Traditional construction techniques have a significant impact on the environment and are associated with long construction durations in the construction of municipal rainwater pipelines.Pipe jacking technology,a new t...Traditional construction techniques have a significant impact on the environment and are associated with long construction durations in the construction of municipal rainwater pipelines.Pipe jacking technology,a new type of pipeline construction method,enables non-excavation construction and can address the shortcomings of traditional pipeline construction.This article analyzes the concept and application advantages of pipe jacking technology.Combining engineering examples,it explores the application strategies of pipe jacking technology in the construction process of municipal rainwater pipelines for reference.展开更多
For a pipejacking, the jacking force is critical to balance the resistance force and to move the pipe string forwards. The driving mechanism of a curved pipejacking is more complicated than a straight-line pipejacking...For a pipejacking, the jacking force is critical to balance the resistance force and to move the pipe string forwards. The driving mechanism of a curved pipejacking is more complicated than a straight-line pipejacking, and its jacking force is also more difficult to be determined. The paper theoretically studies the jacking force of a curved pipejacking by considering the static equilibrium of earth pressure, resistance at cutting face, friction at pipe surface, and the driving force behind the pipe string. The derived theoretical formula can be used to estimate the driving forces of a straight-line or a curved pipejacking. Case study was performed by applying the theoretical and empirical formulae. After calibration, the corrected formula is more accurate and more applicable.展开更多
To shorten the existing box culvert demolition construction period and ensure the normal operation of the railway, the jacking-out construction method was adopted. The ABAQUS finite element software was used to establ...To shorten the existing box culvert demolition construction period and ensure the normal operation of the railway, the jacking-out construction method was adopted. The ABAQUS finite element software was used to establish a three-dimensional model of the box culvert and soil body of the relying project, and three excavation thickness (0m, 1 m, 2 m) were used as the main variation parameters for numerical analysis and research, and the change law of the box culvert itself and soil body stress during the culvert jacking out process was obtained. The results show that the jacking force-displacement curves of the three working conditions can be divided into two stages, and the jacking force reaches the maximum value at the moment when the static friction turns into sliding friction at the end of the first stage. The stress distribution at the bottom slab of the box culvert in the jacking process is approximately normal, and the stress decreases with the increase of the roadbed excavation thickness. The increase of the roadbed excavation thickness can reduce the soil pressure on the side of the box culvert and effectively reduce the deformation of the roadbed in the jacking-out process. The deformation of the roadbed during the jacking process can be reduced by increasing the thickness of the roadbed excavation.展开更多
By using site observation data and establishing 3D model using ANSYS software, this paper has discussed the strain change of stratum stress during process of jacking-in and the impact of machine head on ground surface...By using site observation data and establishing 3D model using ANSYS software, this paper has discussed the strain change of stratum stress during process of jacking-in and the impact of machine head on ground surface under different frontal resistances. Analysis of the two cases shows that soil pressure reaches its maximum point when the soil is right above machine head, and soil stress will gradually decline when machine head passes over it. It also shows that impact brought by pipe-jacking construction on stress change of the surrounding soil is limited. The thesis suggest that road surface should be consolidated and soil condition be improved before construction to prevent loss and disaster caused by road surface deformation, jacking force can be increased so that jacking efficiency can be enhanced when ground stratum is well filled with soil, but the frontal resistance facing machine head should be equal to surrounding soil pressure in order to avoid rise of ground surface.展开更多
In Japan when urban infrastructures need to be constructed, the difficulty of utilizing the ground or shallow strata will lead to a more frequent use of the deep strata. The common construction methods are open-cut, p...In Japan when urban infrastructures need to be constructed, the difficulty of utilizing the ground or shallow strata will lead to a more frequent use of the deep strata. The common construction methods are open-cut, pipe jacking, and shield methods. In recent years, a new pipe jacking method has been established that can be adapted to 20 m below the ground or more. Using this method, the drivage machine and the jacking pipe continue to move an underground until the completion of the driving. Therefore an over-cutting area (so-called tail-void) must be formed to lower the friction between the ground and the pipe. The tail-void is filled with lubrications. However, because the stress release from the ground continues to advance when the tail-void is formed, hence there are some challenges required to cope with the stability of the surrounding ground. In order to utilize the pipe jacking method in the deeper strata layers, the theory, analysis and installation of tail-void have to be systemized, and such systematic data must be stored. Therefore, the conditions of tail-void in the deep pipe jacking method are discussed using numerical analyses.展开更多
Tunnels in an urban area, in many cases, are constructed in soft ground which contains underground water, near existing facilities and structures. Structural stability for the tunnel and also the nearby structures and...Tunnels in an urban area, in many cases, are constructed in soft ground which contains underground water, near existing facilities and structures. Structural stability for the tunnel and also the nearby structures and facilities is vital in this kind of work. Slurry pipe jacking was firmly established as a special method for the non-disruptive construction of underground pipelines of sewage systems. This method utilizes mud slurry that is formed around the pipes in order to stabilize the surrounding soil. In the pipe roof method the tubing elements that are constructed by slurry pipe jacking are near each other longitudinally, and create a rigid and stable lining before the excavation of the main tunnel. This paper discusses 'the application of a slurry pipe jacking system on 'the pipe roof method by means of numerical analysis. Because of the rigid behavior of the lining, the results show little subsidence, making this method a reliable method of constructing large tunnels with small cover in an urban area.展开更多
A steel underground pipeline with a diameter of 2.4 m and a total length of 3,617 m(plate thickness of 26 mm)has been constructed in a city in central Hubei,and the engineering,procurement,and construction(EPC)project...A steel underground pipeline with a diameter of 2.4 m and a total length of 3,617 m(plate thickness of 26 mm)has been constructed in a city in central Hubei,and the engineering,procurement,and construction(EPC)project has been lifted from the upstream channel to supplement water to the downstream lake inside the city.Through preliminary geological survey data,site topographic and geomorphic survey,urban construction,as well as the requirements of the construction party,the preliminary arrangement of working wells and receiving wells as well as the selection and customization of pipe jacking machines have been proposed.Frequency conversion motor and remote monitoring technology are adopted for geotechnical change and long-distance pipe jacking.Through detailed survey,the rock and soil change section as well as gradual change conditions have been determined,the accuracy of construction mechanics calculation and construction operation control have improved,the basis and analysis basis are provided,and some experiences in construction operation are summarized.展开更多
Permafrost is widely distributed in China and around the world.In permafrost regions,soil frost heave and thawing are severe and frequent,and can destabilize pile foundations.To this end,a finite element model of a si...Permafrost is widely distributed in China and around the world.In permafrost regions,soil frost heave and thawing are severe and frequent,and can destabilize pile foundations.To this end,a finite element model of a single pile in frozen soil is established to investigate the frost heave and frost jacking response to ensure its safety in the Qinghai-Tibet Plateau.Firstly,a hydro-thermal coupling model of a single pile in frozen soil is established based on coupling parameters and initial and boundary conditions.Then the temperature and moisture distributions are analyzed through the established coupling model.A hydro-thermo-mechanical coupling model is developed by importing the ice content and temperature results.Simulation results indicate that the amount of frost heave is greater at locations closer to the ground surface,and the displacement is smaller for frozen soil that is closer to the side of the pile.The results on frost jacking behavior of piles from this study can serve as a reference for the design,construction and maintenance of foundations.展开更多
In the construction of municipal road drainage projects,pipe jacking construction is a relatively common construction method.This construction technology can avoid a large amount of excavation work,improve drainage co...In the construction of municipal road drainage projects,pipe jacking construction is a relatively common construction method.This construction technology can avoid a large amount of excavation work,improve drainage construction efficiency,avoid large-scale damage to the road surface,and exert small traffic impact.Therefore,it is currently widely used in drainage construction,but judging from the current actual application situation,there are still many problems that require further improvement.This article mainly analyzes the advantages of and current technical problems in pipe jacking construction technology in detail,explores corresponding solutions,and lays a foundation for the optimization of municipal road drainage engineering construction.展开更多
1 Project overview The Shasan station of Phase II of Shenzhen’s urban rail transit Line 12 is situated in Bao’an District,Shenzhen.It comprises a two-level underground island platform station,measuring 212 m in leng...1 Project overview The Shasan station of Phase II of Shenzhen’s urban rail transit Line 12 is situated in Bao’an District,Shenzhen.It comprises a two-level underground island platform station,measuring 212 m in length,and 22.6 m in width,with an overburden thickness of about 7.0 m.Fig.1 illustrates the presence of a large underground reinforced concrete stormwater culvert,measuring 11.5 m by 3.6 m,traversing the station’s center.展开更多
It is inevitable to cut reinforced concrete(RC)appeared in cross passage of city metro by cutting tools when constructing in densely populated area.The previous cutters employed to cut RC are insufficient and easily d...It is inevitable to cut reinforced concrete(RC)appeared in cross passage of city metro by cutting tools when constructing in densely populated area.The previous cutters employed to cut RC are insufficient and easily damaged,so a new polycrystalline diamond compact(PDC)cutter is used to solve this question.Based on the theoretical analysis of cutting mechanism,both circular and tapered PDC cutters with cutting edge angle of 90and negative front rack angle of 10are used to cut RC.The peeling and breaking patterns of cutting concrete are proposed,the nodular and grainy chips are the preferred modes in cutting steel bars.The LS-DYNA is employed to investigate the cutting performance in advance.The simulation results show that the average and peak cutting forces increase with the growth of penetration depth,cutting speed,and roundness,and subsequently the recommended penetration depth less than 1.2 mm is obtained to cut RC due to the existence of steel bars.Moreover,the linear cutting platform is adopted to investigate the force ability and damage state of PDC cutters.It is concluded that the cutting force increases abruptly and fluctuates heavily when cutting the coarse aggregates.The patterns occurred in both numerical and experimental results are generally similar.Notably,the steel bar is pulled out and the PDC cutter is damaged at the penetration depth of 0.8 mm,while a good cut occurs at the penetration depth of 0.3 mm.The tapered PDC cutter with a relatively low cutting force is prone to be broken compared with circular PDC cutter.It is suggested that the circular PDC cutter at the penetration depth of 0.3 mm should be used to cut RC in practical engineering.展开更多
Trenchless technology is often used in congested urban areas or river crossings to install underground pipelines to minimize disturbance to surface traffic or other activities.Pipe jacking is a typical technique appli...Trenchless technology is often used in congested urban areas or river crossings to install underground pipelines to minimize disturbance to surface traffic or other activities.Pipe jacking is a typical technique applied to jack pipe segments between two working shafts.However,the design of the jacking force is usually implemented using empirical methods.It should be emphasized that the jacking force will change for each site,depending on the magnitude of overcut,lubricants,work stoppages,geology and misalignment.A particle method is proposed to estimate the jacking force along the pipe.The microparameters are calibrated for sandy soils in Shenyang,so that the macroscale material behavior can be reproduced using the particle model.Hence,the normal force around the pipe circumference can be derived in the particle model,after which the interface friction coefficient is applied to evaluate the friction resistance mobilized at the soil-pipe interface.A modified Protodyakonov’s arch model can be used to assess the magnitude of earth pressure acting on the shield face.In the end,the combination of friction resistance and face pressure provides the jacking force.The efficacy of the proposed particle method is demonstrated by comparing calculated jacking forces with those measured in the field for three types of jacking machines in sandy soils under the Hun River,Shenyang.展开更多
Jacking force is one of the important safety indicators during pipe jacking construction.Existing models for calculating jacking force are widely used in the calculation of jacking force for pipe with regular cross-se...Jacking force is one of the important safety indicators during pipe jacking construction.Existing models for calculating jacking force are widely used in the calculation of jacking force for pipe with regular cross-sections.In this paper,considering pipe-soil interaction,the cross-sectional characteristics and the distribution characteristics between pipe and soil,the calculation equations for the jacking force of circular steel pipe with flange plate were proposed based on the pressure arch theory.The proposed equations were applied to calculate the jacking force for the Olympic Sports Center Subway Station of Line 9 in Shenyang,China,and the results were compared with the field monitoring data to predict the accurate jacking force.Based on the proposed equations,the influences of the flange plate position and steel pipe diameter on earth pressure around the pipe were analyzed.The functional relationship between the earth pressure and the position of flange plate or the pipe diameter was obtained,which provides design basis and theoretical guidance for engineering practice.展开更多
This paper provides a review of the history and development of pipe jacking and microtunneling methods with extensive referencing to the published literature.The application of such methods in comparison with other tr...This paper provides a review of the history and development of pipe jacking and microtunneling methods with extensive referencing to the published literature.The application of such methods in comparison with other trenchless technologies is discussed and the various planning,design and construction aspects are introduced.The emphasis of the paper is to trace the academic research and field monitoring results covering critical aspects of design and construction with a particular emphasis on jacking force estimation and the effect of lubrication on jacking forces.展开更多
Rectangular pipe jacking or box jacking has become more popular in municipal applications because of its better adaptability to shallow overburdens and its higher structural section utilization than the conventional c...Rectangular pipe jacking or box jacking has become more popular in municipal applications because of its better adaptability to shallow overburdens and its higher structural section utilization than the conventional circular pipe jacking.This case study presents a utility tunnel constructed by using rectangular box jacking in Suzhou,China.The utility tunnel,which has a cross section of 9.1 m in width and 5.5 m in height,was jacked 233.6 m,which is the longest known single jacking length of a rectangular box jacking project in China.The box jacking mainly passed through a silty sand layer with high groundwater levels with a minimum depth of cover of only 3.5 m underneath the Yuanhetang River.In this zone,the structures on the surface are sensitive to external disturbance,thus increasing the challenges of construction.A series of measures were taken during the jacking process,and the project was successfully completed.This paper provides an overview of this project and introduces key techniques in the construction of working shafts as well as in the installation and retrieval of the box jacking machine.In addition,the use of lubrication to reduce friction resistance,navigation and application of an anti-buoyancy slab under the Yuanhetang River,and analyses of soil deformation caused by box jacking are described.展开更多
Previous studies on pipe friction resistance are mainly concentrated in the soil layer,whereas the study on that in the rock stratum is limited.To estimate the pipe friction resistance in the rock stratum,the calculat...Previous studies on pipe friction resistance are mainly concentrated in the soil layer,whereas the study on that in the rock stratum is limited.To estimate the pipe friction resistance in the rock stratum,the calculation models of pipe friction resistance and their applica-tion conditions were compared first.Then the friction resistance calculation model for pipe jacking in the rock stratum was established and simplified.Lastly,the measured(FM)and the computed(FN)pipe friction resistance was compared to validate the simplified friction resistance calculation model.The following conclusions can be drawn:(1)The existing calculation methods of pipe friction resistance can be well verified in the soil layer but cannot be applied in the rock stratum.(2)Sediment,pipe–rock friction coefficient and mud buoyancy are the main factors affecting the pipe friction resistance in long-distance rock pipe jacking engineering.(3)The simplified calculation model established by Deng et al.can estimate the pipe friction resistance in different rock strata at different jacking stages with satisfac-tory outcomes.Further research on the pipe-rock friction coefficient in different rock strata with different pipe–rock contact conditions merits further investigation to better predict the pipe friction resistance in the rock stratum.The research results have certain practica-bility and can provide a reference for similar projects.展开更多
The moving trajectory of the pipe-jacking machine(PJM),which primarily determines the end quality of jacked tunnels,must be controlled strictly during the entire jacking process.Developing prediction models to support...The moving trajectory of the pipe-jacking machine(PJM),which primarily determines the end quality of jacked tunnels,must be controlled strictly during the entire jacking process.Developing prediction models to support drivers in performing rectifications in advance can effectively avoid considerable trajectory deviations from the designed jacking axis.Hence,a gated recurrent unit(GRU)-based deep learning framework is proposed herein to dynamically predict the moving trajectory of the PJM.In this framework,operational data are first extracted from a data acquisition system;subsequently,they are preprocessed and used to establish GRU-based multivariate multistep-ahead direct prediction models.To verify the performance of the proposed framework,a case study of a large pipe-jacking project in Shanghai and comparisons with other conventional models(i.e.,long short-term memory(LSTM)network and recurrent neural network(RNN))are conducted.In addition,the effects of the activation function and input time-step length on the prediction performance of the proposed framework are investigated and discussed.The results show that the proposed framework can dynamically and precisely predict the PJM moving trajectory during the pipe-jacking process,with a minimum mean absolute error and root mean squared error(RMSE)of 0.1904 and 0.5011 mm,respectively.The RMSE of the GRU-based models is lower than those of the LSTM-and RNN-based models by 21.46%and 46.40%at the maximum,respectively.The proposed framework is expected to provide an effective decision support for moving trajectory control and serve as a foundation for the application of deep learning in the automatic control of pipe jacking.展开更多
文摘Traditional construction techniques have a significant impact on the environment and are associated with long construction durations in the construction of municipal rainwater pipelines.Pipe jacking technology,a new type of pipeline construction method,enables non-excavation construction and can address the shortcomings of traditional pipeline construction.This article analyzes the concept and application advantages of pipe jacking technology.Combining engineering examples,it explores the application strategies of pipe jacking technology in the construction process of municipal rainwater pipelines for reference.
文摘For a pipejacking, the jacking force is critical to balance the resistance force and to move the pipe string forwards. The driving mechanism of a curved pipejacking is more complicated than a straight-line pipejacking, and its jacking force is also more difficult to be determined. The paper theoretically studies the jacking force of a curved pipejacking by considering the static equilibrium of earth pressure, resistance at cutting face, friction at pipe surface, and the driving force behind the pipe string. The derived theoretical formula can be used to estimate the driving forces of a straight-line or a curved pipejacking. Case study was performed by applying the theoretical and empirical formulae. After calibration, the corrected formula is more accurate and more applicable.
文摘To shorten the existing box culvert demolition construction period and ensure the normal operation of the railway, the jacking-out construction method was adopted. The ABAQUS finite element software was used to establish a three-dimensional model of the box culvert and soil body of the relying project, and three excavation thickness (0m, 1 m, 2 m) were used as the main variation parameters for numerical analysis and research, and the change law of the box culvert itself and soil body stress during the culvert jacking out process was obtained. The results show that the jacking force-displacement curves of the three working conditions can be divided into two stages, and the jacking force reaches the maximum value at the moment when the static friction turns into sliding friction at the end of the first stage. The stress distribution at the bottom slab of the box culvert in the jacking process is approximately normal, and the stress decreases with the increase of the roadbed excavation thickness. The increase of the roadbed excavation thickness can reduce the soil pressure on the side of the box culvert and effectively reduce the deformation of the roadbed in the jacking-out process. The deformation of the roadbed during the jacking process can be reduced by increasing the thickness of the roadbed excavation.
基金the Science and Technology Foundation of Sichuan Department of Land and Resources(SCDLR0609)
文摘By using site observation data and establishing 3D model using ANSYS software, this paper has discussed the strain change of stratum stress during process of jacking-in and the impact of machine head on ground surface under different frontal resistances. Analysis of the two cases shows that soil pressure reaches its maximum point when the soil is right above machine head, and soil stress will gradually decline when machine head passes over it. It also shows that impact brought by pipe-jacking construction on stress change of the surrounding soil is limited. The thesis suggest that road surface should be consolidated and soil condition be improved before construction to prevent loss and disaster caused by road surface deformation, jacking force can be increased so that jacking efficiency can be enhanced when ground stratum is well filled with soil, but the frontal resistance facing machine head should be equal to surrounding soil pressure in order to avoid rise of ground surface.
文摘In Japan when urban infrastructures need to be constructed, the difficulty of utilizing the ground or shallow strata will lead to a more frequent use of the deep strata. The common construction methods are open-cut, pipe jacking, and shield methods. In recent years, a new pipe jacking method has been established that can be adapted to 20 m below the ground or more. Using this method, the drivage machine and the jacking pipe continue to move an underground until the completion of the driving. Therefore an over-cutting area (so-called tail-void) must be formed to lower the friction between the ground and the pipe. The tail-void is filled with lubrications. However, because the stress release from the ground continues to advance when the tail-void is formed, hence there are some challenges required to cope with the stability of the surrounding ground. In order to utilize the pipe jacking method in the deeper strata layers, the theory, analysis and installation of tail-void have to be systemized, and such systematic data must be stored. Therefore, the conditions of tail-void in the deep pipe jacking method are discussed using numerical analyses.
文摘Tunnels in an urban area, in many cases, are constructed in soft ground which contains underground water, near existing facilities and structures. Structural stability for the tunnel and also the nearby structures and facilities is vital in this kind of work. Slurry pipe jacking was firmly established as a special method for the non-disruptive construction of underground pipelines of sewage systems. This method utilizes mud slurry that is formed around the pipes in order to stabilize the surrounding soil. In the pipe roof method the tubing elements that are constructed by slurry pipe jacking are near each other longitudinally, and create a rigid and stable lining before the excavation of the main tunnel. This paper discusses 'the application of a slurry pipe jacking system on 'the pipe roof method by means of numerical analysis. Because of the rigid behavior of the lining, the results show little subsidence, making this method a reliable method of constructing large tunnels with small cover in an urban area.
文摘A steel underground pipeline with a diameter of 2.4 m and a total length of 3,617 m(plate thickness of 26 mm)has been constructed in a city in central Hubei,and the engineering,procurement,and construction(EPC)project has been lifted from the upstream channel to supplement water to the downstream lake inside the city.Through preliminary geological survey data,site topographic and geomorphic survey,urban construction,as well as the requirements of the construction party,the preliminary arrangement of working wells and receiving wells as well as the selection and customization of pipe jacking machines have been proposed.Frequency conversion motor and remote monitoring technology are adopted for geotechnical change and long-distance pipe jacking.Through detailed survey,the rock and soil change section as well as gradual change conditions have been determined,the accuracy of construction mechanics calculation and construction operation control have improved,the basis and analysis basis are provided,and some experiences in construction operation are summarized.
基金supported by the National Natural Science Foundation of China(Nos.42071078,41731281 and 41701068)the Natural Science Foundation of Qinghai Province,China(No.2021-ZJ-908).
文摘Permafrost is widely distributed in China and around the world.In permafrost regions,soil frost heave and thawing are severe and frequent,and can destabilize pile foundations.To this end,a finite element model of a single pile in frozen soil is established to investigate the frost heave and frost jacking response to ensure its safety in the Qinghai-Tibet Plateau.Firstly,a hydro-thermal coupling model of a single pile in frozen soil is established based on coupling parameters and initial and boundary conditions.Then the temperature and moisture distributions are analyzed through the established coupling model.A hydro-thermo-mechanical coupling model is developed by importing the ice content and temperature results.Simulation results indicate that the amount of frost heave is greater at locations closer to the ground surface,and the displacement is smaller for frozen soil that is closer to the side of the pile.The results on frost jacking behavior of piles from this study can serve as a reference for the design,construction and maintenance of foundations.
文摘In the construction of municipal road drainage projects,pipe jacking construction is a relatively common construction method.This construction technology can avoid a large amount of excavation work,improve drainage construction efficiency,avoid large-scale damage to the road surface,and exert small traffic impact.Therefore,it is currently widely used in drainage construction,but judging from the current actual application situation,there are still many problems that require further improvement.This article mainly analyzes the advantages of and current technical problems in pipe jacking construction technology in detail,explores corresponding solutions,and lays a foundation for the optimization of municipal road drainage engineering construction.
基金This engineering is a demonstration project for Key Research and Development Project of Guangdong Province under Grant No.2019B111105001part of research related to this engineering was financially supported by the project.
文摘1 Project overview The Shasan station of Phase II of Shenzhen’s urban rail transit Line 12 is situated in Bao’an District,Shenzhen.It comprises a two-level underground island platform station,measuring 212 m in length,and 22.6 m in width,with an overburden thickness of about 7.0 m.Fig.1 illustrates the presence of a large underground reinforced concrete stormwater culvert,measuring 11.5 m by 3.6 m,traversing the station’s center.
基金supported by the Shanghai Science and Technology Development Funds(Grant No.20QB1401800)Xuzhou Science and Technology Plan Social Development Key Special Project(Grant No.SHFZZDZX20210017)Yunlong Lake Laboratory of Deep Underground Science and Engineering Project(Grant No.104023006).
文摘It is inevitable to cut reinforced concrete(RC)appeared in cross passage of city metro by cutting tools when constructing in densely populated area.The previous cutters employed to cut RC are insufficient and easily damaged,so a new polycrystalline diamond compact(PDC)cutter is used to solve this question.Based on the theoretical analysis of cutting mechanism,both circular and tapered PDC cutters with cutting edge angle of 90and negative front rack angle of 10are used to cut RC.The peeling and breaking patterns of cutting concrete are proposed,the nodular and grainy chips are the preferred modes in cutting steel bars.The LS-DYNA is employed to investigate the cutting performance in advance.The simulation results show that the average and peak cutting forces increase with the growth of penetration depth,cutting speed,and roundness,and subsequently the recommended penetration depth less than 1.2 mm is obtained to cut RC due to the existence of steel bars.Moreover,the linear cutting platform is adopted to investigate the force ability and damage state of PDC cutters.It is concluded that the cutting force increases abruptly and fluctuates heavily when cutting the coarse aggregates.The patterns occurred in both numerical and experimental results are generally similar.Notably,the steel bar is pulled out and the PDC cutter is damaged at the penetration depth of 0.8 mm,while a good cut occurs at the penetration depth of 0.3 mm.The tapered PDC cutter with a relatively low cutting force is prone to be broken compared with circular PDC cutter.It is suggested that the circular PDC cutter at the penetration depth of 0.3 mm should be used to cut RC in practical engineering.
文摘Trenchless technology is often used in congested urban areas or river crossings to install underground pipelines to minimize disturbance to surface traffic or other activities.Pipe jacking is a typical technique applied to jack pipe segments between two working shafts.However,the design of the jacking force is usually implemented using empirical methods.It should be emphasized that the jacking force will change for each site,depending on the magnitude of overcut,lubricants,work stoppages,geology and misalignment.A particle method is proposed to estimate the jacking force along the pipe.The microparameters are calibrated for sandy soils in Shenyang,so that the macroscale material behavior can be reproduced using the particle model.Hence,the normal force around the pipe circumference can be derived in the particle model,after which the interface friction coefficient is applied to evaluate the friction resistance mobilized at the soil-pipe interface.A modified Protodyakonov’s arch model can be used to assess the magnitude of earth pressure acting on the shield face.In the end,the combination of friction resistance and face pressure provides the jacking force.The efficacy of the proposed particle method is demonstrated by comparing calculated jacking forces with those measured in the field for three types of jacking machines in sandy soils under the Hun River,Shenyang.
基金supported by the National Natural Science Foundation of China(No.51878127).
文摘Jacking force is one of the important safety indicators during pipe jacking construction.Existing models for calculating jacking force are widely used in the calculation of jacking force for pipe with regular cross-sections.In this paper,considering pipe-soil interaction,the cross-sectional characteristics and the distribution characteristics between pipe and soil,the calculation equations for the jacking force of circular steel pipe with flange plate were proposed based on the pressure arch theory.The proposed equations were applied to calculate the jacking force for the Olympic Sports Center Subway Station of Line 9 in Shenyang,China,and the results were compared with the field monitoring data to predict the accurate jacking force.Based on the proposed equations,the influences of the flange plate position and steel pipe diameter on earth pressure around the pipe were analyzed.The functional relationship between the earth pressure and the position of flange plate or the pipe diameter was obtained,which provides design basis and theoretical guidance for engineering practice.
文摘This paper provides a review of the history and development of pipe jacking and microtunneling methods with extensive referencing to the published literature.The application of such methods in comparison with other trenchless technologies is discussed and the various planning,design and construction aspects are introduced.The emphasis of the paper is to trace the academic research and field monitoring results covering critical aspects of design and construction with a particular emphasis on jacking force estimation and the effect of lubrication on jacking forces.
文摘Rectangular pipe jacking or box jacking has become more popular in municipal applications because of its better adaptability to shallow overburdens and its higher structural section utilization than the conventional circular pipe jacking.This case study presents a utility tunnel constructed by using rectangular box jacking in Suzhou,China.The utility tunnel,which has a cross section of 9.1 m in width and 5.5 m in height,was jacked 233.6 m,which is the longest known single jacking length of a rectangular box jacking project in China.The box jacking mainly passed through a silty sand layer with high groundwater levels with a minimum depth of cover of only 3.5 m underneath the Yuanhetang River.In this zone,the structures on the surface are sensitive to external disturbance,thus increasing the challenges of construction.A series of measures were taken during the jacking process,and the project was successfully completed.This paper provides an overview of this project and introduces key techniques in the construction of working shafts as well as in the installation and retrieval of the box jacking machine.In addition,the use of lubrication to reduce friction resistance,navigation and application of an anti-buoyancy slab under the Yuanhetang River,and analyses of soil deformation caused by box jacking are described.
基金supported by the National Natural Science Foundation of China(Grant No.12102230)the National Key Research and Development Program of China(Grant No.2018YFC1504802)+1 种基金the Natural Science Foundation Project of Chongqing(Grant No.cstc2018jscx-mszdX0071)the China Postdoctoral Science Foundation(Grant No.2022M711862).
文摘Previous studies on pipe friction resistance are mainly concentrated in the soil layer,whereas the study on that in the rock stratum is limited.To estimate the pipe friction resistance in the rock stratum,the calculation models of pipe friction resistance and their applica-tion conditions were compared first.Then the friction resistance calculation model for pipe jacking in the rock stratum was established and simplified.Lastly,the measured(FM)and the computed(FN)pipe friction resistance was compared to validate the simplified friction resistance calculation model.The following conclusions can be drawn:(1)The existing calculation methods of pipe friction resistance can be well verified in the soil layer but cannot be applied in the rock stratum.(2)Sediment,pipe–rock friction coefficient and mud buoyancy are the main factors affecting the pipe friction resistance in long-distance rock pipe jacking engineering.(3)The simplified calculation model established by Deng et al.can estimate the pipe friction resistance in different rock strata at different jacking stages with satisfac-tory outcomes.Further research on the pipe-rock friction coefficient in different rock strata with different pipe–rock contact conditions merits further investigation to better predict the pipe friction resistance in the rock stratum.The research results have certain practica-bility and can provide a reference for similar projects.
基金supported by the National Natural Science Foundation of China(Grant No.52090082)the Natural Science Foundation of Shandong Province,China(No.ZR202103010505)Fundamental Research Funds for the Central Universities of China(No.22120210428).
文摘The moving trajectory of the pipe-jacking machine(PJM),which primarily determines the end quality of jacked tunnels,must be controlled strictly during the entire jacking process.Developing prediction models to support drivers in performing rectifications in advance can effectively avoid considerable trajectory deviations from the designed jacking axis.Hence,a gated recurrent unit(GRU)-based deep learning framework is proposed herein to dynamically predict the moving trajectory of the PJM.In this framework,operational data are first extracted from a data acquisition system;subsequently,they are preprocessed and used to establish GRU-based multivariate multistep-ahead direct prediction models.To verify the performance of the proposed framework,a case study of a large pipe-jacking project in Shanghai and comparisons with other conventional models(i.e.,long short-term memory(LSTM)network and recurrent neural network(RNN))are conducted.In addition,the effects of the activation function and input time-step length on the prediction performance of the proposed framework are investigated and discussed.The results show that the proposed framework can dynamically and precisely predict the PJM moving trajectory during the pipe-jacking process,with a minimum mean absolute error and root mean squared error(RMSE)of 0.1904 and 0.5011 mm,respectively.The RMSE of the GRU-based models is lower than those of the LSTM-and RNN-based models by 21.46%and 46.40%at the maximum,respectively.The proposed framework is expected to provide an effective decision support for moving trajectory control and serve as a foundation for the application of deep learning in the automatic control of pipe jacking.