-
题名半群CSP_(n,k)的秩和k方幂等元秩
- 1
-
-
作者
龙如兰
张梁松
罗永贵
-
机构
贵州师范大学数学科学学院
-
出处
《常熟理工学院学报》
2024年第2期114-120,124,共8页
-
基金
贵州师范大学学术基金项目“F—型(变换)半群及子半群的若干研究”(黔师新苗[2021]B08号)(0522040/11904)。
-
文摘
设自然数n≥3,P_(n)和S_(n)是有限链X_(n)上的部分变换半群和对称群.对任意的正整数k满足3≤k≤n,令C_(k)=g_(k)是X_(n)上的k-局部循环群且CSP_(n,k)=C_(k)∪(P_(n)\S_(n)),易证CSP_(n,k),是部分变换半群P_(n)的子半群.通过分析半群CSP_(n,k),的格林关系和幂等元,获得了半群CSP_(n,k),的极小生成集和k方幂等元极小生成集,进一步确定了半群CSP_(n,k),的秩和k方幂等元秩.
-
关键词
部分变换半群
k-局部循环群
(k方幂等元)极小生成集
(k方幂等元)秩
-
Keywords
partial transformation semigroup
k-locally cyclic group
(k-idempotent)minimal generating set
(k-idempotent)rank
-
分类号
O152.7
[理学—基础数学]
-
-
题名逆半群CkIn的秩
- 2
-
-
作者
陈远丽
赵平
王泽平
-
机构
贵州师范大学数学科学学院
-
出处
《数学的实践与认识》
北大核心
2020年第19期193-198,共6页
-
基金
国家自然科学基金(11861022)。
-
文摘
设自然数n>3,SIn与Ck分别是有限链[n]上的部分一一奇异变换半群和k-局部循环群.考虑变换半群“CkIn=Ck∪SIn的秩,证明了当k=1或2<k<n-2时秩为n-k+3,当k=2,n-2,n-1时秩为n-k+2.
-
关键词
变换半群
k-局部循环群
生成集
秩
-
Keywords
transformation semigroup
k-locally cyclic group
generation set
rank
-
分类号
O152.7
[理学—基础数学]
-