the use of biplanar fluoroscopy and other intraoperative imaging modalities is associated with the risk of significa...Intraoperative imaging is vital for accurate placement of instrumentation in spine surgery. However, the use of biplanar fluoroscopy and other intraoperative imaging modalities is associated with the risk of significant radiation exposure in the patient, surgeon, and surgical staff. Radiation exposure in the form of ionizing radiation can lead to cellular damage via the induction of DNA lesions and the production of reactive oxygen species. These effects often result in cell death or genomic instability, leading to various radiation-associated pathologies including an increased risk of malignancy. In attempts to reduce radiation-associated health risks, radiation safety has become an important topic in the medical field. All practitioners, regardless of practice setting, can practice radiation safety techniques including shielding and distance to reduce radiation exposure. Additionally, optimization of fluoroscopic settings and techniques can be used as an effective method of radiation dose reduction. New imaging modalities and spinal navigation systems have also been developed in an effort to replace conventional fluoroscopy and reduce radiation doses. These modalities include Isocentric Three-Dimensional C-Arms, O-Arms, and intraoperative magnetic resonance imaging. While this influx of new technology has advanced radiation safety within the field of spine surgery, more work is still required to overcome specific limitations involving increased costs and inadequate training.展开更多
AIM To clone expressed genes associated withrepair of irradiation-damaged mice intestinalgland cells treated by small intestinal RNA,andto explore the molecular mechanism ofexogenous nucleic acids improving repair ofi...AIM To clone expressed genes associated withrepair of irradiation-damaged mice intestinalgland cells treated by small intestinal RNA,andto explore the molecular mechanism ofexogenous nucleic acids improving repair ofintestinal crypt.METHODS The animal mode of test group andcontrol group was established,forty-five micebeing irradiated by γ ray were treated with smallintestinal RNA as test group,forty mice beingirradiated by γ ray were treated withphysiological saline as control group,five micewithout irradiation were used as normal control,their jejunal specimens were collectedrespectively at 6h,12h,24h,4d and 8d afterirradiation.Then by using LD-PCR based onsubtractive hybridization,these gene fragmentsdifferentially expressed between test group andcontrol group were obtained,and then werecloned into T vectors as well as beingsequenced.Obtained sequences were screenedagainst.GeneBank,if being new sequences,they were submitted to GeneBank.RESULTS Ninety clones were associated withrepair of irradiation-damaged intestinal glandcells treated by intestinal RNA.These clonesfrom test group of 6h,12h,24h,4d and 8dwere respectively 18,22,25,13,12.By screening against GeneBank,18 of which werenew sequences,the others were dramaticallysimilar to the known sequences,mainly similarto hsp,Nmi,Dutt1,alkaline phosphatase,homeobox,anti-CEA ScFv antibody,arginine/serine kinase and BMP-4,repA.Eighteen genefragments were new sequences,their acceptnumbers in GeneBank were respectivelyAF240164-AF240181.CONCLUSION Ninety clones were obtained tobe associated with repair of irradiation-damagedmice intestinal gland cells treated by smallintestinal RNA,which may be related toabnormal expression of genes and matchedproteins of hsp,Nmi,Duttl,Na,K-ATPase,alkalineph-osphatase,glkA,single strandedreplicative centromeric gene as well as 18 newsequences.展开更多
Objective To investigate the effect of ionizing radiation on the expression of p16, CyclinDl, and CDK4 in mouse thymocytes and splenocytes. Methods Fluorescent staining and flow cytometry analysis were employed for th...Objective To investigate the effect of ionizing radiation on the expression of p16, CyclinDl, and CDK4 in mouse thymocytes and splenocytes. Methods Fluorescent staining and flow cytometry analysis were employed for the measurement of protein expression. Results In time course experiments, it was found that the expression of p16 protein was significantly increased at 8, 24, and 48 h for thymocytes (P<0.05, P<0.01, and P<0.05, respectively) and at 24 h for splenocytes (P<0.05) after whole body irradiation (WBI) with 2.0 Gy X-rays. However, the expression of CDK4 protein was significantly decreased from 8 h to 24 h for thymocytes (P<0.05,P<0.01) and from 8 h to 72 h for splenocytes (P<0.05-P<0.01). In dose effect experiments, it was found that the expression of p16 protein in thymocytes and splenocytes was significantly increased at 24 h after WBI with 1.0, 2.0, and 4.0 Gy (P<0.05-P<0.01), whereas the expression of CDK4 protein was significantly decreased with 2.0Gy for thymocytes (P<0.05) and 0.5-6.0 Gy for splenocytes (P<0.05-P<0.01). Results also showed that the expression of CyclinDl protein decreased markedly in both thymocytes and splenocytes after exposure. Conclusion The results indicate that the expression of p 16 protein in thymocytes and splenocytes can be induced by ionizing radiation, and the p16-CyclinD1/CDK4 pathway may play an important role for G1 arrest of thymocytes induced by X-rays.展开更多
This paper presents the effects of the low-dose irradiation on Tilapia Nilotica. In laboratory experiments the Tilapia Nilotica irradiated by integrated flux of fast neutrons 1×10 9 neutrons/m2 and 1 ×10 10...This paper presents the effects of the low-dose irradiation on Tilapia Nilotica. In laboratory experiments the Tilapia Nilotica irradiated by integrated flux of fast neutrons 1×10 9 neutrons/m2 and 1 ×10 10 neutrons/m2 gave a growth rate more than 40% and 32 % compared with those of controls respectively. The yield of the irradiated Tilapia Nilotica growing with non-irradiated carps and silver carps in a mixed feed condition increased by 8. 6%, 157% and 11. 0% more than those of the controls in the pilot test. The survival rate increases by 21. 8%, 149% and 16. 2% for the aboye-mentioned three species. An increased yield of 52 098 kg fish under irradiation with low dose was obtained in 18. 7 hectare water surface. The results of biological experiments show that the main organic coefficients of the Tilapia Nilotica are greater than those of the controls, and this may be related to the increase of the capabilities of metabolism and resistance to diseases.展开更多
文摘This study investigates the coupling response of cables inside a metal cavity under X-ray irradiation using the finite-difference time-domain method,particle simulation method,and transmission-line equation to solve the electromagnetic field inside the cavity and load voltage at the cable terminal under X-ray excitation.The results show that under a strong ionizing radiation environment of 1 J/cm^(2),a strong electromagnetic environment is generated inside the cavity.The cable shielding layer terminal couples a voltage of 15.32 V,whereas the core wire terminal couples a voltage of 0.31 V.Under strong X-ray irradiation,the metal cavity not only fails to provide electromagnetic shielding,but also introduces new electromagnetic interference.This study also provides a method for reducing the number of emitted electrons by adding low-Z materials,which can effectively reduce the coupled electric field and voltage.
基金financial support from the National Natural Science Foundation of China(Grant No.21801016)the Science and Technology on Applied Physical Chemistry Laboratory(Grant No.6142602220304)。
文摘In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection.
基金supported by the Science and Technology Research Project of Gansu Province[20JR5RA555 and145RTSA012]the Natural Science Foundation of Shaanxi Province[2020JQ-541]+1 种基金the National Natural Science Foundation of China[31870851 and 12175289]the Youth Innovation Promotion Association CAS[2021415]
文摘Objective To investigate the fate and underlying mechanisms of G2 phase arrest in cancer cells elicited by ionizing radiation(IR).Methods Human melanoma A375 and 92-1 cells were treated with X-rays radiation or Aurora A inhibitor MLN8237(MLN)and/or p21 depletion by small interfering RNA(si RNA).Cell cycle distribution was determined using flow cytometry and a fluorescent ubiquitin-based cell cycle indicator(FUCCI)system combined with histone H3 phosphorylation at Ser10(p S10 H3)detection.Senescence was assessed using senescence-associated-β-galactosidase(SA-β-Gal),Ki67,andγH2AX staining.Protein expression levels were determined using western blotting.Results Tumor cells suffered severe DNA damage and underwent G2 arrest after IR treatment.The damaged cells did not successfully enter M phase nor were they stably blocked at G2 phase but underwent mitotic skipping and entered G1 phase as tetraploid cells,ultimately leading to senescence in G1.During this process,the p53/p21 pathway is hyperactivated.Accompanying p21 accumulation,Aurora A kinase levels declined sharply.MLN treatment confirmed that Aurora A kinase activity is essential for mitosis skipping and senescence induction.Conclusion Persistent p21 activation during IR-induced G2 phase blockade drives Aurora A kinase degradation,leading to senescence via mitotic skipping.
基金supported by the Special Program for Capability Promotion
文摘Nuclear safety is a global growing concern,where ionizing radiation(IR)is a major injury factor resulting in serious damage to organisms.The detection of IR is usually conducted with physical dosimeters;however,biological IR detection methods are deficient.Here,a living composite hydrogel consisting of engineered bacteria and gelatin/sodium alginate was 3D-printed for the biological detection of IR.Three strains of PrecA::egfp gene circuit-containing engineered Escherichia coli were constructed with IR-dependent fluorescence,and the DH5αstrain was finally selected due to its highest radiation response and fluorescence.Engineered bacteria were loaded in a series of gelatin/sodium alginate matrix hydrogels with different rheology,3D printability and bacterial applicability.A high-gelatin-content hydrogel containing 10%gelatin/1.25%sodium alginatewas optimal.The optimal living composite hydrogelwas 3D-printedwith the special bioink,which reported significant green fluorescence underγ-ray radiation.The living composite hydrogel provides a biological strategy for the detection of environmental ionizing radiation.
基金Supported by Medical Science Foundation of Military for Young Scholars (No.19QNP064)Natural Science Foundation of Jiangsu Province (No.BK20191233)Jiangsu Funding Program for Excellent Postdoctoral Talent (No.2022ZB702)。
文摘AIM: To examine the protection of ferulic acid(FA) against ionizing radiation(IR)-induced lens injury in rats, as well as the underlying mechanisms.METHODS: FA(50 mg/kg) was administered to rats for 4 consecutive days before they were given 10 Gy γ-radiation, as well as for 3 consecutive days afterward. Two weeks after radiation, the eye tissues were collected. Histological alterations were evaluated by hematoxylineosin staining. Enzyme linked immunosorbent assay(ELISA) was utilized to assess the activities of glutathione reductase(GR) and superoxide dismutase(SOD), as well as the levels of glutathione(GSH) and malondialdehyde(MDA) in the lenses. The protein and m RNA levels of Bcl-2, caspase-3, Bax, heme oxygenase-1(HO-1), and glutamatecysteine ligase catalytic subunit(GCLC) were quantified using Western blot and quantitative reverse transcription polymerase chain reaction, respectively. With nuclear extracts, the nuclear factor erythroid-2 related factor(Nrf2) protein expressions in the nuclei were also measured.RESULTS: Rats exposed to IR showed lens histological alterations which could be alleviated by FA. FA treatment reversed apoptosis-related markers in IR-induced lens, as evidenced by lower levels of Bax and caspase-3 and higher level of Bcl-2. Furthermore, IR induced oxidative damage manifested by decreased GSH level, increased MDA level, and decreased SOD and GR activities. FA boosted nuclear translocation of Nrf2 and increased the expressions of HO-1 and GCLC to inhibit oxidative stress, as evidenced by an increase in GSH, a decrease in MDA, and an increase in GR and SOD activities.CONCLUSION: FA may work well in preventing and treating IR-induced cataract through promoting the Nrf2 signal pathway to attenuate oxidative damage and cell apoptosis.
文摘This study deal with interactions between thermal and radiative energy flow in experimental situations of varying complexity. Of special interest is how IR energy, re-emitted from CO<sub>2</sub> gas, behaves in an earth/atmosphere simulated setup. Such an experiment was performed by Hermann Harde and Michael Schnell where they show that IR radiation emitted from CO<sub>2</sub> can warm a small black-body metal plate. In a control experiment, we verified this result. However, in their experiment, the amount of IR radiation from the heating element was strongly attenuated. In a modified experiment, where IR emission from the heating source is present, no heating but a slight cooling of a black object is found when air is replaced by CO<sub>2</sub>. The modified experimental situation is also more like the earth/atmosphere situation. The presence of IR radiation from a heated surface (like when the sun heats the earth’s surface) strongly attenuates the heating ability of increasing backscatter from increased amount of CO<sub>2</sub> in the atmosphere. This result has consequences for the climate change models used by IPCC.
基金supported by the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds for the Central Universities(No.2021ZDPY0211)+2 种基金the Graduate Innovation Program of China University of Mining and Technology(No.2023WLKXJ046)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_2811)the Project of Liaoning Provincial Department of Education(No.JYTMS20231458).
文摘The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.
文摘The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA). The TK6 cell line has the native p53 tumor-suppressor gene, whereas WTK1 cells contain a p53 mutation. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. The impact of irradiation on these two cell lines was investigated using probes that target specific regions on chromosomes associated with subtelomeric regions. Results indicate that WTK1 and TK6 are impacted differently after irradiation, and that each cell line presents its own unique MLPA profile. The most notable differences are the appearance of a number of probes in the post-irradiated MLPA profile that are not present in the controls, and two unique probe signals only seen in WTK1 cells. These results build on our previous studies that indicate how different human cell lines can be affected by radiation in significantly different ways depending on the presence or absence of wild type p53.
文摘We have a single cell assay (SCA) to study repair of primarily single-stranded DNA breaks after in vitro ionizing radiation in children with systemic lupus erythematosus (SLE), juvenile rheumatoid arthritis (RA), progressive systemic sclerosis(PSS),and dermatomyositis. Patients with SLE, JRA, and PSS had significantly greater damage after 150 rads and 30 minutes incubation than did controls as assessed by comet length migration of damaged DNA. The average comet length in SLE was 42μm,in JRA was 40μm,and in PSS was 36μm, each of which was significantly greater than controls with an aver age comet length of 18μm (P<0.001,<0.001,and,CO.005 respectively).Patients with dermatomyositis (DMY) had an average comet length of 22 μm, which was similar to controls. In addition,the DNA damage was not repaired in as many cells from patients with autoimmune diseases. By 30 minutes after irradiation,64% of control PBL had re turned to a normal configuration. In contrast, only 18% of SLE PBL, 15% of JRA PBL,6% of PSS PBL returned to normal configuration (P<0.005);in dermatomyositis, 50%of the cells had completely repaired their DNA, which was similar to controls.These studies indicate that DNA repair is defective in patients with SLE,JRA, and PSS.Understanding this DNA repair defect may provide a new diagnostic tool and also aid in understanding the pathogenesis of these disorders.
文摘Measurements of gamma radiation (200 keV to 10 MeV) were performed between May 25 to September 30 2016 at ITA (Technological Institute of Aeronautics) in Sao Jose dos Campos, SP, Brazil. Detector and associated electronics were previously calibrated in the laboratory of ITA using radioactive sources Cs-137, Po-210 and Sr-90. These sources provide gamma-ray energies in 0.662 keV alpha particles of 5.4 MeV and 0.90 keV electrons, respectively. Detector is a scintillator Sodium Iodide activated with Thallium [NaI(Tl)] associated to a photomultiplier and electronic devices which gather, store, distribute and structure data so users can analyze them. During the period of May-September, the experimental set was installed in an open room on a tower 25 meters above the ground. Measurements indicated variations of ionizing radiation in function of dry weather, rain, cold fronts passes and presence of fog in the area; the sample time interval was minute by minute. This study discusses the analysis and the dynamics of how to measure meteorological parameters using an ionizing radiation system.
文摘As we enter the new millennium, population explosion, increasing worldwide energy demands and rapid global increase in ionizing radiation are all now threatening our fragile environment like no other time in known history. There is an urgent need for research and education to focus on the complex and direct link between ionizing radiation and its irreversible impact on the environment. Hence, nuclear energy and ionizing radiation issues can no longer be viewed in isolation. Historical facts and official reports prove that a code of ethics did not previously exist in nuclear industry: the risks of ionizing radiation are too great and unpredictable. Elimination of existing man-made ionizing radiation sources in this century is untenable and unsustainable. The intent of this paper is to review and demonstrate that 'Atoms for Peace' is a false and unethical enterprise, and offers insights into the social and ethical aspects of ionizing radiation as a result of nuclear power development. The unethical nature of nuclear weapons, along with risk perception and ethical dilemmas of atom for peace, nuclear weapon tests, the International Atomic Energy Agency, the Nuclear Non-Proliferation Treaty, the International Court of Justice's opinion and the World Economic Forum-Global Risk Landscape will be discussed.
文摘We measured the IR back radiation using a relatively low-cost experimental setup and a test chamber with increasing CO2 concentrations starting with a pure N2 atmosphere against a temperature-controlled black reference background. The results confirm estimations within this work and previous finding about CO2-induced infrared radiation saturation within realistic atmospheric conditions. We used this setup also to study thermal forcing effects with stronger and rare greenhouse gases against a clear night sky. Our results and their interpretation are another indication for having a more critical approach in climate modelling and against monocausal interpretation of climate indices only caused by anthropogenic greenhouse gas emissions. Basic physics combined with measurements and data taken from the literature allow us to conclude that CO2 induced infrared back-radiation must follow an asymptotic logarithmic-like behavior, which is also widely accepted in the climate-change community. The important question of climate sensitivity by doubling current CO2 concentrations is estimated to be below 1˚C. This value is important when the United Nations consider climate change as an existential threat and many governments intend rigorously to reduce net greenhouse gas emissions, led by an ambitious European Union inspired by IPCC assessments is targeting for more than 55% in 2030 and up to 100% in 2050 [1]. But probably they should also listen to experts [2] [3] who found that all these predictions have considerable flaws in basic models, data and impact scenarios.
文摘Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current, threshold voltage shift, and transconductance of the devices are monitored before and after T-ray irradiation. Different device bias conditions are used during irradiation. The experiment results show that TID radiation effects on nMOS devices are very sensitive to their layout structures. The impact of the layout on TID effects on pMOS devices is slight and can be neglected.
文摘Aim: To study the effect of the combined use of genistein and ionizing radiation (IR) on prostate DU145 cancer cells. Methods: DU145, an androgen-independent human prostate cancer cell line, was used in the experiment. Clonogenic assay was used to compare the survival of DU145 cells after treatments with genistein alone and in combination with graded IR. Apoptosis was assayed by DNA ladder and TUNEL stain. Cell cycle alterations were observed by flow cytometry and related protein expressions by immunoblotting. Results: Clonogenic assay demonstrated that genistein, even at low to medium concentrations, enhanced the radiosensitivity of DU145 cells. Twenty-four hours after treatment with IR and/or genistein, apoptosis was mainly seen with genistein at high concentrations and was minimally related to IR. At 72 h, apoptosis also occurred in treatment with lower concentration of genistein, especially when combined with IR. While both IR and genistein led to G2/M cell cycle arrest, combination of them further increased the DU145 cells at G2/M phase. This Gz/M arrest was largely maintained at 72 h, accompanied by increasing apoptosis and hyperdiploid cell population. Cell-cycle related protein analysis disclosed biphasic changes in cyclin B1 and less dramatically cdc-2, but stably elevated p21cipl levels with increasing genistein concentrations. Conclusion: Genistein enhanced the radiosensitivity of DU145 prostate cancer cells. The mechanisms might be involved in the increased apoptosis, prolonged cell cycle arrest and impaired damage repair.
基金supported by the Nuclear Research and Development Program(NRF-2012M2A2A7012377,NRF-2015M2B2B1068627 and NRF-2015R1C1A2A01053041)of the National Research Foundation of Korea(NRF)funded by the Korean Government Ministry of Science,ICT&Future Planning
文摘Sodium butyrate is a histone deacetylase inhibitor that affects various types of brain damages.To investigate the effects of sodium butyrate on hippocampal dysfunction that occurs after whole-brain irradiation in animal models and the effect of sodium butyrate on radiation exposure-induced cognitive impairments,adult C57BL/6 mice were intraperitoneally treated with 0.6 g/kg sodium butyrate before exposure to 10 Gy cranial irradiation.Cognitive impairment in adult C57BL/6 mice was evaluated via an object recognition test 30 days after irradiation.We also detected the expression levels of neurogenic cell markers(doublecortin)and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor.Radiation-exposed mice had decreased cognitive function and hippocampal doublecortin and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression.Sodium butyrate pretreatment reversed these changes.These findings suggest that sodium butyrate can improve radiation-induced cognitive dysfunction through inhibiting the decrease in hippocampal phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression.The study procedures were approved by the Institutional Animal Care and Use Committee of Korea Institute of Radiological Medical Sciences(approval No.KIRAMS16-0002)on December 30,2016.
文摘Intraoperative imaging is vital for accurate placement of instrumentation in spine surgery. However, the use of biplanar fluoroscopy and other intraoperative imaging modalities is associated with the risk of significant radiation exposure in the patient, surgeon, and surgical staff. Radiation exposure in the form of ionizing radiation can lead to cellular damage via the induction of DNA lesions and the production of reactive oxygen species. These effects often result in cell death or genomic instability, leading to various radiation-associated pathologies including an increased risk of malignancy. In attempts to reduce radiation-associated health risks, radiation safety has become an important topic in the medical field. All practitioners, regardless of practice setting, can practice radiation safety techniques including shielding and distance to reduce radiation exposure. Additionally, optimization of fluoroscopic settings and techniques can be used as an effective method of radiation dose reduction. New imaging modalities and spinal navigation systems have also been developed in an effort to replace conventional fluoroscopy and reduce radiation doses. These modalities include Isocentric Three-Dimensional C-Arms, O-Arms, and intraoperative magnetic resonance imaging. While this influx of new technology has advanced radiation safety within the field of spine surgery, more work is still required to overcome specific limitations involving increased costs and inadequate training.
基金"211"project fund (No.98X207)National Natural Science Foundation of China,No.38970279
文摘AIM To clone expressed genes associated withrepair of irradiation-damaged mice intestinalgland cells treated by small intestinal RNA,andto explore the molecular mechanism ofexogenous nucleic acids improving repair ofintestinal crypt.METHODS The animal mode of test group andcontrol group was established,forty-five micebeing irradiated by γ ray were treated with smallintestinal RNA as test group,forty mice beingirradiated by γ ray were treated withphysiological saline as control group,five micewithout irradiation were used as normal control,their jejunal specimens were collectedrespectively at 6h,12h,24h,4d and 8d afterirradiation.Then by using LD-PCR based onsubtractive hybridization,these gene fragmentsdifferentially expressed between test group andcontrol group were obtained,and then werecloned into T vectors as well as beingsequenced.Obtained sequences were screenedagainst.GeneBank,if being new sequences,they were submitted to GeneBank.RESULTS Ninety clones were associated withrepair of irradiation-damaged intestinal glandcells treated by intestinal RNA.These clonesfrom test group of 6h,12h,24h,4d and 8dwere respectively 18,22,25,13,12.By screening against GeneBank,18 of which werenew sequences,the others were dramaticallysimilar to the known sequences,mainly similarto hsp,Nmi,Dutt1,alkaline phosphatase,homeobox,anti-CEA ScFv antibody,arginine/serine kinase and BMP-4,repA.Eighteen genefragments were new sequences,their acceptnumbers in GeneBank were respectivelyAF240164-AF240181.CONCLUSION Ninety clones were obtained tobe associated with repair of irradiation-damagedmice intestinal gland cells treated by smallintestinal RNA,which may be related toabnormal expression of genes and matchedproteins of hsp,Nmi,Duttl,Na,K-ATPase,alkalineph-osphatase,glkA,single strandedreplicative centromeric gene as well as 18 newsequences.
基金This work was supported by a grant from the National Natural Science Foundation of China(No.39770193).
文摘Objective To investigate the effect of ionizing radiation on the expression of p16, CyclinDl, and CDK4 in mouse thymocytes and splenocytes. Methods Fluorescent staining and flow cytometry analysis were employed for the measurement of protein expression. Results In time course experiments, it was found that the expression of p16 protein was significantly increased at 8, 24, and 48 h for thymocytes (P<0.05, P<0.01, and P<0.05, respectively) and at 24 h for splenocytes (P<0.05) after whole body irradiation (WBI) with 2.0 Gy X-rays. However, the expression of CDK4 protein was significantly decreased from 8 h to 24 h for thymocytes (P<0.05,P<0.01) and from 8 h to 72 h for splenocytes (P<0.05-P<0.01). In dose effect experiments, it was found that the expression of p16 protein in thymocytes and splenocytes was significantly increased at 24 h after WBI with 1.0, 2.0, and 4.0 Gy (P<0.05-P<0.01), whereas the expression of CDK4 protein was significantly decreased with 2.0Gy for thymocytes (P<0.05) and 0.5-6.0 Gy for splenocytes (P<0.05-P<0.01). Results also showed that the expression of CyclinDl protein decreased markedly in both thymocytes and splenocytes after exposure. Conclusion The results indicate that the expression of p 16 protein in thymocytes and splenocytes can be induced by ionizing radiation, and the p16-CyclinD1/CDK4 pathway may play an important role for G1 arrest of thymocytes induced by X-rays.
文摘This paper presents the effects of the low-dose irradiation on Tilapia Nilotica. In laboratory experiments the Tilapia Nilotica irradiated by integrated flux of fast neutrons 1×10 9 neutrons/m2 and 1 ×10 10 neutrons/m2 gave a growth rate more than 40% and 32 % compared with those of controls respectively. The yield of the irradiated Tilapia Nilotica growing with non-irradiated carps and silver carps in a mixed feed condition increased by 8. 6%, 157% and 11. 0% more than those of the controls in the pilot test. The survival rate increases by 21. 8%, 149% and 16. 2% for the aboye-mentioned three species. An increased yield of 52 098 kg fish under irradiation with low dose was obtained in 18. 7 hectare water surface. The results of biological experiments show that the main organic coefficients of the Tilapia Nilotica are greater than those of the controls, and this may be related to the increase of the capabilities of metabolism and resistance to diseases.