Gravitational Potential Energy (GPE) change due to horizontal/isopycnal eddy diffusion and advection is examined. Horizontal/isopycnal eddy diffusion is conceptually separated into two steps: stirring and sub scale...Gravitational Potential Energy (GPE) change due to horizontal/isopycnal eddy diffusion and advection is examined. Horizontal/isopycnal eddy diffusion is conceptually separated into two steps: stirring and sub scale diffusion. GPE changes associated with these two steps are analyzed. In addition, GPE changes due to stirring and subscale diffusion associated with horizontal/isopycnal advection in the Eulerian coordinates are analyzed. These formulae are applied to the SODA data for the world oceans. Our analysis indicates that horizontal/isopycnal advection in Eulerian coordinates can introduce large artificial diffusion in the model. It is shown that GPE source/sink in isopycnal coordinates is closely linked to physical property distribution, such as temperature, salinity and velocity. In comparison with z-coordinates, GPE source/sink due to stir ring/cabbeling associated with isopycnal diffusion/advection is much smaller. Although isopycnal coordi nates may be a better choice in terms of handling lateral diffusion, advection terms in the traditional Eule rian coordinates can produce artificial source of GPE due to cabbeling associated with advection. Reducing such numerical errors remains a grand challenge.展开更多
The Miami Isopycnal Coordinate Ocean Model (MICOM) is adopted to simulate the intevdecadal variability in the Pacific Ocean with most emphasis on regime shifts in the North Pacific. The computational domain covers 60&...The Miami Isopycnal Coordinate Ocean Model (MICOM) is adopted to simulate the intevdecadal variability in the Pacific Ocean with most emphasis on regime shifts in the North Pacific. The computational domain covers 60°N to 40°S with an enclosed boundary condition for momentum flux, whereas there are thermohalirie fluxes across the southern end as a restoring term. In addition, sea surface salinity of the model relaxes to the climatological season cycle, which results in climatological fresh water fluxes. Surface forcing functions from January 1945 through December 1998 are derived from the Comprehensive Ocean and Atmospheric Data Set (COADS). Such a numerical experiment reproduces the observed evolution of the interdecadal variability in the heat content over the upper 400-m layer by a two-year lag. Subduction that occurs at the ventilated thermocline in the central North Pacific is also been simulated and the subducted signals propagate from 35°N to 25°N, taking about 8 to 10 years, in agreement with the expendable Bathy Thermograph observation over recent decades. Interdecadal signals take a southwest-ward and downward path rather than westward propagation, meaning they are less associated with the baroclinic planetary waves. During travel, the signals appear to conserve potential vorticity. Therefore, the ventilated thermocline and related subduction are probably the fundamental physics for interdecadal variability in the mid-latitude subtropics of the North Pacific.展开更多
Study of oceanic circulation and climate requires models which can simulate tracer eddy diffusion and ad vection accurately. It is shown that the traditional Eulerian coordinates can introduce large artificial hori zo...Study of oceanic circulation and climate requires models which can simulate tracer eddy diffusion and ad vection accurately. It is shown that the traditional Eulerian coordinates can introduce large artificial hori zontal diffusivity/viscosity due to the incorrect alignment of the axis. Therefore, such models can smear sharp fronts and introduce other numerical artifacts. For simulation with relatively low resolution, large lateral diffusion was explicitly used in models; therefore, such numerical diffusion may not be a problem. However, with the increase of horizontal resolution, the artificial diffusivity/viscosity associated with hori zontal advection in the commonly used Eulerian coordinates may become one of the most challenging ob stacles for modeling the ocean circulation accurately. Isopycnal eddy diffusion (mixing) has been widely used in numerical models. The common wisdom is that mixing along isopycnal is energy free. However, a careful examination reveals that this is not the case. In fact, eddy diffusion can be conceptually separated into two steps: stirring and subscale diffusion. Due to the thermobaric effect, stirring, or exchanging water masses, along isopycnal surface is associated with the change of GPE in the mean state. This is a new type of instability, called the thermobaric instability. In addition, due to cabbeling subscale diffusion of water parcels always leads to the release of GPE. The release of GPE due to isopycnal stirring and subscale diffusion may lead to the thermobaric instability.展开更多
In this study, we used the Navy’s Generalized Digital Environmental Model (GDEM) climatological temperature and salinity data on a 0.5°×0.5° grid to investigate the seasonal variabilities of the southw...In this study, we used the Navy’s Generalized Digital Environmental Model (GDEM) climatological temperature and salinity data on a 0.5°×0.5° grid to investigate the seasonal variabilities of the southwest Philippines Sea (0.5°–9°N, 123.5°–136.5°) thermohaline structure and circulation. The GDEM for the area was built up on historical (1930–1997) temperature and salinity profiles. A three-dimensional estimate of the absolute geostrophic velocity field on isopycnal surface was obtained from the GDEM temperature and salinity fields using the P-vector method. The seasonal variabilities of the thermohaline structure and currents (obtained from the inverse method) such as the Mindanao Current, Mindanao Undercurrent, North Equatorial Counter Current, New Guinea Coastal Undercurrent, and dual-eddies (cyclinic Mindanao Eddy and anticyclonic Halmahera Eddy) are identified.展开更多
In this study, we develop a variable-grid global ocean general circulation model (OGCM) with a fine grid (1/6)° covering the area from 20°S-50°N and from 99°-150°E, and use the model to in...In this study, we develop a variable-grid global ocean general circulation model (OGCM) with a fine grid (1/6)° covering the area from 20°S-50°N and from 99°-150°E, and use the model to investigate the isopycnal surface circulation in the South China Sea (SCS). The simulated results show four layer structures in vertical: the surface and subsurface circulation of the SCS are characterized by the monsoon driven circulation, with basin-scaled cyclonic gyre in winter and anti-cyclonic gyre in summer. The intermediate layer circulation is opposite to the upper layer, showing anti-cyclonic gyre in winter but cyclonic gyre in summer. The circulation in the deep layer is much weaker in spring and summer, with the maximum velocity speed below 0.6 cm/s. In fall and winter, the SCS deep layer circulation shows strong east boundary current along the west coast of Philippine with the velocity speed at 1.5 m/s, which flows southward in fall and northward in winter. The results have also revealed a fourlayer vertical structure of water exchange through the Luzon Strait. The dynamics of the intermediate and deep circulation are attributed to the monsoon driving and the Luzon Strait transport forcing.展开更多
The monthly circulations on isopycnal surface in the western North Pacific are calculated based on the Navy’s Generalized Digital Environmental Model climatological tem- perature and salinity data on a 1/2° ...The monthly circulations on isopycnal surface in the western North Pacific are calculated based on the Navy’s Generalized Digital Environmental Model climatological tem- perature and salinity data on a 1/2° × 1/2° grid using a P-vector method. The eastward Sub- tropical Countercurrent (STCC) in the central subtropical gyre has been studied with emphasis on its spatial distribution, vertical structure, volume transport and its nearby eddy phenomenon. The results reproduce the observed feature of STCC, and reveal some new phenomena on isopycnal surface, such as: (1) At σθ = 24.6, there is strong seasonal variability in the distribution, origin and flow status of STCC. There is no STCC in January, February and March. (2) From May to October, a branch of the Kuroshio Countercurrent to the south of Japan merges into STCC, which increases the velocity of STCC and widens its width. (3) The velocity vector field shows that STCC and nearby eddies coexist. (4) The eastward volume transport of STCC across 137.5°E is the strongest in summer with the maximum of 6.9 Sv ( 1 Sv ≡ 106 m3 s?1) in August, and weaker in spring and autumn with 1.7 Sv in April and 1.6 Sv in November. Most of the transports of STCC occur between isopycnal surfaces 24.0σθ and 25.0σθ. (5) The distributions of the zonal flow along 137.5°E show that the flow core of STCC is between 24.3σθ and 24.7σθ .展开更多
Circulations on isopycnals (σθ) in the western North Pacific were investigated by using P-vector method; the data were taken from the U.S. Navy’s climatological temperature and salinity dataset (public domain) with...Circulations on isopycnals (σθ) in the western North Pacific were investigated by using P-vector method; the data were taken from the U.S. Navy’s climatological temperature and salinity dataset (public domain) with 1/2°×1/2° resolution. Results not only show the main circulation systems on isopycnals in the western North Pacific such as the North Equatorial Current (NEC), Kuroshio and Ku-roshio Countercurrent, but also reveal the Subtropical Countercurrent (STCC) clearly. In this note we pay attention to discussing the distribution of STCC in summer (in June). The STCC flows eastward along a winding road; on shallow isopycnals, the STCC originates from the area east of Bashi Strait at about 122.5°E; with the isopycnals increasing, the origin and flow core of STCC move to north and east, but the main part of STCC is still between 18?and 23.5°N, i.e. near the Tropic of Cancer. There exists STCC on all isopycnals between the sea surface and 25.8σθ.The current vectors of STCC on isopycnals are展开更多
Gravitational potential energy (GPE) source and sink due to stirring and cabbeling associated with sigma dif fusion/ advection is analyzed. It is shown that GPE source and sink is too big, and they are not closely l...Gravitational potential energy (GPE) source and sink due to stirring and cabbeling associated with sigma dif fusion/ advection is analyzed. It is shown that GPE source and sink is too big, and they are not closely linked to physical property distribution, such as temperature, salinity and velocity. Although the most frequently quoted advantage of sigma coordinate models are their capability of dealing with topography; the exces sive amount of GPE source and sink due to stirring and cabbeling associated with sigma diffusion/advec tion diagnosed from our analysis raises a very serious question whether the way lateral diffusion/advection simulated in the sigma coordinates model is physically acceptable. GPE source and sink in three coordinates is dramatically different in their magnitude and patterns. Overall, in terms of simulating lateral eddy diffu sion and advection isopycnal coordinates is the best choice and sigma coordinates is the worst. The physical reason of the excessive GPE source and sink in sigma coordinates is further explored in details. However, even in the isopycnal coordinates, simulation based on the Eulerian coordinates can be contaminated by the numerical errors associated with the advection terms.展开更多
A new generation of the IAP / LASG world ocean general circulation model is designed and presented based on the previous 20-layer model, with enhanced spatial resolutions and improved parameterizations. The model uses...A new generation of the IAP / LASG world ocean general circulation model is designed and presented based on the previous 20-layer model, with enhanced spatial resolutions and improved parameterizations. The model uses a triangular-truncated spectral horizontal grid system with its zonal wave number of 63 (T63) to match its atmospheric counterpart of a T63 spectral atmosphere general circulation model in a planned coupled ocean-atmosphere system. There are 30 layers in vertical direction, of which 20 layers are located above 1000 m for better depicting the permanent thermocline. As previous ocean models developed in IAP / LASG, a free surface (rather than “rigid-lid” approximation) is included in this model. Compared with the 20-layer model, some more detailed physical parameterizations are considered, including the along / cross isopycnal mixing scheme adapted from the Gent-MacWilliams scheme. The model is spun up from a motionless state. Initial conditions for temperature and salinity are taken from the three-dimensional distributions of Levitus’ annual mean observation. A preliminary analysis of the first 1000-year integration of a control experiment shows some encouraging improvements compared with the twenty-layer model, particularly in the simulations of permanent thermocline, thermohaline circulation, meridional heat transport, etc. resulted mainly from using the isopycnal mixing scheme. However, the use of isopycnal mixing scheme does not significantly improve the simulated equatorial thermocline. A series of numerical experiments show that the most important contribution to the improvement of equatorial thermocline and the associated equatorial under current comes from reducing horizontal viscosity in the equatorial regions. It is found that reducing the horizontal viscosity in the equatorial Atlantic Ocean may slightly weaken the overturning rate of North Atlantic Deep Water.展开更多
The interdecadal variation of Pacific thermocline represented by depth anomalies of 25σθ isopycnal surface calculated from SODA data set is analyzed. The climatological depth of 25σθ isopycnal surface is quit...The interdecadal variation of Pacific thermocline represented by depth anomalies of 25σθ isopycnal surface calculated from SODA data set is analyzed. The climatological depth of 25σθ isopycnal surface is quite close to the depth of 20 ℃ isotherm in the tropical Pacific. The EOF1 mode of the 25σθ isopycnal surface accounts for 26. 4% of the total variance and its associated pattern is of east-west direction. The centers of positive and negative extremes are located near 10oS over the southern Pacific and the correlation coefficient with zero-lag between the corresponding EOF1 time coefficient and PDO index is -0.67. This shows that there is very close relation between the southern tropical Pacific and PDO. The wavelet analysis of detrended EOF1 time coefficient reveals that there are two dominant time scales of about 3~7 and 30 a respectively. An apparent abruptness of mean value occurred in the late 1970s. EOF2 mode accounts for 12.4% of the total variance and its pattern is an ENSO-related one. The correlation coefficient between the EOF2 time coefficient and NINO3 index is -0.68. The wavelet analysis of EOF2 time coefficient reveals that there are two leading time scales of about 2~7 and 10~15 a respectively. On an interdecadal scale, the zonal change is consistent along the equator and is seesaw along 10oS; there is consistent polarity in the tropics along 165oE, but reverse polarity between around equator and other tropical region along 120oW. In all the four profiles mentioned above, the regime shift occurred in the late 1970s. The evolving characteristics of anomalies can be explained mostly by the anomalies of ocean currents during a complete cycle on an interdecadal scale.展开更多
Isopycnal analyses were performed on the Global Ocean Data Assimilation System (GODAS) to determine the oceanic processes leading to so-called second-year cooling of the La Nina event.In 2010-12,a horseshoe-like pat...Isopycnal analyses were performed on the Global Ocean Data Assimilation System (GODAS) to determine the oceanic processes leading to so-called second-year cooling of the La Nina event.In 2010-12,a horseshoe-like pattern was seen,connecting negative temperature anomalies off and on the Equator,with a dominant influence from the South Pacific.During the 2010 La Nina event,warm waters piled up at subsurface depths in the western tropical Pacific.Beginning in early 2011,these warm subsurface anomalies propagated along the Equator toward the eastern basin,acting to reverse the sign of sea surface temperature (SST) anomalies (SSTAs) there and initiate a warm SSTA.However,throughout early 2011,pronounced negative anomalies persisted off the Equator in the subsurface depths of the South Pacific.As isopycnal surfaces outcropped in the central equatorial Pacific,negative anomalies from the subsurface spread upward along with mean circulation pathways,naturally initializing a cold SSTA.In the summer,a cold SSTA reappeared in the central basin,which subsequently strengthened due to the off-equatorial effects mostly in the South Pacific.These SSTAs acted to initiate local coupled air-sea interactions,generating atmospheric-oceanic anomalies that developed and evolved with the second-year cooling in the fall of 2011.However,the cooling tendency in mid-2012 did not develop into another La Nina event,since the cold anomalies in the South Pacific were not strong enough.An analysis of the 2007-09 La Nina event revealed similar processes to the 2010-12 La Nina event.展开更多
Ocean spiciness is referred to as density-compensated temperature and salinity variations with warm(cool)and salty(fresh)waters having high(low)spiciness,respectively.The structure and evolution of density-compensated...Ocean spiciness is referred to as density-compensated temperature and salinity variations with warm(cool)and salty(fresh)waters having high(low)spiciness,respectively.The structure and evolution of density-compensated(warm/salty or cool/fresh)spiciness anomalies are investigated in the North Pacific thermocline using Argo observations during the period 2004-20.Two well-organized decadal spiciness events are identified through isopycnal surface analyses.One warm/salty spiciness anomaly of about 0.15°C and 0.05 g kg^(−1)temperature and salinity perturbations on the 25 kg m^(−1)isopycnal surface appeared in the eastern subtropical North Pacific at(18°-30°N,120°-150°W)in 2007,which then migrated southwestward along the mean circulation and arrived in the western tropics at(~15°N,145°E-175°W)in 2012-13,with the reduced salinity perturbation of about 0.043 g kg^(−1).Another cool/fresh spiciness anomaly of about−0.2°C and−0.07 g kg^(−1)temperature and salinity perturbations originated from the eastern subtropics at(120°-150°W,~30°N)in 2014 and followed a similar advective pathway during the period from 2014-15 to 2019-20.The subduction pathway can be adequately determined by the mean Montgomery stream function on the isopycnal surface;the propagation direction and speed are in good agreement with the expectation for the role played by advection due to the mean geostrophic current.Moreover,the subducted decadal spiciness anomalies can have negative feedback on sea surface temperature(SST)variability in the western tropical Pacific through the diapycnal processes.The identifications of these density-compensated spiciness anomalies and their propagation pathways provide a clear illustration of the oceanic extratropics-tropics interactions in the North Pacific Ocean.展开更多
A basin-wide ocean general circulation model of the Pacific Ocean was used to investigate how the interior restoration in the Okhotsk Sea and the isopycnal diffusion affect the circulation and intermediate water masse...A basin-wide ocean general circulation model of the Pacific Ocean was used to investigate how the interior restoration in the Okhotsk Sea and the isopycnal diffusion affect the circulation and intermediate water masses. Four numerical experiments were conducted, including a run with the same isopycnal and thickness diffusivity of 1.0×10^3 m2/s, a run employing the interior restoration of temperature and salinity in the Okhotsk Sea with a time scale of 3 months, a run that is the same as the first run except for the enhanced isopycnal mixing, and a final run with the combination of the restoration in the Okhotsk Sea and large isopycnal diffusivity. Simulated results show that the intermediate water masses reproduced in the first run are relatively weak. An increase in isopycnal diffusivity can improve the simulation of both Antarctic and North Pacific intermediate waters, mainly increasing the transport in the interior ocean, but inhibiting the outflow from the Okhotsk Sea. The interior restoration generates the reverse current from the observation in the Okhotsk Sea, whereas the simulation of the temperature and salinity is improved in the high latitude region of the Northern Hemisphere because of the reasonable source of the North Pacific Intermediate Water. A comparison of vertical profiles of temperature and salinity along 50°N between the simulation and observations demonstrates that the vertical mixing in the source region of intermediate water masses is very important.展开更多
A three-dimensional isopycnic-coordinate ocean model for the study of internal tides is presented. In this model, the ocean interior is viewed as a stack of isopycnic layers, each characterized by a constant density. ...A three-dimensional isopycnic-coordinate ocean model for the study of internal tides is presented. In this model, the ocean interior is viewed as a stack of isopycnic layers, each characterized by a constant density. The isopycnic coordinate performs well at tracking the depth variance of the thermocline, and is suitable for simulation of internal tides. This model consists of external and internal modes, and barotropic and baroclinic motions are calculated in the two modes, respectively. The capability of simulating internal tides was verified by comparing model results with an analytical solution. The model was then applied to the simulation of internal tides in the South China Sea (SCS) with the forcing of M2 and K1 tidal constituents. The results show that internal tides in the SCS are mainly generated in the Luzon Strait. The generated M2 internal tides propagate away in three different directions (branches). The branch with the widest tidal beam propagates eastward into the Pacific Ocean, the most energetic branch propagates westward toward Dongsha Island, and the least energetic branch propagates southwestward into the basin of the SCS. The generated KI internal tides propagate in two different directions (branches). One branch propagates eastward into the Pacific Ocean, and the other branch propagates southwestward into the SCS basin. The steepening process of internal tides due to shoaling effects is described briefly. Meridionally integrated westward energy fluxes into the SCS are comparable to the meridionally integrated eastward energy fluxes into the Pacific Ocean.展开更多
The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically a...The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically as well as numerically.Takayama in 1987 obtained clear experimental pictures ofisopycnics in shock tube under the condi- tion that the impinging shock wave propagates as far as 3 diameters away from the cylinder.To know more complete- ly the whole unsteady process,it is desirable to get experimental results in a region which is more than 10 diameters away from the cylinder.This is what has been done in this paper by using the pulsed laser holographic interferometry for several shock Mach numbers of the impinging shock. Results for several moments are shown,giving more know- ledge about the whole unsteady flow field.This is useful for a reliable and complete understanding of the changing force acting on the cylinder,and provides interesting data to check the performance of many recently developed high resolution numerical methods for unsteady shock wave calculation.展开更多
In this article,we review the advancement in nanoseparation and concomitant purification of nanoparticles(NPs) by using density gradient ultracentrifugation technique(DGUC) and demonstrated by taking several typical e...In this article,we review the advancement in nanoseparation and concomitant purification of nanoparticles(NPs) by using density gradient ultracentrifugation technique(DGUC) and demonstrated by taking several typical examples.Study emphasizes the conceptual advances in classification,mechanism of DGUC and synthesis-structure-property relationships of NPs to provide the significant clue for the further synthesis optimization.Separation,concentration,and purification of NPs by DGUC can be achieved at the same time by introducing the water/oil interfaces into the separation chamber.We can develop an efficient method ‘‘lab in a tube" by introducing a reaction zone or an assembly zone in the gradient to find the surface reaction and assembly mechanism of NPs since the reaction time can be precisely controlled and the chemical environment change can be extremely fast.Finally,to achieve the best separation parameters for the colloidal systems,we gave the mathematical descriptions and computational optimized models as a new direction for making practicable and predictable DGUC separation method.Thus,it can be helpful for an efficient separation as well as for the synthesis optimization,assembly and surface reactions as a potential cornerstone for the future development in the nanotechnology and this review can be served as a plethora of advanced notes on the DGUC separation method.展开更多
文摘Gravitational Potential Energy (GPE) change due to horizontal/isopycnal eddy diffusion and advection is examined. Horizontal/isopycnal eddy diffusion is conceptually separated into two steps: stirring and sub scale diffusion. GPE changes associated with these two steps are analyzed. In addition, GPE changes due to stirring and subscale diffusion associated with horizontal/isopycnal advection in the Eulerian coordinates are analyzed. These formulae are applied to the SODA data for the world oceans. Our analysis indicates that horizontal/isopycnal advection in Eulerian coordinates can introduce large artificial diffusion in the model. It is shown that GPE source/sink in isopycnal coordinates is closely linked to physical property distribution, such as temperature, salinity and velocity. In comparison with z-coordinates, GPE source/sink due to stir ring/cabbeling associated with isopycnal diffusion/advection is much smaller. Although isopycnal coordi nates may be a better choice in terms of handling lateral diffusion, advection terms in the traditional Eule rian coordinates can produce artificial source of GPE due to cabbeling associated with advection. Reducing such numerical errors remains a grand challenge.
基金supported by the IARC-Frontier Research System for Global Changethe National Natural Science Foundation of China(40136010)the Chinese Academy of Sciences(KZCX2-205 and KZCX2-203).
文摘The Miami Isopycnal Coordinate Ocean Model (MICOM) is adopted to simulate the intevdecadal variability in the Pacific Ocean with most emphasis on regime shifts in the North Pacific. The computational domain covers 60°N to 40°S with an enclosed boundary condition for momentum flux, whereas there are thermohalirie fluxes across the southern end as a restoring term. In addition, sea surface salinity of the model relaxes to the climatological season cycle, which results in climatological fresh water fluxes. Surface forcing functions from January 1945 through December 1998 are derived from the Comprehensive Ocean and Atmospheric Data Set (COADS). Such a numerical experiment reproduces the observed evolution of the interdecadal variability in the heat content over the upper 400-m layer by a two-year lag. Subduction that occurs at the ventilated thermocline in the central North Pacific is also been simulated and the subducted signals propagate from 35°N to 25°N, taking about 8 to 10 years, in agreement with the expendable Bathy Thermograph observation over recent decades. Interdecadal signals take a southwest-ward and downward path rather than westward propagation, meaning they are less associated with the baroclinic planetary waves. During travel, the signals appear to conserve potential vorticity. Therefore, the ventilated thermocline and related subduction are probably the fundamental physics for interdecadal variability in the mid-latitude subtropics of the North Pacific.
文摘Study of oceanic circulation and climate requires models which can simulate tracer eddy diffusion and ad vection accurately. It is shown that the traditional Eulerian coordinates can introduce large artificial hori zontal diffusivity/viscosity due to the incorrect alignment of the axis. Therefore, such models can smear sharp fronts and introduce other numerical artifacts. For simulation with relatively low resolution, large lateral diffusion was explicitly used in models; therefore, such numerical diffusion may not be a problem. However, with the increase of horizontal resolution, the artificial diffusivity/viscosity associated with hori zontal advection in the commonly used Eulerian coordinates may become one of the most challenging ob stacles for modeling the ocean circulation accurately. Isopycnal eddy diffusion (mixing) has been widely used in numerical models. The common wisdom is that mixing along isopycnal is energy free. However, a careful examination reveals that this is not the case. In fact, eddy diffusion can be conceptually separated into two steps: stirring and subscale diffusion. Due to the thermobaric effect, stirring, or exchanging water masses, along isopycnal surface is associated with the change of GPE in the mean state. This is a new type of instability, called the thermobaric instability. In addition, due to cabbeling subscale diffusion of water parcels always leads to the release of GPE. The release of GPE due to isopycnal stirring and subscale diffusion may lead to the thermobaric instability.
文摘In this study, we used the Navy’s Generalized Digital Environmental Model (GDEM) climatological temperature and salinity data on a 0.5°×0.5° grid to investigate the seasonal variabilities of the southwest Philippines Sea (0.5°–9°N, 123.5°–136.5°) thermohaline structure and circulation. The GDEM for the area was built up on historical (1930–1997) temperature and salinity profiles. A three-dimensional estimate of the absolute geostrophic velocity field on isopycnal surface was obtained from the GDEM temperature and salinity fields using the P-vector method. The seasonal variabilities of the thermohaline structure and currents (obtained from the inverse method) such as the Mindanao Current, Mindanao Undercurrent, North Equatorial Counter Current, New Guinea Coastal Undercurrent, and dual-eddies (cyclinic Mindanao Eddy and anticyclonic Halmahera Eddy) are identified.
基金The National High Technology Research and Development Program(863 Program)of China under contract No.2013AA09A506the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404+1 种基金the National Basic Research Program(973 Program)of China under contract No.2011CB956000the National Natural Science Foundation of China under contract No.40476016
文摘In this study, we develop a variable-grid global ocean general circulation model (OGCM) with a fine grid (1/6)° covering the area from 20°S-50°N and from 99°-150°E, and use the model to investigate the isopycnal surface circulation in the South China Sea (SCS). The simulated results show four layer structures in vertical: the surface and subsurface circulation of the SCS are characterized by the monsoon driven circulation, with basin-scaled cyclonic gyre in winter and anti-cyclonic gyre in summer. The intermediate layer circulation is opposite to the upper layer, showing anti-cyclonic gyre in winter but cyclonic gyre in summer. The circulation in the deep layer is much weaker in spring and summer, with the maximum velocity speed below 0.6 cm/s. In fall and winter, the SCS deep layer circulation shows strong east boundary current along the west coast of Philippine with the velocity speed at 1.5 m/s, which flows southward in fall and northward in winter. The results have also revealed a fourlayer vertical structure of water exchange through the Luzon Strait. The dynamics of the intermediate and deep circulation are attributed to the monsoon driving and the Luzon Strait transport forcing.
基金the Key Project of the Chinese Academy of Sciences(CAS)(Grant No.KZCX1-sw-01-16)the National Natural Science Foundation of China (Grant Nos. 40076009 , 90411011) the One Hundred Talents Project of CAS.
文摘The monthly circulations on isopycnal surface in the western North Pacific are calculated based on the Navy’s Generalized Digital Environmental Model climatological tem- perature and salinity data on a 1/2° × 1/2° grid using a P-vector method. The eastward Sub- tropical Countercurrent (STCC) in the central subtropical gyre has been studied with emphasis on its spatial distribution, vertical structure, volume transport and its nearby eddy phenomenon. The results reproduce the observed feature of STCC, and reveal some new phenomena on isopycnal surface, such as: (1) At σθ = 24.6, there is strong seasonal variability in the distribution, origin and flow status of STCC. There is no STCC in January, February and March. (2) From May to October, a branch of the Kuroshio Countercurrent to the south of Japan merges into STCC, which increases the velocity of STCC and widens its width. (3) The velocity vector field shows that STCC and nearby eddies coexist. (4) The eastward volume transport of STCC across 137.5°E is the strongest in summer with the maximum of 6.9 Sv ( 1 Sv ≡ 106 m3 s?1) in August, and weaker in spring and autumn with 1.7 Sv in April and 1.6 Sv in November. Most of the transports of STCC occur between isopycnal surfaces 24.0σθ and 25.0σθ. (5) The distributions of the zonal flow along 137.5°E show that the flow core of STCC is between 24.3σθ and 24.7σθ .
基金This work was jointly supported by the National Natural Science Foundation of China (Grant No. 40076009) Naval Postgraduate School, the Key Project of the Chinese Academy of Sciences (CAS) (Grant Nos. KZCX2-205 and KZCX1-SW-01-16)the One Hundred Tal
文摘Circulations on isopycnals (σθ) in the western North Pacific were investigated by using P-vector method; the data were taken from the U.S. Navy’s climatological temperature and salinity dataset (public domain) with 1/2°×1/2° resolution. Results not only show the main circulation systems on isopycnals in the western North Pacific such as the North Equatorial Current (NEC), Kuroshio and Ku-roshio Countercurrent, but also reveal the Subtropical Countercurrent (STCC) clearly. In this note we pay attention to discussing the distribution of STCC in summer (in June). The STCC flows eastward along a winding road; on shallow isopycnals, the STCC originates from the area east of Bashi Strait at about 122.5°E; with the isopycnals increasing, the origin and flow core of STCC move to north and east, but the main part of STCC is still between 18?and 23.5°N, i.e. near the Tropic of Cancer. There exists STCC on all isopycnals between the sea surface and 25.8σθ.The current vectors of STCC on isopycnals are
文摘Gravitational potential energy (GPE) source and sink due to stirring and cabbeling associated with sigma dif fusion/ advection is analyzed. It is shown that GPE source and sink is too big, and they are not closely linked to physical property distribution, such as temperature, salinity and velocity. Although the most frequently quoted advantage of sigma coordinate models are their capability of dealing with topography; the exces sive amount of GPE source and sink due to stirring and cabbeling associated with sigma diffusion/advec tion diagnosed from our analysis raises a very serious question whether the way lateral diffusion/advection simulated in the sigma coordinates model is physically acceptable. GPE source and sink in three coordinates is dramatically different in their magnitude and patterns. Overall, in terms of simulating lateral eddy diffu sion and advection isopycnal coordinates is the best choice and sigma coordinates is the worst. The physical reason of the excessive GPE source and sink in sigma coordinates is further explored in details. However, even in the isopycnal coordinates, simulation based on the Eulerian coordinates can be contaminated by the numerical errors associated with the advection terms.
文摘A new generation of the IAP / LASG world ocean general circulation model is designed and presented based on the previous 20-layer model, with enhanced spatial resolutions and improved parameterizations. The model uses a triangular-truncated spectral horizontal grid system with its zonal wave number of 63 (T63) to match its atmospheric counterpart of a T63 spectral atmosphere general circulation model in a planned coupled ocean-atmosphere system. There are 30 layers in vertical direction, of which 20 layers are located above 1000 m for better depicting the permanent thermocline. As previous ocean models developed in IAP / LASG, a free surface (rather than “rigid-lid” approximation) is included in this model. Compared with the 20-layer model, some more detailed physical parameterizations are considered, including the along / cross isopycnal mixing scheme adapted from the Gent-MacWilliams scheme. The model is spun up from a motionless state. Initial conditions for temperature and salinity are taken from the three-dimensional distributions of Levitus’ annual mean observation. A preliminary analysis of the first 1000-year integration of a control experiment shows some encouraging improvements compared with the twenty-layer model, particularly in the simulations of permanent thermocline, thermohaline circulation, meridional heat transport, etc. resulted mainly from using the isopycnal mixing scheme. However, the use of isopycnal mixing scheme does not significantly improve the simulated equatorial thermocline. A series of numerical experiments show that the most important contribution to the improvement of equatorial thermocline and the associated equatorial under current comes from reducing horizontal viscosity in the equatorial regions. It is found that reducing the horizontal viscosity in the equatorial Atlantic Ocean may slightly weaken the overturning rate of North Atlantic Deep Water.
基金This study was supported by the National Science Foundation of China under contract No.40136010the Chinese Academy of Sciences under contract No.ZKCX2-SW-210.
文摘The interdecadal variation of Pacific thermocline represented by depth anomalies of 25σθ isopycnal surface calculated from SODA data set is analyzed. The climatological depth of 25σθ isopycnal surface is quite close to the depth of 20 ℃ isotherm in the tropical Pacific. The EOF1 mode of the 25σθ isopycnal surface accounts for 26. 4% of the total variance and its associated pattern is of east-west direction. The centers of positive and negative extremes are located near 10oS over the southern Pacific and the correlation coefficient with zero-lag between the corresponding EOF1 time coefficient and PDO index is -0.67. This shows that there is very close relation between the southern tropical Pacific and PDO. The wavelet analysis of detrended EOF1 time coefficient reveals that there are two dominant time scales of about 3~7 and 30 a respectively. An apparent abruptness of mean value occurred in the late 1970s. EOF2 mode accounts for 12.4% of the total variance and its pattern is an ENSO-related one. The correlation coefficient between the EOF2 time coefficient and NINO3 index is -0.68. The wavelet analysis of EOF2 time coefficient reveals that there are two leading time scales of about 2~7 and 10~15 a respectively. On an interdecadal scale, the zonal change is consistent along the equator and is seesaw along 10oS; there is consistent polarity in the tropics along 165oE, but reverse polarity between around equator and other tropical region along 120oW. In all the four profiles mentioned above, the regime shift occurred in the late 1970s. The evolving characteristics of anomalies can be explained mostly by the anomalies of ocean currents during a complete cycle on an interdecadal scale.
基金supported by National Natural Science Foundation of China (Grant No. 40906014)the Ocean Public Welfare Scientific Research Project (Grant No. 201205018-2)+4 种基金the National Key Basic Research Program of China (Grant No. 2010CB950302)the China Scholarship Council (CSC)supported partly by the National Science Foundation (NSF) (Grant No. ATM0727668)NASA (Grant No. NNX08AI74G)the National Oceanic and Atmospheric Administration (NOAA) (Grant No. NA08OAR4310885)
文摘Isopycnal analyses were performed on the Global Ocean Data Assimilation System (GODAS) to determine the oceanic processes leading to so-called second-year cooling of the La Nina event.In 2010-12,a horseshoe-like pattern was seen,connecting negative temperature anomalies off and on the Equator,with a dominant influence from the South Pacific.During the 2010 La Nina event,warm waters piled up at subsurface depths in the western tropical Pacific.Beginning in early 2011,these warm subsurface anomalies propagated along the Equator toward the eastern basin,acting to reverse the sign of sea surface temperature (SST) anomalies (SSTAs) there and initiate a warm SSTA.However,throughout early 2011,pronounced negative anomalies persisted off the Equator in the subsurface depths of the South Pacific.As isopycnal surfaces outcropped in the central equatorial Pacific,negative anomalies from the subsurface spread upward along with mean circulation pathways,naturally initializing a cold SSTA.In the summer,a cold SSTA reappeared in the central basin,which subsequently strengthened due to the off-equatorial effects mostly in the South Pacific.These SSTAs acted to initiate local coupled air-sea interactions,generating atmospheric-oceanic anomalies that developed and evolved with the second-year cooling in the fall of 2011.However,the cooling tendency in mid-2012 did not develop into another La Nina event,since the cold anomalies in the South Pacific were not strong enough.An analysis of the 2007-09 La Nina event revealed similar processes to the 2010-12 La Nina event.
基金supported by the National Natural Science Foundation of China[NSFC,Grant Nos.41690122(41690120),42030410]the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB 40000000,XDB 42000000,and XDA19060102).
文摘Ocean spiciness is referred to as density-compensated temperature and salinity variations with warm(cool)and salty(fresh)waters having high(low)spiciness,respectively.The structure and evolution of density-compensated(warm/salty or cool/fresh)spiciness anomalies are investigated in the North Pacific thermocline using Argo observations during the period 2004-20.Two well-organized decadal spiciness events are identified through isopycnal surface analyses.One warm/salty spiciness anomaly of about 0.15°C and 0.05 g kg^(−1)temperature and salinity perturbations on the 25 kg m^(−1)isopycnal surface appeared in the eastern subtropical North Pacific at(18°-30°N,120°-150°W)in 2007,which then migrated southwestward along the mean circulation and arrived in the western tropics at(~15°N,145°E-175°W)in 2012-13,with the reduced salinity perturbation of about 0.043 g kg^(−1).Another cool/fresh spiciness anomaly of about−0.2°C and−0.07 g kg^(−1)temperature and salinity perturbations originated from the eastern subtropics at(120°-150°W,~30°N)in 2014 and followed a similar advective pathway during the period from 2014-15 to 2019-20.The subduction pathway can be adequately determined by the mean Montgomery stream function on the isopycnal surface;the propagation direction and speed are in good agreement with the expectation for the role played by advection due to the mean geostrophic current.Moreover,the subducted decadal spiciness anomalies can have negative feedback on sea surface temperature(SST)variability in the western tropical Pacific through the diapycnal processes.The identifications of these density-compensated spiciness anomalies and their propagation pathways provide a clear illustration of the oceanic extratropics-tropics interactions in the North Pacific Ocean.
基金The National Basic Research Program(973 program)of China under contract No.2010CB951802the National Natural Science Foundation of China under contract Nos 41075091,41105087 and 40730106
文摘A basin-wide ocean general circulation model of the Pacific Ocean was used to investigate how the interior restoration in the Okhotsk Sea and the isopycnal diffusion affect the circulation and intermediate water masses. Four numerical experiments were conducted, including a run with the same isopycnal and thickness diffusivity of 1.0×10^3 m2/s, a run employing the interior restoration of temperature and salinity in the Okhotsk Sea with a time scale of 3 months, a run that is the same as the first run except for the enhanced isopycnal mixing, and a final run with the combination of the restoration in the Okhotsk Sea and large isopycnal diffusivity. Simulated results show that the intermediate water masses reproduced in the first run are relatively weak. An increase in isopycnal diffusivity can improve the simulation of both Antarctic and North Pacific intermediate waters, mainly increasing the transport in the interior ocean, but inhibiting the outflow from the Okhotsk Sea. The interior restoration generates the reverse current from the observation in the Okhotsk Sea, whereas the simulation of the temperature and salinity is improved in the high latitude region of the Northern Hemisphere because of the reasonable source of the North Pacific Intermediate Water. A comparison of vertical profiles of temperature and salinity along 50°N between the simulation and observations demonstrates that the vertical mixing in the source region of intermediate water masses is very important.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(Nos.2007AA09Z118,2008AA09A402)the National Natural Science Foundation of China(No.41076006)+1 种基金the International Cooperate Fund of NNSFC(No.40810104046)the Program for New Century Excellent Talents in University(111 Project)(No.B07036)
文摘A three-dimensional isopycnic-coordinate ocean model for the study of internal tides is presented. In this model, the ocean interior is viewed as a stack of isopycnic layers, each characterized by a constant density. The isopycnic coordinate performs well at tracking the depth variance of the thermocline, and is suitable for simulation of internal tides. This model consists of external and internal modes, and barotropic and baroclinic motions are calculated in the two modes, respectively. The capability of simulating internal tides was verified by comparing model results with an analytical solution. The model was then applied to the simulation of internal tides in the South China Sea (SCS) with the forcing of M2 and K1 tidal constituents. The results show that internal tides in the SCS are mainly generated in the Luzon Strait. The generated M2 internal tides propagate away in three different directions (branches). The branch with the widest tidal beam propagates eastward into the Pacific Ocean, the most energetic branch propagates westward toward Dongsha Island, and the least energetic branch propagates southwestward into the basin of the SCS. The generated KI internal tides propagate in two different directions (branches). One branch propagates eastward into the Pacific Ocean, and the other branch propagates southwestward into the SCS basin. The steepening process of internal tides due to shoaling effects is described briefly. Meridionally integrated westward energy fluxes into the SCS are comparable to the meridionally integrated eastward energy fluxes into the Pacific Ocean.
基金The project suported partially by National Natural Science Foundation of China
文摘The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically as well as numerically.Takayama in 1987 obtained clear experimental pictures ofisopycnics in shock tube under the condi- tion that the impinging shock wave propagates as far as 3 diameters away from the cylinder.To know more complete- ly the whole unsteady process,it is desirable to get experimental results in a region which is more than 10 diameters away from the cylinder.This is what has been done in this paper by using the pulsed laser holographic interferometry for several shock Mach numbers of the impinging shock. Results for several moments are shown,giving more know- ledge about the whole unsteady flow field.This is useful for a reliable and complete understanding of the changing force acting on the cylinder,and provides interesting data to check the performance of many recently developed high resolution numerical methods for unsteady shock wave calculation.
基金supported by the National Natural Science Foundation of China(NSFC)the National Key Research and Development Project of China(2016YFF0204402)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in the University(IRT1205)the Fundamental Research Funds for the Central Universities,the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of PRC
文摘In this article,we review the advancement in nanoseparation and concomitant purification of nanoparticles(NPs) by using density gradient ultracentrifugation technique(DGUC) and demonstrated by taking several typical examples.Study emphasizes the conceptual advances in classification,mechanism of DGUC and synthesis-structure-property relationships of NPs to provide the significant clue for the further synthesis optimization.Separation,concentration,and purification of NPs by DGUC can be achieved at the same time by introducing the water/oil interfaces into the separation chamber.We can develop an efficient method ‘‘lab in a tube" by introducing a reaction zone or an assembly zone in the gradient to find the surface reaction and assembly mechanism of NPs since the reaction time can be precisely controlled and the chemical environment change can be extremely fast.Finally,to achieve the best separation parameters for the colloidal systems,we gave the mathematical descriptions and computational optimized models as a new direction for making practicable and predictable DGUC separation method.Thus,it can be helpful for an efficient separation as well as for the synthesis optimization,assembly and surface reactions as a potential cornerstone for the future development in the nanotechnology and this review can be served as a plethora of advanced notes on the DGUC separation method.