To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs base...To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs based on an improved k-means algorithm.First,a swing door trending(SDT)algorithm based on compression result feedback was designed to extract the feature data points of wind power.The gating coefficient of the SDT was adjusted based on the compression ratio and deviation,enabling the acquisition of grid-connected wind power signals through linear interpolation.Second,a novel algorithm called IDOA-KM is proposed,which utilizes the Improved Dingo Optimization Algorithm(IDOA)to optimize the clustering centers of the k-means algorithm,aiming to address its dependence and sensitivity on the initial centers.The EVs were categorized into priority charging,standby,and priority discharging groups using the IDOA-KM.Finally,an two-layer power distribution scheme for EVs was devised.The upper layer determines the charging/discharging sequences of the three EV groups and their corresponding power signals.The lower layer allocates power signals to each EV based on the maximum charging/discharging power or SOC equalization principles.The simulation results demonstrate the effectiveness of the proposed control strategy in accurately tracking grid power signals,smoothing wind power fluctuations,mitigating EV degradation,and enhancing the SOC balance.展开更多
The dimensionality of data is increasing very rapidly,which creates challenges for most of the current mining and learning algorithms,such as large memory requirements and high computational costs.The literature inclu...The dimensionality of data is increasing very rapidly,which creates challenges for most of the current mining and learning algorithms,such as large memory requirements and high computational costs.The literature includes much research on feature selection for supervised learning.However,feature selection for unsupervised learning has only recently been studied.Finding the subset of features in unsupervised learning that enhances the performance is challenging since the clusters are indeterminate.This work proposes a hybrid technique for unsupervised feature selection called GAk-MEANS,which combines the genetic algorithm(GA)approach with the classical k-Means algorithm.In the proposed algorithm,a new fitness func-tion is designed in addition to new smart crossover and mutation operators.The effectiveness of this algorithm is demonstrated on various datasets.Fur-thermore,the performance of GAk-MEANS has been compared with other genetic algorithms,such as the genetic algorithm using the Sammon Error Function and the genetic algorithm using the Sum of Squared Error Function.Additionally,the performance of GAk-MEANS is compared with the state-of-the-art statistical unsupervised feature selection techniques.Experimental results show that GAk-MEANS consistently selects subsets of features that result in better classification accuracy compared to others.In particular,GAk-MEANS is able to significantly reduce the size of the subset of selected features by an average of 86.35%(72%–96.14%),which leads to an increase of the accuracy by an average of 3.78%(1.05%–6.32%)compared to using all features.When compared with the genetic algorithm using the Sammon Error Function,GAk-MEANS is able to reduce the size of the subset of selected features by 41.29%on average,improve the accuracy by 5.37%,and reduce the time by 70.71%.When compared with the genetic algorithm using the Sum of Squared Error Function,GAk-MEANS on average is able to reduce the size of the subset of selected features by 15.91%,and improve the accuracy by 9.81%,but the time is increased by a factor of 3.When compared with the machine-learning based methods,we observed that GAk-MEANS is able to increase the accuracy by 13.67%on average with an 88.76%average increase in time.展开更多
We develop an x-ray Ti/Au transition-edge sensor(TES)with an Au absorber deposited on the center of TES and improved its energy resolution using the K-means clustering algorithm in combination with Wiener filter.We fi...We develop an x-ray Ti/Au transition-edge sensor(TES)with an Au absorber deposited on the center of TES and improved its energy resolution using the K-means clustering algorithm in combination with Wiener filter.We firstly extract the main parameters of each recorded pulse trace,which are adopted to classify these traces into several clusters in the K-means clustering algorithm.Then real traces are selected for energy resolution analysis.Following the baseline correction,the Wiener filter is used to improve the signal-to-noise ratio.Although the silicon underneath the TES has not been etched to reduce the thermal conductance,the energy resolution of the developed x-ray TES is improved from 94 eV to 44 eV at 5.9 keV.展开更多
Fractional vegetation cover(FVC)is an important parameter to measure crop growth.In studies of crop growth monitoring,it is very important to extract FVC quickly and accurately.As the most widely used FVC extraction m...Fractional vegetation cover(FVC)is an important parameter to measure crop growth.In studies of crop growth monitoring,it is very important to extract FVC quickly and accurately.As the most widely used FVC extraction method,the photographic method has the advantages of simple operation and high extraction accuracy.However,when soil moisture and acquisition times vary,the extraction results are less accurate.To accommodate various conditions of FVC extraction,this study proposes a new FVC extraction method that extracts FVC from a normalized difference vegetation index(NDVI)greyscale image of wheat by using a density peak k-means(DPK-means)algorithm.In this study,Yangfumai 4(YF4)planted in pots and Yangmai 16(Y16)planted in the field were used as the research materials.With a hyperspectral imaging camera mounted on a tripod,ground hyperspectral images of winter wheat under different soil conditions(dry and wet)were collected at 1 m above the potted wheat canopy.Unmanned aerial vehicle(UAV)hyperspectral images of winter wheat at various stages were collected at 50 m above the field wheat canopy by a UAV equipped with a hyperspectral camera.The pixel dichotomy method and DPK-means algorithm were used to classify vegetation pixels and non-vegetation pixels in NDVI greyscale images of wheat,and the extraction effects of the two methods were compared and analysed.The results showed that extraction by pixel dichotomy was influenced by the acquisition conditions and its error distribution was relatively scattered,while the extraction effect of the DPK-means algorithm was less affected by the acquisition conditions and its error distribution was concentrated.The absolute values of error were 0.042 and 0.044,the root mean square errors(RMSE)were 0.028 and 0.030,and the fitting accuracy R2 of the FVC was 0.87 and 0.93,under dry and wet soil conditions and under various time conditions,respectively.This study found that the DPK-means algorithm was capable of achieving more accurate results than the pixel dichotomy method in various soil and time conditions and was an accurate and robust method for FVC extraction.展开更多
A high-precision nominal flight profile,involving controllers′intentions is critical for 4Dtrajectory estimation in modern automatic air traffic control systems.We proposed a novel method to effectively improve the a...A high-precision nominal flight profile,involving controllers′intentions is critical for 4Dtrajectory estimation in modern automatic air traffic control systems.We proposed a novel method to effectively improve the accuracy of the nominal flight profile,including the nominal altitude profile and the speed profile.First,considering the characteristics of trajectory data,we developed an improved K-means algorithm.The approach was to measure the similarity between different altitude profiles by integrating the space warp edit distance algorithm,thereby to acquire several fitted nominal flight altitude profiles.This approach breaks the constraints of traditional K-means algorithms.Second,to eliminate the influence of meteorological factors,we introduced historical gridded binary data to determine the en-route wind speed and temperature via inverse distance weighted interpolation.Finally,we facilitated the true airspeed determined by speed triangle relationships and the calibrated airspeed determined by aircraft data model to extract a more accurate nominal speed profile from each cluster,therefore we could describe the airspeed profiles above and below the airspeed transition altitude,respectively.Our experimental results showed that the proposed method could obtain a highly accurate nominal flight profile,which reflects the actual aircraft flight status.展开更多
K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo...K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.展开更多
The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the ...The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm.展开更多
With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In th...With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In this paper, a set of software classification method based on software operating characteristics is proposed. The method uses software run-time resource consumption to describe the software running characteristics. Firstly, principal component analysis (PCA) is used to reduce the dimension of software running feature data and to interpret software characteristic information. Then the modified K-means algorithm was used to classify the meteorological data processing software. Finally, it combined with the results of principal component analysis to explain the significance of various types of integrated software operating characteristics. And it is used as the basis for optimizing the allocation of software hardware resources and improving the efficiency of software operation.展开更多
In a large-scale wireless sensor network(WSN),densely distributed sensor nodes process a large amount of data.The aggregation of data in a network can consume a great amount of energy.To balance and reduce the energy ...In a large-scale wireless sensor network(WSN),densely distributed sensor nodes process a large amount of data.The aggregation of data in a network can consume a great amount of energy.To balance and reduce the energy consumption of nodes in a WSN and extend the network life,this paper proposes a nonuniform clustering routing algorithm based on the improved K-means algorithm.The algorithm uses a clustering method to form and optimize clusters,and it selects appropriate cluster heads to balance network energy consumption and extend the life cycle of the WSN.To ensure that the cluster head(CH)selection in the network is fair and that the location of the selected CH is not concentrated within a certain range,we chose the appropriate CH competition radius.Simulation results show that,compared with LEACH,LEACH-C,and the DEEC clustering algorithm,this algorithm can effectively balance the energy consumption of the CH and extend the network life.展开更多
In recent years,the rapid development of big data technology has also been favored by more and more scholars.Massive data storage and calculation problems have also been solved.At the same time,outlier detection probl...In recent years,the rapid development of big data technology has also been favored by more and more scholars.Massive data storage and calculation problems have also been solved.At the same time,outlier detection problems in mass data have also come along with it.Therefore,more research work has been devoted to the problem of outlier detection in big data.However,the existing available methods have high computation time,the improved algorithm of outlier detection is presented,which has higher performance to detect outlier.In this paper,an improved algorithm is proposed.The SMK-means is a fusion algorithm which is achieved by Mini Batch K-means based on simulated annealing algorithm for anomalous detection of massive household electricity data,which can give the number of clusters and reduce the number of iterations and improve the accuracy of clustering.In this paper,several experiments are performed to compare and analyze multiple performances of the algorithm.Through analysis,we know that the proposed algorithm is superior to the existing algorithms.展开更多
In wireless sensor network cluster architecture is useful because of its inherent suitability for data fusion. In this paper we represent a new approach called Multiple Parameter based Clustering (MPC) embedded with t...In wireless sensor network cluster architecture is useful because of its inherent suitability for data fusion. In this paper we represent a new approach called Multiple Parameter based Clustering (MPC) embedded with the traditional k-means algorithm which takes different parameters (Node energy level, Euclidian distance from the base station, RSSI, Latency of data to reach base station) into consideration to form clusters. Then the effectiveness of the clusters is evaluated based on the uniformity of the node distribution, Node range per cluster, Intra and Inter cluster distance and required energy level of each centroid. Our result shows that by varying multiple parameters we can create clusters with more uniformly distributed nodes, minimize intra and maximize inter cluster distance and elect less power consuming centroid.展开更多
Replacing or recharging batteries in the sensor nodes of a wireless sensor network(WSN)is a significant challenge.Therefore,efficient power utilization by sensors is a critical requirement,and it is closely related to...Replacing or recharging batteries in the sensor nodes of a wireless sensor network(WSN)is a significant challenge.Therefore,efficient power utilization by sensors is a critical requirement,and it is closely related to the life span of the network.Once a sensor node consumes all its energy,it will no longer function properly.Therefore,various protocols have been proposed to minimize the energy consumption of sensors and thus prolong the network operation.Recently,clustering algorithms combined with artificial intelligence have been proposed for this purpose.In particular,various protocols employ the K-means clustering algorithm,which is a machine learning method.The number of clustering configurations required by the K-means clustering algorithm is greater than that required by the hierarchical algorithm.Further,the selection of the cluster heads considers only the residual energy of the nodes without accounting for the transmission distance to the base station.In terms of energy consumption,the residual energy of each node,the transmission distance,the cluster head location,and the central relative position within the cluster should be considered simultaneously.In this paper,we propose the KOCED(K-means with Optimal clustering for WSN considering Centrality,Energy,and Distance)protocol,which considers the residual energy of nodes as well as the distances to the central point of the cluster and the base station.A performance comparison shows that the KOCED protocol outperforms the LEACH protocol by 259%(223 rounds)for first node dead(FND)and 164%(280 rounds)with 80%alive nodes.展开更多
Clustering is the task of assigning a set of instances into groups in such a way that is dissimilarity of instances within each group is minimized. Clustering is widely used in several areas such as data mining, patte...Clustering is the task of assigning a set of instances into groups in such a way that is dissimilarity of instances within each group is minimized. Clustering is widely used in several areas such as data mining, pattern recognition, machine learning, image processing, computer vision and etc. K-means is a popular clustering algorithm which partitions instances into a fixed number clusters in an iterative fashion. Although k-means is considered to be a poor clustering algorithm in terms of result quality, due to its simplicity, speed on practical applications, and iterative nature it is selected as one of the top 10 algorithms in data mining [1]. Parallelization of k-means is also studied during the last 2 decades. Most of these work concentrate on shared-nothing architectures. With the advent of current technological advances on GPU technology, implementation of the k-means algorithm on shared memory architectures recently start to attract some attention. However, to the best of our knowledge, no in-depth analysis on the performance of k-means on shared memory multiprocessors is done in the literature. In this work, our aim is to fill this gap by providing theoretical analysis on the performance of k-means algorithm and presenting extensive tests on a shared memory architecture.展开更多
In this paper, the borrowing data of readers is analyzed and studied by taking K-Means algorithm as an example and implementing this algorithm in Hadoop calculation platform, and data mining technology is effectively ...In this paper, the borrowing data of readers is analyzed and studied by taking K-Means algorithm as an example and implementing this algorithm in Hadoop calculation platform, and data mining technology is effectively and closely combined with personalized library service through the experimental data.展开更多
针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并...针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。展开更多
基金This study was supported by the National Key Research and Development Program of China(No.2018YFE0122200)National Natural Science Foundation of China(No.52077078)Fundamental Research Funds for the Central Universities(No.2020MS090).
文摘To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs based on an improved k-means algorithm.First,a swing door trending(SDT)algorithm based on compression result feedback was designed to extract the feature data points of wind power.The gating coefficient of the SDT was adjusted based on the compression ratio and deviation,enabling the acquisition of grid-connected wind power signals through linear interpolation.Second,a novel algorithm called IDOA-KM is proposed,which utilizes the Improved Dingo Optimization Algorithm(IDOA)to optimize the clustering centers of the k-means algorithm,aiming to address its dependence and sensitivity on the initial centers.The EVs were categorized into priority charging,standby,and priority discharging groups using the IDOA-KM.Finally,an two-layer power distribution scheme for EVs was devised.The upper layer determines the charging/discharging sequences of the three EV groups and their corresponding power signals.The lower layer allocates power signals to each EV based on the maximum charging/discharging power or SOC equalization principles.The simulation results demonstrate the effectiveness of the proposed control strategy in accurately tracking grid power signals,smoothing wind power fluctuations,mitigating EV degradation,and enhancing the SOC balance.
文摘The dimensionality of data is increasing very rapidly,which creates challenges for most of the current mining and learning algorithms,such as large memory requirements and high computational costs.The literature includes much research on feature selection for supervised learning.However,feature selection for unsupervised learning has only recently been studied.Finding the subset of features in unsupervised learning that enhances the performance is challenging since the clusters are indeterminate.This work proposes a hybrid technique for unsupervised feature selection called GAk-MEANS,which combines the genetic algorithm(GA)approach with the classical k-Means algorithm.In the proposed algorithm,a new fitness func-tion is designed in addition to new smart crossover and mutation operators.The effectiveness of this algorithm is demonstrated on various datasets.Fur-thermore,the performance of GAk-MEANS has been compared with other genetic algorithms,such as the genetic algorithm using the Sammon Error Function and the genetic algorithm using the Sum of Squared Error Function.Additionally,the performance of GAk-MEANS is compared with the state-of-the-art statistical unsupervised feature selection techniques.Experimental results show that GAk-MEANS consistently selects subsets of features that result in better classification accuracy compared to others.In particular,GAk-MEANS is able to significantly reduce the size of the subset of selected features by an average of 86.35%(72%–96.14%),which leads to an increase of the accuracy by an average of 3.78%(1.05%–6.32%)compared to using all features.When compared with the genetic algorithm using the Sammon Error Function,GAk-MEANS is able to reduce the size of the subset of selected features by 41.29%on average,improve the accuracy by 5.37%,and reduce the time by 70.71%.When compared with the genetic algorithm using the Sum of Squared Error Function,GAk-MEANS on average is able to reduce the size of the subset of selected features by 15.91%,and improve the accuracy by 9.81%,but the time is increased by a factor of 3.When compared with the machine-learning based methods,we observed that GAk-MEANS is able to increase the accuracy by 13.67%on average with an 88.76%average increase in time.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12293032,120101002,12173097,and U1931123)the National Key Basic Research and Development Program of China(Grant Nos.2020YFC2201703 and 2018YFA0404701)Chinese Academy of Sciences(Grant No.GJJSTD20210002)。
文摘We develop an x-ray Ti/Au transition-edge sensor(TES)with an Au absorber deposited on the center of TES and improved its energy resolution using the K-means clustering algorithm in combination with Wiener filter.We firstly extract the main parameters of each recorded pulse trace,which are adopted to classify these traces into several clusters in the K-means clustering algorithm.Then real traces are selected for energy resolution analysis.Following the baseline correction,the Wiener filter is used to improve the signal-to-noise ratio.Although the silicon underneath the TES has not been etched to reduce the thermal conductance,the energy resolution of the developed x-ray TES is improved from 94 eV to 44 eV at 5.9 keV.
基金supported by the Beijing Natural Science Foundation,China(4202066)the Central Public-interest Scientific Institution Basal Research Fund,China(JBYWAII-2020-29 and JBYW-AII-2020-31)+1 种基金the Key Research and Development Program of Hebei Province,China(19227407D)the Technology Innovation Project Fund of Chinese Academy of Agricultural Sciences(CAAS-ASTIP2020-All)。
文摘Fractional vegetation cover(FVC)is an important parameter to measure crop growth.In studies of crop growth monitoring,it is very important to extract FVC quickly and accurately.As the most widely used FVC extraction method,the photographic method has the advantages of simple operation and high extraction accuracy.However,when soil moisture and acquisition times vary,the extraction results are less accurate.To accommodate various conditions of FVC extraction,this study proposes a new FVC extraction method that extracts FVC from a normalized difference vegetation index(NDVI)greyscale image of wheat by using a density peak k-means(DPK-means)algorithm.In this study,Yangfumai 4(YF4)planted in pots and Yangmai 16(Y16)planted in the field were used as the research materials.With a hyperspectral imaging camera mounted on a tripod,ground hyperspectral images of winter wheat under different soil conditions(dry and wet)were collected at 1 m above the potted wheat canopy.Unmanned aerial vehicle(UAV)hyperspectral images of winter wheat at various stages were collected at 50 m above the field wheat canopy by a UAV equipped with a hyperspectral camera.The pixel dichotomy method and DPK-means algorithm were used to classify vegetation pixels and non-vegetation pixels in NDVI greyscale images of wheat,and the extraction effects of the two methods were compared and analysed.The results showed that extraction by pixel dichotomy was influenced by the acquisition conditions and its error distribution was relatively scattered,while the extraction effect of the DPK-means algorithm was less affected by the acquisition conditions and its error distribution was concentrated.The absolute values of error were 0.042 and 0.044,the root mean square errors(RMSE)were 0.028 and 0.030,and the fitting accuracy R2 of the FVC was 0.87 and 0.93,under dry and wet soil conditions and under various time conditions,respectively.This study found that the DPK-means algorithm was capable of achieving more accurate results than the pixel dichotomy method in various soil and time conditions and was an accurate and robust method for FVC extraction.
基金supported by the National Natural Science Foundation of China(Nos.61174180,U1433125)the Jiangsu Province Science Foundation (No.BK20141413)the Chinese Postdoctoral Science Foundation (No.2014M550291)
文摘A high-precision nominal flight profile,involving controllers′intentions is critical for 4Dtrajectory estimation in modern automatic air traffic control systems.We proposed a novel method to effectively improve the accuracy of the nominal flight profile,including the nominal altitude profile and the speed profile.First,considering the characteristics of trajectory data,we developed an improved K-means algorithm.The approach was to measure the similarity between different altitude profiles by integrating the space warp edit distance algorithm,thereby to acquire several fitted nominal flight altitude profiles.This approach breaks the constraints of traditional K-means algorithms.Second,to eliminate the influence of meteorological factors,we introduced historical gridded binary data to determine the en-route wind speed and temperature via inverse distance weighted interpolation.Finally,we facilitated the true airspeed determined by speed triangle relationships and the calibrated airspeed determined by aircraft data model to extract a more accurate nominal speed profile from each cluster,therefore we could describe the airspeed profiles above and below the airspeed transition altitude,respectively.Our experimental results showed that the proposed method could obtain a highly accurate nominal flight profile,which reflects the actual aircraft flight status.
文摘K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.
文摘The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm.
文摘With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In this paper, a set of software classification method based on software operating characteristics is proposed. The method uses software run-time resource consumption to describe the software running characteristics. Firstly, principal component analysis (PCA) is used to reduce the dimension of software running feature data and to interpret software characteristic information. Then the modified K-means algorithm was used to classify the meteorological data processing software. Finally, it combined with the results of principal component analysis to explain the significance of various types of integrated software operating characteristics. And it is used as the basis for optimizing the allocation of software hardware resources and improving the efficiency of software operation.
基金This research was funded by the Science and Technology Support Plan Project of Hebei Province(grant numbers 17210803D and 19273703D)the Science and Technology Spark Project of the Hebei Seismological Bureau(grant number DZ20180402056)+1 种基金the Education Department of Hebei Province(grant number QN2018095)the Polytechnic College of Hebei University of Science and Technology.
文摘In a large-scale wireless sensor network(WSN),densely distributed sensor nodes process a large amount of data.The aggregation of data in a network can consume a great amount of energy.To balance and reduce the energy consumption of nodes in a WSN and extend the network life,this paper proposes a nonuniform clustering routing algorithm based on the improved K-means algorithm.The algorithm uses a clustering method to form and optimize clusters,and it selects appropriate cluster heads to balance network energy consumption and extend the life cycle of the WSN.To ensure that the cluster head(CH)selection in the network is fair and that the location of the selected CH is not concentrated within a certain range,we chose the appropriate CH competition radius.Simulation results show that,compared with LEACH,LEACH-C,and the DEEC clustering algorithm,this algorithm can effectively balance the energy consumption of the CH and extend the network life.
文摘In recent years,the rapid development of big data technology has also been favored by more and more scholars.Massive data storage and calculation problems have also been solved.At the same time,outlier detection problems in mass data have also come along with it.Therefore,more research work has been devoted to the problem of outlier detection in big data.However,the existing available methods have high computation time,the improved algorithm of outlier detection is presented,which has higher performance to detect outlier.In this paper,an improved algorithm is proposed.The SMK-means is a fusion algorithm which is achieved by Mini Batch K-means based on simulated annealing algorithm for anomalous detection of massive household electricity data,which can give the number of clusters and reduce the number of iterations and improve the accuracy of clustering.In this paper,several experiments are performed to compare and analyze multiple performances of the algorithm.Through analysis,we know that the proposed algorithm is superior to the existing algorithms.
文摘In wireless sensor network cluster architecture is useful because of its inherent suitability for data fusion. In this paper we represent a new approach called Multiple Parameter based Clustering (MPC) embedded with the traditional k-means algorithm which takes different parameters (Node energy level, Euclidian distance from the base station, RSSI, Latency of data to reach base station) into consideration to form clusters. Then the effectiveness of the clusters is evaluated based on the uniformity of the node distribution, Node range per cluster, Intra and Inter cluster distance and required energy level of each centroid. Our result shows that by varying multiple parameters we can create clusters with more uniformly distributed nodes, minimize intra and maximize inter cluster distance and elect less power consuming centroid.
文摘Replacing or recharging batteries in the sensor nodes of a wireless sensor network(WSN)is a significant challenge.Therefore,efficient power utilization by sensors is a critical requirement,and it is closely related to the life span of the network.Once a sensor node consumes all its energy,it will no longer function properly.Therefore,various protocols have been proposed to minimize the energy consumption of sensors and thus prolong the network operation.Recently,clustering algorithms combined with artificial intelligence have been proposed for this purpose.In particular,various protocols employ the K-means clustering algorithm,which is a machine learning method.The number of clustering configurations required by the K-means clustering algorithm is greater than that required by the hierarchical algorithm.Further,the selection of the cluster heads considers only the residual energy of the nodes without accounting for the transmission distance to the base station.In terms of energy consumption,the residual energy of each node,the transmission distance,the cluster head location,and the central relative position within the cluster should be considered simultaneously.In this paper,we propose the KOCED(K-means with Optimal clustering for WSN considering Centrality,Energy,and Distance)protocol,which considers the residual energy of nodes as well as the distances to the central point of the cluster and the base station.A performance comparison shows that the KOCED protocol outperforms the LEACH protocol by 259%(223 rounds)for first node dead(FND)and 164%(280 rounds)with 80%alive nodes.
文摘Clustering is the task of assigning a set of instances into groups in such a way that is dissimilarity of instances within each group is minimized. Clustering is widely used in several areas such as data mining, pattern recognition, machine learning, image processing, computer vision and etc. K-means is a popular clustering algorithm which partitions instances into a fixed number clusters in an iterative fashion. Although k-means is considered to be a poor clustering algorithm in terms of result quality, due to its simplicity, speed on practical applications, and iterative nature it is selected as one of the top 10 algorithms in data mining [1]. Parallelization of k-means is also studied during the last 2 decades. Most of these work concentrate on shared-nothing architectures. With the advent of current technological advances on GPU technology, implementation of the k-means algorithm on shared memory architectures recently start to attract some attention. However, to the best of our knowledge, no in-depth analysis on the performance of k-means on shared memory multiprocessors is done in the literature. In this work, our aim is to fill this gap by providing theoretical analysis on the performance of k-means algorithm and presenting extensive tests on a shared memory architecture.
文摘In this paper, the borrowing data of readers is analyzed and studied by taking K-Means algorithm as an example and implementing this algorithm in Hadoop calculation platform, and data mining technology is effectively and closely combined with personalized library service through the experimental data.
文摘针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。