期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The tangential k-Cauchy-Fueter type operator and Penrose type integral formula on the generalized complex Heisenberg group
1
作者 REN Guang-zhen SHI Yun KANG Qian-qian 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期181-190,共10页
The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.I... The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.In this paper,we introduce a Lie group that the Heisenberg group can be imbedded into and call it generalized complex Heisenberg.We investigate quaternionic analysis on the generalized complex Heisenberg.We also give the Penrose integral formula for k-CF functions and construct the tangential k-Cauchy-Fueter complex. 展开更多
关键词 the generalized complex Heisenberg group the tangential k-cauchy-fueter type operator Penrose-type integral formula
下载PDF
多四元变量的k-Cauchy-Fueter算子 被引量:1
2
作者 王伟 《中国科学:数学》 CSCD 北大核心 2015年第11期1791-1810,共20页
本文综述了多四元变量的k-Cauchy-Fueter算子的研究进展,讨论了k-Cauchy-Fueter复形、非齐次k-Cauchy-Fueter方程、Hartogs扩张现象、Bochner-Martinelli积分表示公式、Penrose积分变换和k正则函数的级数展开、四元Hardy空间与Cauchy-Sz... 本文综述了多四元变量的k-Cauchy-Fueter算子的研究进展,讨论了k-Cauchy-Fueter复形、非齐次k-Cauchy-Fueter方程、Hartogs扩张现象、Bochner-Martinelli积分表示公式、Penrose积分变换和k正则函数的级数展开、四元Hardy空间与Cauchy-Szeg¨o核、0-Cauchy-Fueter算子及与四元Monge-Amp`ere算子的关系、四元闭正流及其Lelong数、Lelong-Jessen型公式,以及切向k-CauchyFueter算子与复形. 展开更多
关键词 k-cauchy-fueter算子与复形 K正则函数 四元多重位势论 切向k-cauchy-fueter算子与复形
原文传递
Radon-Penrose变换的逆变换及k-Cauchy-Fueter方程
3
作者 康倩倩 田黄佳 万东睿 《中国科学:数学》 CSCD 北大核心 2016年第9期1241-1266,共26页
已知射影空间上的层O(-k-2)的一阶上同调和四元空间上的k-Cauchy-Fueter方程的解之间有一个一一对应,并且已经有一个Radon-Penrose类型的积分变换来实现这个对应.本文得到了这个变换的逆变换,即给定四元k-Cauchy-Fueter方程的一个解?,... 已知射影空间上的层O(-k-2)的一阶上同调和四元空间上的k-Cauchy-Fueter方程的解之间有一个一一对应,并且已经有一个Radon-Penrose类型的积分变换来实现这个对应.本文得到了这个变换的逆变换,即给定四元k-Cauchy-Fueter方程的一个解?,找到了一个具体的系数取自-k-2次超平面截面丛的?-闭的(0,1)-形式f,使得f的Radon-Penrose变换的像经ι*拉回后为?,其中,ι是H^n≌R^(4n)到C^(2n×2)的一个嵌入,k=0,1,2,... 展开更多
关键词 Radon-Penrose积分公式 k-cauchy-fueter方程 逆公式 K-正则函数
原文传递
On Radon-Penrose transformation and k-Cauchy-Fueter operator 被引量:3
4
作者 KANG QianQian WANG Wei 《Science China Mathematics》 SCIE 2012年第9期1921-1936,共16页
It is known that there is a 1-1 correspondence between the first cohomology of the sheaf O(-k-2) over the projective space and the solutions to the k-Cauchy-Fueter equations on the quaternionic space Hn.We find an exp... It is known that there is a 1-1 correspondence between the first cohomology of the sheaf O(-k-2) over the projective space and the solutions to the k-Cauchy-Fueter equations on the quaternionic space Hn.We find an explicit Radon-Penrose type integral formula to realize this correspondence:given a -closed(0,1)form f with coefficients in the(-k-2)th power of the hyperplane section bundle H-k-2,there is an integral representation Pf such that ι*(Pf) is a solution to the k-Cauchy-Fueter equations,where ι is an embedding of the quaternionic space Hn into C4n. 展开更多
关键词 the k-cauchy-fueter operator Radon-Penrose integral formula k-regular functions hyperplanesection bundle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部