To solve vehicle routing problem with different fleets, two methodologies are developed. The first methodology adopts twophase strategy. In the first phase, the improved savings method is used to assign customers to a...To solve vehicle routing problem with different fleets, two methodologies are developed. The first methodology adopts twophase strategy. In the first phase, the improved savings method is used to assign customers to appropriate vehicles. In the second phase, the iterated dynasearch algorithm is adopted to route each selected vehicle with the assigned customers. The iterated dynasearch algorithm combines dynasearch algorithm with iterated local search algorithm based on random kicks. The second methodplogy adopts the idea of cyclic transfer which is performed by using dynamic programming algorithm, and the iterated dynasearch algorithm is also embedded in it. The test results show that both methodologies generate better solutions than the traditional method, and the second methodology is superior to the first one.展开更多
This paper introduces a new algorithm based on local search for the capacitated arc routing problem(CARP)and the split-delivery capacitated arc routing problem(SDCARP).We present a intermediate model to transfer CARP ...This paper introduces a new algorithm based on local search for the capacitated arc routing problem(CARP)and the split-delivery capacitated arc routing problem(SDCARP).We present a intermediate model to transfer CARP to SDCARP and then solve the two problems by an algorithm which combines the iterated local search and the memetic algorithm.We use crossovers to perform fully reproducible initializations in each local search iteration and edge-marking to save computation time.The computational results on 63 instances of standard benchmarks show that the proposed algorithm outperforms most of the existing best-known solutions obtained by other heuristics within a reasonable computing time.Furthermore,compared with the CARP solutions,our algorithm finds three optimums for the SDCARP.展开更多
Iterated local search(ILS)is used to construct the optimal experimental designs for multi-dimensional constrained spaces,in which the inner loop is based on the stochastic coordinate-exchange(SCE)algorithm.Every time ...Iterated local search(ILS)is used to construct the optimal experimental designs for multi-dimensional constrained spaces,in which the inner loop is based on the stochastic coordinate-exchange(SCE)algorithm.Every time a local optimal solution is found by the SCE algorithm,the perturbation operator is applied to it,and then a new solution is explored in the areas where the exchange of coordinates may produce improvement,so as to retain the features and attributes of the current optimal solution and avoid the defects of random restart.We implement the iterated local coordinate-exchange algorithm for experimental designs in the multi-dimensional constrained spaces.In addition,sensitivity analysis was conducted to analyze the impacts of the parameters on the performance of the proposed algorithm.Also we compared the performance of the proposed algorithm to the SCE algorithm using the random restart strategy.The analysis shows that the proposed algorithm is better than the SCE algorithm in terms of efficiency and quality,especially in the experimental designs for high-dimensional constrained space.展开更多
Safety patrol inspection in chemical industrial parks is a complex multi-objective task with multiple degrees of freedom.Traditional pointer instruments with advantages like high reliability and strong adaptability to...Safety patrol inspection in chemical industrial parks is a complex multi-objective task with multiple degrees of freedom.Traditional pointer instruments with advantages like high reliability and strong adaptability to harsh environment,are widely applied in such parks.However,they rely on manual readings which have problems like heavy patrol workload,high labor cost,high false positives/negatives and poor timeliness.To address the above problems,this study proposes a path planning method for robot patrol in chemical industrial parks,where a path optimization model based on improved iterated local search and random variable neighborhood descent(ILS-RVND)algorithm is established by integrating the actual requirements of patrol tasks in chemical industrial parks.Further,the effectiveness of the model and algorithm is verified by taking real park data as an example.The results show that compared with GA and ILS-RVND,the improved algorithm reduces quantification cost by about 24%and saves patrol time by about 36%.Apart from shortening the patrol time of robots,optimizing their patrol path and reducing their maintenance loss,the proposed algorithm also avoids the untimely patrol of robots and enhances the safety factor of equipment.展开更多
Satellite observation scheduling plays a significant role in improving the efficiency of satellite observation systems.Although many scheduling algorithms have been proposed,emergency tasks,characterized as importance...Satellite observation scheduling plays a significant role in improving the efficiency of satellite observation systems.Although many scheduling algorithms have been proposed,emergency tasks,characterized as importance and urgency(e.g.,observation tasks orienting to the earthquake area and military conflict area),have not been taken into account yet.Therefore,it is crucial to investigate the satellite integrated scheduling methods,which focus on meeting the requirements of emergency tasks while maximizing the profit of common tasks.Firstly,a pretreatment approach is proposed,which eliminates conflicts among emergency tasks and allocates all tasks with a potential time-window to related orbits of satellites.Secondly,a mathematical model and an acyclic directed graph model are constructed.Thirdly,a hybrid ant colony optimization method mixed with iteration local search(ACO-ILS) is established to solve the problem.Moreover,to guarantee all solutions satisfying the emergency task requirement constraints,a constraint repair method is presented.Extensive experimental simulations show that the proposed integrated scheduling method is superior to two-phased scheduling methods,the performance of ACO-ILS is greatly improved in both evolution speed and solution quality by iteration local search,and ACO-ILS outperforms both genetic algorithm and simulated annealing algorithm.展开更多
基金The National Natural Science Founda-tion of China ( No.70471039)the National Social Science Foundation of China (No.07BJY038)the Program for New Century Excellent Talents in University (No.NCET-04-0886)
文摘To solve vehicle routing problem with different fleets, two methodologies are developed. The first methodology adopts twophase strategy. In the first phase, the improved savings method is used to assign customers to appropriate vehicles. In the second phase, the iterated dynasearch algorithm is adopted to route each selected vehicle with the assigned customers. The iterated dynasearch algorithm combines dynasearch algorithm with iterated local search algorithm based on random kicks. The second methodplogy adopts the idea of cyclic transfer which is performed by using dynamic programming algorithm, and the iterated dynasearch algorithm is also embedded in it. The test results show that both methodologies generate better solutions than the traditional method, and the second methodology is superior to the first one.
文摘This paper introduces a new algorithm based on local search for the capacitated arc routing problem(CARP)and the split-delivery capacitated arc routing problem(SDCARP).We present a intermediate model to transfer CARP to SDCARP and then solve the two problems by an algorithm which combines the iterated local search and the memetic algorithm.We use crossovers to perform fully reproducible initializations in each local search iteration and edge-marking to save computation time.The computational results on 63 instances of standard benchmarks show that the proposed algorithm outperforms most of the existing best-known solutions obtained by other heuristics within a reasonable computing time.Furthermore,compared with the CARP solutions,our algorithm finds three optimums for the SDCARP.
基金This work was supported by the National Natural Science Foundation of China(72171231).
文摘Iterated local search(ILS)is used to construct the optimal experimental designs for multi-dimensional constrained spaces,in which the inner loop is based on the stochastic coordinate-exchange(SCE)algorithm.Every time a local optimal solution is found by the SCE algorithm,the perturbation operator is applied to it,and then a new solution is explored in the areas where the exchange of coordinates may produce improvement,so as to retain the features and attributes of the current optimal solution and avoid the defects of random restart.We implement the iterated local coordinate-exchange algorithm for experimental designs in the multi-dimensional constrained spaces.In addition,sensitivity analysis was conducted to analyze the impacts of the parameters on the performance of the proposed algorithm.Also we compared the performance of the proposed algorithm to the SCE algorithm using the random restart strategy.The analysis shows that the proposed algorithm is better than the SCE algorithm in terms of efficiency and quality,especially in the experimental designs for high-dimensional constrained space.
基金the National Key R&D Plan of China(No.2021YFE0105000)the National Natural Science Foundation of China(No.52074213)+1 种基金the Shaanxi Key R&D Plan Project(No.2021SF-472)the Yulin Science and Technology Plan Project(No.CXY-2020-036).
文摘Safety patrol inspection in chemical industrial parks is a complex multi-objective task with multiple degrees of freedom.Traditional pointer instruments with advantages like high reliability and strong adaptability to harsh environment,are widely applied in such parks.However,they rely on manual readings which have problems like heavy patrol workload,high labor cost,high false positives/negatives and poor timeliness.To address the above problems,this study proposes a path planning method for robot patrol in chemical industrial parks,where a path optimization model based on improved iterated local search and random variable neighborhood descent(ILS-RVND)algorithm is established by integrating the actual requirements of patrol tasks in chemical industrial parks.Further,the effectiveness of the model and algorithm is verified by taking real park data as an example.The results show that compared with GA and ILS-RVND,the improved algorithm reduces quantification cost by about 24%and saves patrol time by about 36%.Apart from shortening the patrol time of robots,optimizing their patrol path and reducing their maintenance loss,the proposed algorithm also avoids the untimely patrol of robots and enhances the safety factor of equipment.
基金supported by the National Natural Science Foundation of China (61104180)the National Basic Research Program of China(973 Program) (97361361)
文摘Satellite observation scheduling plays a significant role in improving the efficiency of satellite observation systems.Although many scheduling algorithms have been proposed,emergency tasks,characterized as importance and urgency(e.g.,observation tasks orienting to the earthquake area and military conflict area),have not been taken into account yet.Therefore,it is crucial to investigate the satellite integrated scheduling methods,which focus on meeting the requirements of emergency tasks while maximizing the profit of common tasks.Firstly,a pretreatment approach is proposed,which eliminates conflicts among emergency tasks and allocates all tasks with a potential time-window to related orbits of satellites.Secondly,a mathematical model and an acyclic directed graph model are constructed.Thirdly,a hybrid ant colony optimization method mixed with iteration local search(ACO-ILS) is established to solve the problem.Moreover,to guarantee all solutions satisfying the emergency task requirement constraints,a constraint repair method is presented.Extensive experimental simulations show that the proposed integrated scheduling method is superior to two-phased scheduling methods,the performance of ACO-ILS is greatly improved in both evolution speed and solution quality by iteration local search,and ACO-ILS outperforms both genetic algorithm and simulated annealing algorithm.