BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP...BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP on caspase-3 and nuclear factor kappa-B (NF- K B) expression in a rat model of Alzheimer's disease. DESIGN, TIME AND SETTING: A cell experiment was performed at the Central Laboratory of Provincial Hospital affiliated to Shandong University between January 2008 and August 2008. MATERIALS: L-NBP (purity 〉 98%) was provided by Shijiazhuang Pharma Group NBP Pharmaceutical Company Limited. Aβ1-42, 3-[4,5-dimethylthiazolo-2]-2,5 iphenyltetrazolium bromide (MTT), and rabbit anti-Caspase-3 polyclonal antibody were provided by Cell Signaling, USA; goat anti-choactase and rabbit anti-NF- kB antibodies were provided by Santa Cruz, USA. METHODS: Primary cultures were generated from rat basal forebrain and hippocampal neurons at 17 or 19 days of gestation. The cells were assigned into five groups: the control group, the Aβ1-42 group (2 μmol/L), the Aβ1-42 + 0.1 μmol/L L-NBP group, the Aβ1-42 + 1 μ mol/L L-NBP group, and the Aβ1-42 + 10μmol/L L-NBP group. The neurons were treated with Aβ1-42 (2 μmol/L) alone or in combination with L-NBP (0.1, 1, 10 μmol/L) for 48 hours. Cells in the control group were incubated in PBS. MAIN OUTCOME MEASURES: Morphologic changes were evaluated using inverted microscopy, viability using the M-I-I- method, and the changes in caspase-3 and NF- k B expression using Western blot. RESULTS: Induction with Aβ1-42 for 48 hours caused cell death and soma atrophy, and increased caspase-3 and NF- K B expression (P 〈 0.05). L-NBP blocked these changes in cell morphology, decreased caspase-3 and NF- k B expression (P 〈 0.05), and improved cell viability, especially at the high dose (P 〈 0.05). CONCLUSION: AI3^-42 is toxic to basal forebrain and hippocampal primary neurons; L-NBP protects against this toxicity and inhibits the induction of caspase-3 and NF- K B expression.展开更多
The relation between the expression and activity of MMP-9 in C-reactive protein (CRP)-induced human THP-1 mononuclear cells and the activation of nuclear factor kappa-B (NF-κB) was studied to investigate the poss...The relation between the expression and activity of MMP-9 in C-reactive protein (CRP)-induced human THP-1 mononuclear cells and the activation of nuclear factor kappa-B (NF-κB) was studied to investigate the possible role of CRP in plaque destabilization. Human THP-1 cells were incubated in the presence of CRP at 0 (control group), 25, 50 and 100 μg/mL (CRP groups) for 24 h. In PDTC (a specific NF-κB inhibitor) group, the cells were pre-treated with PDTC at 10 μmol/L and then with 100 μg/mL CRP. The conditioned media (CM) and human THP-1 cells in different groups were harvested. MMP-9 expression in CM and human THP-1 cells was measured by ELISA and Western blotting. MMP-9 activity was assessed by fluorogenic substrates. The expression of NF-κB inhibitor α (IκB-α) and NF-κB p65 was detected by Western blotting and ELISA respectively. The results showed that CRP increased the expression and activity of MMP-9 in a dose-dependent manner in the human THP-1 cells. Western blotting revealed that IiB-α expression was decreased in the cells with the concentrations of CRP and ELISA demonstrated that NF-κB p65 expression in the CRP-induced cells was increased. After pre-treatment of the cells with PDTC at 10 μmol/L, the decrease in IκB-α expression and the increase in NF-κB p65 expression in the CRP-induced cells were inhibited, and the expression and activity of MMP-9 were lowered too. It is concluded that increased expression and activity of MMP-9 in CRP-induced human THP-1 cells may be associated with activation of NF-κB. Down-regulation of the expression and activity of MMP-9 may be a new treatment alternative for plaque stabilization by inhibiting the NF-κB activation.展开更多
OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituen...OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatographyquadrupole time-of-flight mass spectrometry method.Then,HEL was found to suppress LPS-induced ALI in vivo.Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups:control,LPS,Dexamethasone(Dex),HEL low dose 6 g/kg(HEL-L),HEL medium dose 18 g/kg(HEL-M)and HEL high dose 54 g/kg(HEL-H)groups.The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model.Leukocyte counts,lung wet/dry weight ratio,as well as myeloperoxidase(MPO)activity were determined followed by the detection with hematoxylin and eosin staining,enzyme linked immunosorbent assay,quantitative real time polymerase chain reaction,western blotting,immunohistochemistry,and immunofluorescence.Besides,to explore the effect of HEL on ALI-mediated intestinal flora,we performed 16s rRNA sequencing analysis of intestinal contents.RESULTS:HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance.Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats,inhibited leukocytes exudation and MPO activity,and improved the pathological injury of lung tissue.In addition,HEL reduced the expression of tumor necrosis factoralpha,interleukin-1beta(IL-1β)and interleukin-6(IL-6)in bronchoalveolar lavage fluid and serum,and inhibited nuclear displacement of nuclear factor kappa-B p65(NF-κBp65).And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88,NF-κBp65,phosphorylated inhibitor kappa B alpha(phospho-IκBα),nod-like receptor family pyrin domain-containing 3 protein(NLRP3),IL-1β,and interleukin-18(IL-18)in lung tissue,and regulated intestinal flora disturbance.CONCLUSIONS:In summary,our findings revealed that HEL has a protective effect on LPS-induced ALI in rats,and its mechanism may be related to inhibiting TLR4/NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.展开更多
背景:基于核转录因子κB通路探究神经炎症的靶向治疗越来越值得探究,中药靶点多、范围广、机制丰富及不良反应少等优点在治疗各类疾病时都具有十分巨大的潜力。目的:基于核转录因子κB信号通路,对近年研究中出现的山奈酚、红花黄、汉黄...背景:基于核转录因子κB通路探究神经炎症的靶向治疗越来越值得探究,中药靶点多、范围广、机制丰富及不良反应少等优点在治疗各类疾病时都具有十分巨大的潜力。目的:基于核转录因子κB信号通路,对近年研究中出现的山奈酚、红花黄、汉黄芩苷及雷公藤甲素等中药单体治疗脊髓损伤后神经炎症的研究进展进行系统的阐述与归纳。方法:以“脊髓损伤,炎症,抗炎,中药单体,单体化合物,NF-κB信号通路,黄酮,糖苷,酚类,酯类,生物碱”为检索词在中国知网数据库中进行检索;以“Spinal cord injury,inflammation,anti-inflammatory,traditional Chinese medicine monomer,monomeric compound,NF-κB signaling pathway,flavonoids,glycosides,phenols,esters,alkaloids”为检索词在PubMed数据库中进行检索,最终共纳入67篇文献进行综述分析。结果与结论:①核转录因子κB信号通路在神经系统中的作用复杂多样,能够调控中性粒细胞、小胶质细胞、星形胶质细胞和巨噬细胞等,介导损伤后炎症的发生与发展;②中药单体如汉黄芩苷对核转录因子κB抑制蛋白的降解、红花黄素对核转录因子κB信号通路磷酸化过程的抑制、山奈酚对核转录因子κB信号通路p65核易位的抑制等作用可以降低炎症反应对机体造成的影响,从而促进神经功能恢复;③核转录因子κB信号通路在损伤早期能够促进炎症反应和免疫细胞迁移活化,在损伤中后期能够促进损伤部位的修复和纤维化的发生等,适当的激活核转录因子κB信号通路具有促进炎症因子的释放、提高细胞的抗氧化能力及促进免疫细胞的活化等能力,但过度激活的核转录因子κB信号通路则容易导致慢性炎症的发生和持续、细胞凋亡受到抑制等;④未来的研究可以进一步探索如何准确调控核转录因子κB信号通路的活化水平、如何实现对神经系统炎症和损伤的精准干预展开,也可围绕中药单体的制备及中药单体对信号通路的作用机制展开,以期为神经系统疾病的康复和功能恢复提供更有效的治疗策略。展开更多
AIM:To investigate the effect of skullcapflavone II(SCF-II)on the epithelial-mesenchymal transition(EMT)induced by transforming growth factor beta(TGF-β)in human corneal epithelial cells(HCECs),as well as to identify...AIM:To investigate the effect of skullcapflavone II(SCF-II)on the epithelial-mesenchymal transition(EMT)induced by transforming growth factor beta(TGF-β)in human corneal epithelial cells(HCECs),as well as to identify the signaling pathways that may be involved.METHODS:HCECs were cultured in vitro.At a SCFII(5,10μmol/L)dose,cell viability was analysed with a cell counting kit-8(CCK-8)assay,and cell migration was monitored with wound healing and Transwell migration assays.There were 4 groups:SCF-II,TGF-β,SCF-II+TGF-βand Control.Western blotting and immunofluorescence were performed to show the expression of EMT markers and the translocation of nuclear factor kappa-B(NF-κB)into the nucleus in the 4 groups.RESULTS:Treatment with SCF-II decreased HCEC viability in a dose-dependent manner.A concentration below 10μmol/L did not present obvious cell toxicity,and survival rates were more than 70%at 48h.Treatment with SCF-II(5 and 10μmol/L)significantly impeded migration in wound healing and Transwell migration assays(P<0.05),and EMT markers and NF-κB translocation into the nucleus were inhibited.After both TGF-βand SCF-II treatment,the migration of TGF-β-treated HCECs were suppressed by SCF-II(P<0.05).The expression levels of the mesenchymal markers N-cadherin(P<0.05),α-smooth muscle actin(α-SMA;P<0.05)and NF-κB(P<0.05)in both TGF-β-and SCF-II-treated HCECs were lower than those in the HCECs treated with TGF-βalone and higher than those in HCECs treated with SCF-II alone.Immunofluorescence showed that the entry of NF-κB into the nucleus in both TGF-β-and SCF-IItreated HCECs was less than that in the TGF-β-treated HCECs.CONCLUSION:SCF-II inhibit TGF-β-induced EMT in HCECs by potentially regulating the NF-κB signalling pathway.Thus,SCF-II represents a candidate putative therapeutic agent in corneal fibrotic diseases.展开更多
Background: Hyperbaric oxygen (HBO) and Ginkgo biloba extract (e.g., EGB 761) were shown to ameliorate cognitive and memory impairment in Alzheimcr's disease (AD). However, the exact mechanism remains elusive....Background: Hyperbaric oxygen (HBO) and Ginkgo biloba extract (e.g., EGB 761) were shown to ameliorate cognitive and memory impairment in Alzheimcr's disease (AD). However, the exact mechanism remains elusive. The aim of the present study was to investigate the possible mechanisms of HBO and EGB 761 via the function of nuclear factor kappa-B (NF-κB) pathway. Methods: AD rats were induced by injecting β-amyloid 25-35 into the hippocampus. All animals were divided into six groups: Normal. sham. AD model, HBO (2 atmosphere absolute: 60 min/d), EGB 761 (20 mg·kg^-1 ·d ^-1), and HBO/EGB 761 groups. Morris water maze tests were used to assess cognitive, and memory capacities of rats: TdT-mediated dUTP Nick-End Labeling staining and Western blotting were used to analyze apoptosis and NF-κB pathway-related proteins in hippocampus tissues. Results: Morris water maze tests revealed that EGB 761 and HBO significantly improved the cognitive and memory ability of AD rats. In addition, the protective effect of combinational therapy (HBO/EGB 761 ) was superior to either HBO or EGB 761 alone. In line. redticed apoptosis with NF-κB pathway activation was observed in hippocampus neurons treated by HBO and EGB 761. Conclusions: Our results suggested that HBO and EGB 761 improve cognitive and memory capacity in a rat model of AD. The protective effects are associated with the reduced apoptosis with NF-κB pathway activation in hippocampus neurons.展开更多
Background:Inflammation is an important factor in pathological scarring.The role of neutrophils,one of the most important inflammatory cells,in scar hyperplasia remains unclear.The purpose of this article is to study ...Background:Inflammation is an important factor in pathological scarring.The role of neutrophils,one of the most important inflammatory cells,in scar hyperplasia remains unclear.The purpose of this article is to study the correlation between neutrophil extracellular traps(NETs)and scar hyperplasia and identify a new target for inhibiting scar hyperplasia.Methods:Neutrophils were isolated from human peripheral blood by magnetic-bead sorting.NETs in plasma and scars were detected by enzyme-linked immunosorbent assays(ELISAs),immunofluorescence and flow cytometry.Immunohistochemistry was used to assess neutrophil(CD66B)infiltration in hypertrophic scars.To observe the entry of NETs into fibroblasts we used immunofluorescence and flow cytometry.Results:We found that peripheral blood neutrophils in patients with hypertrophic scars were more likely to form NETs(p<0.05).Hypertrophic scars showed greater infiltration with neutrophils and NETs(p<0.05).NETs activate fibroblasts in vitro to promote their differentiation and migration.Inhibition of NETs with cytochalasin in wounds reduced the hyperplasia of scars in mice.We induced neutrophils to generate NETs with different stimuli in vitro and detected the proteins carried by NETs.We did not find an increase in the expression of common scarring factors[interleukin(IL)-17 and transforming growth factor-β(TGF-β),p>0.05].However,inhibiting the production of NETs or degrading DNA reduced the differentiation of fibroblasts intomyofibroblasts.In vitro,NETs were found to be mediated by Toll-like receptor 9(TLR-9)in fibroblasts and further phosphorylated nuclear factor Kappa-B(NF-κB).We found that IL-6,which is downstream of NF-κB,was increased in fibroblasts.Additionally,IL-6 uses autocrine and paracrine signaling to promote differentiation and secretion.Conclusions:Our experiments found that NETs activate fibroblasts through the TLR-9/NF-κB/IL-6 pathway,thereby providing a new target for regulating hypertrophic scars.展开更多
Medium-chain fatty acids and their derivatives are natural ingredients that support immunological functions in animals.The effects of glycerol monolaurate(GML)on intestinal innate immunity and associated molecular mec...Medium-chain fatty acids and their derivatives are natural ingredients that support immunological functions in animals.The effects of glycerol monolaurate(GML)on intestinal innate immunity and associated molecular mechanisms were investigated using a chicken embryo model.Sixty-four Arbor Acres broiler embryos were randomly allocated into four groups.On embryonic day 17.5,the broiler embryos were administered with 9 mg of GML,which was followed by a 12-h incubation period and a12-h challenge with 32μg of lipopolysaccharide(LPS).On embryonic day 18.5,the jejunum and ileum were harvested.Results indicated that GML reversed the LPS-induced decline in villus height and upregulated the expression of mucin 2(P<0.05).GML decreased LPS-induced malondialdehyde production and boosted antioxidant enzyme activity(P<0.05).GML alleviated LPS-stimulated intestinal secretion of interleukin(IL)-1β,IL-6,and tumor necrosis factor-a(TNF-a)(P<0.05).GML also normalized LPS-induced changes in the gene expression of Toll-like receptor 4,nuclear factor kappa-B p65(NF-κB p65),cyclooxygenase-2,NOD-like receptor protein 3,IL-18,zonula occludens 1,and occludin(P<0.05).GML enhanced as well the expression of AMP-activated protein kinase a1 and claudin 1(P<0.05).In conclusion,GML improved intestinal morphology and antioxidant status by alleviating inflammatory responses and modulating NF-κB signaling in LPS-challenged broiler embryos.展开更多
OBJECTIVE: To evaluate the efficacy of Shoushen granule, prepared with four Chinese medicinals, on the targeted regulation of adenosine triphosphate binding cassette transporter A1(ABCA1) through proprotein convertase...OBJECTIVE: To evaluate the efficacy of Shoushen granule, prepared with four Chinese medicinals, on the targeted regulation of adenosine triphosphate binding cassette transporter A1(ABCA1) through proprotein convertase subtilisin/kexin type 9(PCSK9) and toll-like receptor 4(TLR4)/nuclear factor kappa-B(NF-κB) signaling pathway to affect atherosclerosis(AS) in ApoE-knockout(ApoE-/-) mice.METHODS: ApoE-/-mice fed with a high-fat diet were used for AS modeling and divided into Model,Shoushen, and Atorvastatin groups. C57 BL/6 J mice at the same age and background strain were included in the Control group. Western blot and immunohistochemistry were used to measure ABCA1, PCSK9, TLR4, and NF-κB protein expression in mouse aortas. Enzyme-linked immuno sorbent assay was used to measure mouse serum tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), monocyte chemoattractant protein 1(MCP-1), and intercellular cell adhesion molecule-1(ICAM-1) expression. Serum lipid profiles and histopathology were also assessed. Shoushen granule were composed of Heshouwu(Radix Polygoni Multiflori) 15 g, Gouqizi(Fructus Lycii) 15 g, Sheng shanzha(Raw Fructus Crataegus Pinnatifidae) 10 g, and Sanqi(Radix Notoginseng) 3 g.RESULTS: ApoE-/-mice fed with a high-fat diet had notable AS lesions, with reduced ABCA1 and IL-10 levels, elevated PCSK9, TLR4, NF-κB, TNF-α, MCP-1,and ICAM-1 expression, and increased total cholesterol(TC) and low density lipoprotein cholesterol(LDL-C) contents. With drug interventions, the areas of AS plaques were significantly reduced,the ABCA1 and IL-10 levels were increase, while the PCSK9, TLR4, NF-κB, TC, and LDL-C contents,and the TNF-α, MCP-1, and ICAM-1 expression were reduced.CONCLUSION: Shoushen granule effectively interfered with AS development by antagonizing the expression of key factors of the PCSK9 and TLR4/NF-κB signaling pathway to upregulate ABCA1 expression.展开更多
Previous studies have shown that Biochanin A,a flavonoid compound with estrogenic effects,can serve as a neuroprotective agent in the context of cerebral ischemia/reperfusion injury;howeve r,its effect on spinal cord ...Previous studies have shown that Biochanin A,a flavonoid compound with estrogenic effects,can serve as a neuroprotective agent in the context of cerebral ischemia/reperfusion injury;howeve r,its effect on spinal cord injury is still unclea r. In this study,a rat model of spinal cord injury was established using the heavy o bject impact method,and the rats were then treated with Biochanin A(40 mg/kg) via intrape ritoneal injection for 14 consecutive days.The res ults showed that Biochanin A effectively alleviated spinal cord neuronal injury and spinal co rd tissue injury,reduced inflammation and oxidative stress in spinal cord neuro ns,and reduced apoptosis and pyroptosis.In addition,Biochanin A inhibited the expression of inflammasome-related proteins(ASC,NLRP3,and GSDMD)and the Toll-like receptor 4/nuclear factor-κB pathway,activated the Nrf2/heme oxygenase 1 signaling pathway,and increased the expression of the autophagy markers LC3 Ⅱ,Beclin-1,and P62.Moreove r,the therapeutic effects of Biochanin A on early post-s pinal cord injury were similar to those of methylprednisolone.These findings suggest that Biochanin A protected neurons in the injured spinal cord through the Toll-like receptor 4/nuclear factor κB and Nrf2/heme oxygenase 1 signaling pathways.These findings suggest that Biochanin A can alleviate post-spinal cord injury at an early stage.展开更多
基金Supported by:the Medicine and Health Scientific Research Projects of Shandong Province,No. 2007HZ065
文摘BACKGROUND: L-3-n-butylphthalide (L-NBP) can inhibit phosphorylation of tau protein and reduce the neurotoxicity of beta-amyloid peptide 1-42 (Aβ1-42). OBJECTIVE: To observe the neuroprotective effects of L-NBP on caspase-3 and nuclear factor kappa-B (NF- K B) expression in a rat model of Alzheimer's disease. DESIGN, TIME AND SETTING: A cell experiment was performed at the Central Laboratory of Provincial Hospital affiliated to Shandong University between January 2008 and August 2008. MATERIALS: L-NBP (purity 〉 98%) was provided by Shijiazhuang Pharma Group NBP Pharmaceutical Company Limited. Aβ1-42, 3-[4,5-dimethylthiazolo-2]-2,5 iphenyltetrazolium bromide (MTT), and rabbit anti-Caspase-3 polyclonal antibody were provided by Cell Signaling, USA; goat anti-choactase and rabbit anti-NF- kB antibodies were provided by Santa Cruz, USA. METHODS: Primary cultures were generated from rat basal forebrain and hippocampal neurons at 17 or 19 days of gestation. The cells were assigned into five groups: the control group, the Aβ1-42 group (2 μmol/L), the Aβ1-42 + 0.1 μmol/L L-NBP group, the Aβ1-42 + 1 μ mol/L L-NBP group, and the Aβ1-42 + 10μmol/L L-NBP group. The neurons were treated with Aβ1-42 (2 μmol/L) alone or in combination with L-NBP (0.1, 1, 10 μmol/L) for 48 hours. Cells in the control group were incubated in PBS. MAIN OUTCOME MEASURES: Morphologic changes were evaluated using inverted microscopy, viability using the M-I-I- method, and the changes in caspase-3 and NF- k B expression using Western blot. RESULTS: Induction with Aβ1-42 for 48 hours caused cell death and soma atrophy, and increased caspase-3 and NF- K B expression (P 〈 0.05). L-NBP blocked these changes in cell morphology, decreased caspase-3 and NF- k B expression (P 〈 0.05), and improved cell viability, especially at the high dose (P 〈 0.05). CONCLUSION: AI3^-42 is toxic to basal forebrain and hippocampal primary neurons; L-NBP protects against this toxicity and inhibits the induction of caspase-3 and NF- K B expression.
文摘The relation between the expression and activity of MMP-9 in C-reactive protein (CRP)-induced human THP-1 mononuclear cells and the activation of nuclear factor kappa-B (NF-κB) was studied to investigate the possible role of CRP in plaque destabilization. Human THP-1 cells were incubated in the presence of CRP at 0 (control group), 25, 50 and 100 μg/mL (CRP groups) for 24 h. In PDTC (a specific NF-κB inhibitor) group, the cells were pre-treated with PDTC at 10 μmol/L and then with 100 μg/mL CRP. The conditioned media (CM) and human THP-1 cells in different groups were harvested. MMP-9 expression in CM and human THP-1 cells was measured by ELISA and Western blotting. MMP-9 activity was assessed by fluorogenic substrates. The expression of NF-κB inhibitor α (IκB-α) and NF-κB p65 was detected by Western blotting and ELISA respectively. The results showed that CRP increased the expression and activity of MMP-9 in a dose-dependent manner in the human THP-1 cells. Western blotting revealed that IiB-α expression was decreased in the cells with the concentrations of CRP and ELISA demonstrated that NF-κB p65 expression in the CRP-induced cells was increased. After pre-treatment of the cells with PDTC at 10 μmol/L, the decrease in IκB-α expression and the increase in NF-κB p65 expression in the CRP-induced cells were inhibited, and the expression and activity of MMP-9 were lowered too. It is concluded that increased expression and activity of MMP-9 in CRP-induced human THP-1 cells may be associated with activation of NF-κB. Down-regulation of the expression and activity of MMP-9 may be a new treatment alternative for plaque stabilization by inhibiting the NF-κB activation.
基金Natural Science Foundation Project of Chongqing Municipality:a Metabolome-based Study on the Protective Mechanism of Yemazhui(Herba Eupatorii Lindleyani)Sesquiterpene Lactones Against Acute Lung Injury(No.cstc2021jcyj-msxmX0365)Science and Technology Research Program of Chongqing Municipal Education Commission:a Cytokine Storm-based Study of the Protective Effect of Yemazhui(Herba Eupatorii Lindleyani)Extract Intervention on COVID-19 Lung Injury(No.KJZD-K202215101)。
文摘OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatographyquadrupole time-of-flight mass spectrometry method.Then,HEL was found to suppress LPS-induced ALI in vivo.Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups:control,LPS,Dexamethasone(Dex),HEL low dose 6 g/kg(HEL-L),HEL medium dose 18 g/kg(HEL-M)and HEL high dose 54 g/kg(HEL-H)groups.The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model.Leukocyte counts,lung wet/dry weight ratio,as well as myeloperoxidase(MPO)activity were determined followed by the detection with hematoxylin and eosin staining,enzyme linked immunosorbent assay,quantitative real time polymerase chain reaction,western blotting,immunohistochemistry,and immunofluorescence.Besides,to explore the effect of HEL on ALI-mediated intestinal flora,we performed 16s rRNA sequencing analysis of intestinal contents.RESULTS:HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance.Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats,inhibited leukocytes exudation and MPO activity,and improved the pathological injury of lung tissue.In addition,HEL reduced the expression of tumor necrosis factoralpha,interleukin-1beta(IL-1β)and interleukin-6(IL-6)in bronchoalveolar lavage fluid and serum,and inhibited nuclear displacement of nuclear factor kappa-B p65(NF-κBp65).And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88,NF-κBp65,phosphorylated inhibitor kappa B alpha(phospho-IκBα),nod-like receptor family pyrin domain-containing 3 protein(NLRP3),IL-1β,and interleukin-18(IL-18)in lung tissue,and regulated intestinal flora disturbance.CONCLUSIONS:In summary,our findings revealed that HEL has a protective effect on LPS-induced ALI in rats,and its mechanism may be related to inhibiting TLR4/NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.
文摘背景:基于核转录因子κB通路探究神经炎症的靶向治疗越来越值得探究,中药靶点多、范围广、机制丰富及不良反应少等优点在治疗各类疾病时都具有十分巨大的潜力。目的:基于核转录因子κB信号通路,对近年研究中出现的山奈酚、红花黄、汉黄芩苷及雷公藤甲素等中药单体治疗脊髓损伤后神经炎症的研究进展进行系统的阐述与归纳。方法:以“脊髓损伤,炎症,抗炎,中药单体,单体化合物,NF-κB信号通路,黄酮,糖苷,酚类,酯类,生物碱”为检索词在中国知网数据库中进行检索;以“Spinal cord injury,inflammation,anti-inflammatory,traditional Chinese medicine monomer,monomeric compound,NF-κB signaling pathway,flavonoids,glycosides,phenols,esters,alkaloids”为检索词在PubMed数据库中进行检索,最终共纳入67篇文献进行综述分析。结果与结论:①核转录因子κB信号通路在神经系统中的作用复杂多样,能够调控中性粒细胞、小胶质细胞、星形胶质细胞和巨噬细胞等,介导损伤后炎症的发生与发展;②中药单体如汉黄芩苷对核转录因子κB抑制蛋白的降解、红花黄素对核转录因子κB信号通路磷酸化过程的抑制、山奈酚对核转录因子κB信号通路p65核易位的抑制等作用可以降低炎症反应对机体造成的影响,从而促进神经功能恢复;③核转录因子κB信号通路在损伤早期能够促进炎症反应和免疫细胞迁移活化,在损伤中后期能够促进损伤部位的修复和纤维化的发生等,适当的激活核转录因子κB信号通路具有促进炎症因子的释放、提高细胞的抗氧化能力及促进免疫细胞的活化等能力,但过度激活的核转录因子κB信号通路则容易导致慢性炎症的发生和持续、细胞凋亡受到抑制等;④未来的研究可以进一步探索如何准确调控核转录因子κB信号通路的活化水平、如何实现对神经系统炎症和损伤的精准干预展开,也可围绕中药单体的制备及中药单体对信号通路的作用机制展开,以期为神经系统疾病的康复和功能恢复提供更有效的治疗策略。
基金Supported by the National Natural Science Foundation of China(No.82103563)the Key Research and Development Program of Shaanxi Province(No.2020ZDLSF02-06).
文摘AIM:To investigate the effect of skullcapflavone II(SCF-II)on the epithelial-mesenchymal transition(EMT)induced by transforming growth factor beta(TGF-β)in human corneal epithelial cells(HCECs),as well as to identify the signaling pathways that may be involved.METHODS:HCECs were cultured in vitro.At a SCFII(5,10μmol/L)dose,cell viability was analysed with a cell counting kit-8(CCK-8)assay,and cell migration was monitored with wound healing and Transwell migration assays.There were 4 groups:SCF-II,TGF-β,SCF-II+TGF-βand Control.Western blotting and immunofluorescence were performed to show the expression of EMT markers and the translocation of nuclear factor kappa-B(NF-κB)into the nucleus in the 4 groups.RESULTS:Treatment with SCF-II decreased HCEC viability in a dose-dependent manner.A concentration below 10μmol/L did not present obvious cell toxicity,and survival rates were more than 70%at 48h.Treatment with SCF-II(5 and 10μmol/L)significantly impeded migration in wound healing and Transwell migration assays(P<0.05),and EMT markers and NF-κB translocation into the nucleus were inhibited.After both TGF-βand SCF-II treatment,the migration of TGF-β-treated HCECs were suppressed by SCF-II(P<0.05).The expression levels of the mesenchymal markers N-cadherin(P<0.05),α-smooth muscle actin(α-SMA;P<0.05)and NF-κB(P<0.05)in both TGF-β-and SCF-II-treated HCECs were lower than those in the HCECs treated with TGF-βalone and higher than those in HCECs treated with SCF-II alone.Immunofluorescence showed that the entry of NF-κB into the nucleus in both TGF-β-and SCF-IItreated HCECs was less than that in the TGF-β-treated HCECs.CONCLUSION:SCF-II inhibit TGF-β-induced EMT in HCECs by potentially regulating the NF-κB signalling pathway.Thus,SCF-II represents a candidate putative therapeutic agent in corneal fibrotic diseases.
文摘Background: Hyperbaric oxygen (HBO) and Ginkgo biloba extract (e.g., EGB 761) were shown to ameliorate cognitive and memory impairment in Alzheimcr's disease (AD). However, the exact mechanism remains elusive. The aim of the present study was to investigate the possible mechanisms of HBO and EGB 761 via the function of nuclear factor kappa-B (NF-κB) pathway. Methods: AD rats were induced by injecting β-amyloid 25-35 into the hippocampus. All animals were divided into six groups: Normal. sham. AD model, HBO (2 atmosphere absolute: 60 min/d), EGB 761 (20 mg·kg^-1 ·d ^-1), and HBO/EGB 761 groups. Morris water maze tests were used to assess cognitive, and memory capacities of rats: TdT-mediated dUTP Nick-End Labeling staining and Western blotting were used to analyze apoptosis and NF-κB pathway-related proteins in hippocampus tissues. Results: Morris water maze tests revealed that EGB 761 and HBO significantly improved the cognitive and memory ability of AD rats. In addition, the protective effect of combinational therapy (HBO/EGB 761 ) was superior to either HBO or EGB 761 alone. In line. redticed apoptosis with NF-κB pathway activation was observed in hippocampus neurons treated by HBO and EGB 761. Conclusions: Our results suggested that HBO and EGB 761 improve cognitive and memory capacity in a rat model of AD. The protective effects are associated with the reduced apoptosis with NF-κB pathway activation in hippocampus neurons.
基金supported by the National Natural Science Foundation of China,(No.82072217,81772135 and U21A20370)by the Jiangsu Natural Science Foundation(No.BK20201178).
文摘Background:Inflammation is an important factor in pathological scarring.The role of neutrophils,one of the most important inflammatory cells,in scar hyperplasia remains unclear.The purpose of this article is to study the correlation between neutrophil extracellular traps(NETs)and scar hyperplasia and identify a new target for inhibiting scar hyperplasia.Methods:Neutrophils were isolated from human peripheral blood by magnetic-bead sorting.NETs in plasma and scars were detected by enzyme-linked immunosorbent assays(ELISAs),immunofluorescence and flow cytometry.Immunohistochemistry was used to assess neutrophil(CD66B)infiltration in hypertrophic scars.To observe the entry of NETs into fibroblasts we used immunofluorescence and flow cytometry.Results:We found that peripheral blood neutrophils in patients with hypertrophic scars were more likely to form NETs(p<0.05).Hypertrophic scars showed greater infiltration with neutrophils and NETs(p<0.05).NETs activate fibroblasts in vitro to promote their differentiation and migration.Inhibition of NETs with cytochalasin in wounds reduced the hyperplasia of scars in mice.We induced neutrophils to generate NETs with different stimuli in vitro and detected the proteins carried by NETs.We did not find an increase in the expression of common scarring factors[interleukin(IL)-17 and transforming growth factor-β(TGF-β),p>0.05].However,inhibiting the production of NETs or degrading DNA reduced the differentiation of fibroblasts intomyofibroblasts.In vitro,NETs were found to be mediated by Toll-like receptor 9(TLR-9)in fibroblasts and further phosphorylated nuclear factor Kappa-B(NF-κB).We found that IL-6,which is downstream of NF-κB,was increased in fibroblasts.Additionally,IL-6 uses autocrine and paracrine signaling to promote differentiation and secretion.Conclusions:Our experiments found that NETs activate fibroblasts through the TLR-9/NF-κB/IL-6 pathway,thereby providing a new target for regulating hypertrophic scars.
基金supported by the National Natural Science Foundation of China(32272910)the Natural Science Foundation of Shandong Province(ZR2020MC170).
文摘Medium-chain fatty acids and their derivatives are natural ingredients that support immunological functions in animals.The effects of glycerol monolaurate(GML)on intestinal innate immunity and associated molecular mechanisms were investigated using a chicken embryo model.Sixty-four Arbor Acres broiler embryos were randomly allocated into four groups.On embryonic day 17.5,the broiler embryos were administered with 9 mg of GML,which was followed by a 12-h incubation period and a12-h challenge with 32μg of lipopolysaccharide(LPS).On embryonic day 18.5,the jejunum and ileum were harvested.Results indicated that GML reversed the LPS-induced decline in villus height and upregulated the expression of mucin 2(P<0.05).GML decreased LPS-induced malondialdehyde production and boosted antioxidant enzyme activity(P<0.05).GML alleviated LPS-stimulated intestinal secretion of interleukin(IL)-1β,IL-6,and tumor necrosis factor-a(TNF-a)(P<0.05).GML also normalized LPS-induced changes in the gene expression of Toll-like receptor 4,nuclear factor kappa-B p65(NF-κB p65),cyclooxygenase-2,NOD-like receptor protein 3,IL-18,zonula occludens 1,and occludin(P<0.05).GML enhanced as well the expression of AMP-activated protein kinase a1 and claudin 1(P<0.05).In conclusion,GML improved intestinal morphology and antioxidant status by alleviating inflammatory responses and modulating NF-κB signaling in LPS-challenged broiler embryos.
基金Supported by the National Natural Science Foundation of China(The Role of TLR4/MyD88/NF-κB Signal Transduction Pathway and Expression of miRNA-146a in Atherosclerosis and the Intervention Mechanism of Shen Invigorating Compounds,No.81202731Bushen Jiangzhi Recipe Protects Against Atherosclerosis via miR-27a-mediated PCSK9/ABCA1 Pathway,No.81873348)+2 种基金the Shanghai Natural Science Found(Inhibitory Mechanism of Chinese Herbal Compound,Shoushen Granule,for Invigorating Kidney in ApoE-/-Atherosclerosis Mouse Model by mir-19b Target Regulating ABCA1,No.16ZR1433900)the Shanghai Municipal Commission of Health and Family Planning Found(Effect of Kidney Invigoration and Lipid Intervention on the Atherosclerosis in ApoE-knockout Mice Based on mT OR signaling pathway of Autophagy System,No.201640217)Shanghai University of Traditional Chinese Medicine graduate"innovation ability training"special research projects(Mechanism of Bushen Jiangzhi Recipe Regulating TLR4/NF-κB Signaling Pathway Mediated by CD36 Through PCSK9 Targeted Regulation of apoE-/-mice Atherosclerosis,No.Y201858)
文摘OBJECTIVE: To evaluate the efficacy of Shoushen granule, prepared with four Chinese medicinals, on the targeted regulation of adenosine triphosphate binding cassette transporter A1(ABCA1) through proprotein convertase subtilisin/kexin type 9(PCSK9) and toll-like receptor 4(TLR4)/nuclear factor kappa-B(NF-κB) signaling pathway to affect atherosclerosis(AS) in ApoE-knockout(ApoE-/-) mice.METHODS: ApoE-/-mice fed with a high-fat diet were used for AS modeling and divided into Model,Shoushen, and Atorvastatin groups. C57 BL/6 J mice at the same age and background strain were included in the Control group. Western blot and immunohistochemistry were used to measure ABCA1, PCSK9, TLR4, and NF-κB protein expression in mouse aortas. Enzyme-linked immuno sorbent assay was used to measure mouse serum tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), monocyte chemoattractant protein 1(MCP-1), and intercellular cell adhesion molecule-1(ICAM-1) expression. Serum lipid profiles and histopathology were also assessed. Shoushen granule were composed of Heshouwu(Radix Polygoni Multiflori) 15 g, Gouqizi(Fructus Lycii) 15 g, Sheng shanzha(Raw Fructus Crataegus Pinnatifidae) 10 g, and Sanqi(Radix Notoginseng) 3 g.RESULTS: ApoE-/-mice fed with a high-fat diet had notable AS lesions, with reduced ABCA1 and IL-10 levels, elevated PCSK9, TLR4, NF-κB, TNF-α, MCP-1,and ICAM-1 expression, and increased total cholesterol(TC) and low density lipoprotein cholesterol(LDL-C) contents. With drug interventions, the areas of AS plaques were significantly reduced,the ABCA1 and IL-10 levels were increase, while the PCSK9, TLR4, NF-κB, TC, and LDL-C contents,and the TNF-α, MCP-1, and ICAM-1 expression were reduced.CONCLUSION: Shoushen granule effectively interfered with AS development by antagonizing the expression of key factors of the PCSK9 and TLR4/NF-κB signaling pathway to upregulate ABCA1 expression.
基金supported by the National Natural Science Foundation of China,Nos.LY20H090018(to XL)and LY20H060008(to HS).
文摘Previous studies have shown that Biochanin A,a flavonoid compound with estrogenic effects,can serve as a neuroprotective agent in the context of cerebral ischemia/reperfusion injury;howeve r,its effect on spinal cord injury is still unclea r. In this study,a rat model of spinal cord injury was established using the heavy o bject impact method,and the rats were then treated with Biochanin A(40 mg/kg) via intrape ritoneal injection for 14 consecutive days.The res ults showed that Biochanin A effectively alleviated spinal cord neuronal injury and spinal co rd tissue injury,reduced inflammation and oxidative stress in spinal cord neuro ns,and reduced apoptosis and pyroptosis.In addition,Biochanin A inhibited the expression of inflammasome-related proteins(ASC,NLRP3,and GSDMD)and the Toll-like receptor 4/nuclear factor-κB pathway,activated the Nrf2/heme oxygenase 1 signaling pathway,and increased the expression of the autophagy markers LC3 Ⅱ,Beclin-1,and P62.Moreove r,the therapeutic effects of Biochanin A on early post-s pinal cord injury were similar to those of methylprednisolone.These findings suggest that Biochanin A protected neurons in the injured spinal cord through the Toll-like receptor 4/nuclear factor κB and Nrf2/heme oxygenase 1 signaling pathways.These findings suggest that Biochanin A can alleviate post-spinal cord injury at an early stage.