With the analysis of experiment and theory on GaN HEMT devices under DC sweep,an improved model for kink effect based on advanced SPICE model for high electron mobility transistors(ASM-HEMT)is pro⁃posed,considering th...With the analysis of experiment and theory on GaN HEMT devices under DC sweep,an improved model for kink effect based on advanced SPICE model for high electron mobility transistors(ASM-HEMT)is pro⁃posed,considering the relationship between the drain/gate-source voltage and kink effect.The improved model can not only accurately describe the trend of the drain-source current with the current collapse and kink effect,but also precisely fit different values of drain-source voltages at which the kink effect occurs under different gatesource voltages.Furthermore,it well characterizes the DC characteristics of GaN devices in the full operating range,with the fitting error less than 3%.To further verify the accuracy and convergence of the improved model,a load-pull system is built in ADS.The simulated result shows that although both the original ASM-HEMT and the improved model predict the output power for the maximum power matching of GaN devices well,the im⁃proved model predicts the power-added efficiency for the maximum efficiency matching more accurately,with 4%improved.展开更多
In this paper we present a new experimental observation using a conventional reflectometry technique,poloidal correlation reflectometry(PCR),in the Experimental Advanced Superconducting Tokamak(EAST).The turbulence sp...In this paper we present a new experimental observation using a conventional reflectometry technique,poloidal correlation reflectometry(PCR),in the Experimental Advanced Superconducting Tokamak(EAST).The turbulence spectrum detected by the PCR system exhibits an asymmetry and induced Doppler shift f_(D)during the internal kink mode(IKM)rotation phase.This Doppler shift f_(D)is the target measurement of Doppler reflectometry,but captured by conventional reflectometry.Results show that the Doppler shift f_(D)is modulated by the periodic changes in the effective angle between the probing wave and cutoff layer normal,but not by plasma turbulence.The fishbone mode and saturated long-lived mode are typical IKMs,and this modulation phenomenon is observed in both cases.Moreover,the value of the Doppler shift f_(D)is positively correlated with the amplitude of the IKM,even when the latter is small.However,the positive and negative frequency components of the Doppler shift f_(D)can be asymmetric,which is related to the plasma configuration.A simulated analysis is performed by ray tracing to verify these observations.These results establish a clear link between f_(D)and IKM rotation,and are helpful for studying the characteristics of IKM and related physical phenomena.展开更多
The local deformation behavior and dynamic recrystallization of a shock compressed Mg-1Zn alloy was investigated through EBSD and TEM.Since dislocation slipping and twinning were locally suppressed during high strain-...The local deformation behavior and dynamic recrystallization of a shock compressed Mg-1Zn alloy was investigated through EBSD and TEM.Since dislocation slipping and twinning were locally suppressed during high strain-rate deformation,a more flexible kinking deformation was activated to adjusted local orientation and facilitate slipping and twinning within the kinks.Meanwhile,due to the slow heat dissipation that resulted in a local temperature elevating,the kink bands were evolved into deformation bands with recrystallized nano-grains.Such a finding provides a new perspective for kinking-facilitated nanocrystallization in Mg alloys and other anisotropic metallic materials.展开更多
多晶硅薄膜晶体管(P-Si TFTs)技术在SOP(system on panel)显示应用中发挥着越来越重要的作用。随着尺寸的不断缩小,P-Si TFT的Kink效应越来越明显,对有源液晶显示矩阵和驱动电路的性能影响很大。对发生Kink效应的物理机制、二维数值仿...多晶硅薄膜晶体管(P-Si TFTs)技术在SOP(system on panel)显示应用中发挥着越来越重要的作用。随着尺寸的不断缩小,P-Si TFT的Kink效应越来越明显,对有源液晶显示矩阵和驱动电路的性能影响很大。对发生Kink效应的物理机制、二维数值仿真及其一维解析模型进行了分析,讨论了晶粒边界、沟道长度与Kink效应的关系,提出建立适合电路仿真的一维解析模型的关键与展望。展开更多
A semi-analytical method is introduced to study kink instability in cylindrical plasma with line-tied boundary conditions. The method is based on an expansion for magnetohydrodynamics (MHD) equations in one-dimensio...A semi-analytical method is introduced to study kink instability in cylindrical plasma with line-tied boundary conditions. The method is based on an expansion for magnetohydrodynamics (MHD) equations in one-dimensional (1D) radial eigenvalue problems by using Fourier transforms. The MHD equations then become an ordinary differential equation. This method is applicable to both ideal and non-ideal MHD problem. The effect of plasma pressure (P0) on kink instability is studied in a cylindrical geometry. Complex discrete spectra are pre- sented. Two-dimensional (2D) eigenfunctions with the line-tied boundary conditions are obtained. The growth rate and radial eigenfunctions are different in the two cases of P0 = 0 and P0 ≠ 0, which indicate that the effect of plasma pressure can not be ignored if it is large enough. This method allows us to understand the role of individual radial eigenfunctions, and is also computationally efficient compared to direct solutions of the MHD equations by the finite difference method.展开更多
A three-dimensional (3-D) transient model has been developed to investigate plasma deformation driven by a magnetic field and its influence on arc stability in a circuit breaker. The 3-D distribution of electric cur...A three-dimensional (3-D) transient model has been developed to investigate plasma deformation driven by a magnetic field and its influence on arc stability in a circuit breaker. The 3-D distribution of electric current density is obtained from a current continuity equation along with the generalized Ohm's law; while the magnetic field induced by the current flowing through the arc column is calculated by the magnetic vector potential equation. When gas interacts with an arc column, fundamental factors, such as Ampere's law, Ohm's law, the turbulence model, transport equations of mass, momentum and energy of plasma flow, have to be coupled for aria- lyzing the phenomenon. The coupled interactions between arc and plasma flow are described in the fl'amework of time-dependent magnetohydrodynamic (MHD) equations in conjunction with a K-~ turbulence model. Simulations have been focused on sausage and kink instabilities in plasma (these phenomena are related tO pinch effects and electromagnetic fields). The 3-D sjm- ulation reveals the relation between plasma deformation and instability phenomena, which affect arc stability during circuit breaker operation. Plasma deformation is the consequence of coupled interactions between the electromagnetic force and plasma flow described in simulations.展开更多
In this paper, a new current expression based on both the direct currect (DC) characteristics of the A1GaN/GaN high election mobility transistor (HEMT) and the hyperbolic tangent function tanh is proposed, by whic...In this paper, a new current expression based on both the direct currect (DC) characteristics of the A1GaN/GaN high election mobility transistor (HEMT) and the hyperbolic tangent function tanh is proposed, by which we can describe the kink effect of the A1GaN/GaN HEMT well. Then, an improved EEHEMT model including the proposed current expression is presented. The simulated and measured results of Ⅰ-Ⅴ, S-parameter, and radio frequency (RF) large-signal characteristics are compared for a self-developed on-wafer A1GaN/GaN HEMT with ten gate fingers each being 0.4-μm long and 125-p-m wide (Such an A1GaN/GaN HEMT is denoted as A1GaN/GaN HEMT (10 × 125 μm)). The improved large signal model simulates the Ⅰ-Ⅴ characteristic much more accurately than the original one, and its transconductance and RF characteristics are also in excellent agreement with the measured data.展开更多
Mechanical exfoliation is a widely used method to isolate high quality graphene layers from bulk graphite. In our recent experiments, some ordered microstructures, consisting of a periodic alternation of kinks and str...Mechanical exfoliation is a widely used method to isolate high quality graphene layers from bulk graphite. In our recent experiments, some ordered microstructures, consisting of a periodic alternation of kinks and stripes, were observed in thin graphite flakes that were mechanically peeled from highly oriented pyrolytic graphite. In this paper, a theoretical model is presented to attribute the formation of such ordered structures to the alternation of two mechanical processes during the exfoliation: (1) peeling of a graphite flake and (2) mechanical buckling of the flake being sub- jected to bending. In this model, the width of the stripes L is determined by thickness h of the flakes, surface energy Y, and critical buckling strain ecr. Using some appropriate values of y and ecr that are within the ranges determined by other inde- pendent experiments and simulations, the predicted relations between the stripe width and the flake thickness agree reason- ably well with our experimental measurements. Conversely, measuring the L-h relations of the periodic microstructures in thin graphite flakes could help determine the critical mechan- ical buckling strain εcr and the interface energy γ.展开更多
基金Supported by the National Key R&D Program of China(2022YFF0707800,2022YFF0707801)Primary Research&Development Plan of Jiangsu Province(BE2022070,BE2022070-2)。
文摘With the analysis of experiment and theory on GaN HEMT devices under DC sweep,an improved model for kink effect based on advanced SPICE model for high electron mobility transistors(ASM-HEMT)is pro⁃posed,considering the relationship between the drain/gate-source voltage and kink effect.The improved model can not only accurately describe the trend of the drain-source current with the current collapse and kink effect,but also precisely fit different values of drain-source voltages at which the kink effect occurs under different gatesource voltages.Furthermore,it well characterizes the DC characteristics of GaN devices in the full operating range,with the fitting error less than 3%.To further verify the accuracy and convergence of the improved model,a load-pull system is built in ADS.The simulated result shows that although both the original ASM-HEMT and the improved model predict the output power for the maximum power matching of GaN devices well,the im⁃proved model predicts the power-added efficiency for the maximum efficiency matching more accurately,with 4%improved.
基金supported by the National Key R&D Program of China(Nos.2022YFE03050003,2022YFE03020004,2019YFE03080200 and 2022YFE03070004)National Natural Science Foundation of China(Nos.12275315,11875289,12175277 and 11975271)+3 种基金partly supported by the Youth Science and Technology Talents Support Program(2020)by Anhui Association for Science and Technology(No.RCTJ202009)the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ2021-08)the China Postdoctoral Science Foundation(No.2021M703256)the Director Funding of Hefei Institutes of Physical Science,Chinese Academy of Sciences(No.YZJJ2022QN16)。
文摘In this paper we present a new experimental observation using a conventional reflectometry technique,poloidal correlation reflectometry(PCR),in the Experimental Advanced Superconducting Tokamak(EAST).The turbulence spectrum detected by the PCR system exhibits an asymmetry and induced Doppler shift f_(D)during the internal kink mode(IKM)rotation phase.This Doppler shift f_(D)is the target measurement of Doppler reflectometry,but captured by conventional reflectometry.Results show that the Doppler shift f_(D)is modulated by the periodic changes in the effective angle between the probing wave and cutoff layer normal,but not by plasma turbulence.The fishbone mode and saturated long-lived mode are typical IKMs,and this modulation phenomenon is observed in both cases.Moreover,the value of the Doppler shift f_(D)is positively correlated with the amplitude of the IKM,even when the latter is small.However,the positive and negative frequency components of the Doppler shift f_(D)can be asymmetric,which is related to the plasma configuration.A simulated analysis is performed by ray tracing to verify these observations.These results establish a clear link between f_(D)and IKM rotation,and are helpful for studying the characteristics of IKM and related physical phenomena.
基金supported by National Natural Science Foundation of China(No.51701121,No.51825101)Shanghai Sailing Program(No.17YF1408800)+2 种基金Laboratory of Intense Dynamic Loading and Effect Foundation of China(No.IDEL1908)Startup Fund for Youngman Research at SJTU(No.18×100040022)Science and Technology Commission of Shanghai Municipality(No.18511109302).
文摘The local deformation behavior and dynamic recrystallization of a shock compressed Mg-1Zn alloy was investigated through EBSD and TEM.Since dislocation slipping and twinning were locally suppressed during high strain-rate deformation,a more flexible kinking deformation was activated to adjusted local orientation and facilitate slipping and twinning within the kinks.Meanwhile,due to the slow heat dissipation that resulted in a local temperature elevating,the kink bands were evolved into deformation bands with recrystallized nano-grains.Such a finding provides a new perspective for kinking-facilitated nanocrystallization in Mg alloys and other anisotropic metallic materials.
文摘多晶硅薄膜晶体管(P-Si TFTs)技术在SOP(system on panel)显示应用中发挥着越来越重要的作用。随着尺寸的不断缩小,P-Si TFT的Kink效应越来越明显,对有源液晶显示矩阵和驱动电路的性能影响很大。对发生Kink效应的物理机制、二维数值仿真及其一维解析模型进行了分析,讨论了晶粒边界、沟道长度与Kink效应的关系,提出建立适合电路仿真的一维解析模型的关键与展望。
基金supported by National Basic Research Program of China (No.2008CB717801)National Natural Science Foundation of China (No.10875024)Laboratory of College and University Program of Liaoning Province of China (No.2008S059)
文摘A semi-analytical method is introduced to study kink instability in cylindrical plasma with line-tied boundary conditions. The method is based on an expansion for magnetohydrodynamics (MHD) equations in one-dimensional (1D) radial eigenvalue problems by using Fourier transforms. The MHD equations then become an ordinary differential equation. This method is applicable to both ideal and non-ideal MHD problem. The effect of plasma pressure (P0) on kink instability is studied in a cylindrical geometry. Complex discrete spectra are pre- sented. Two-dimensional (2D) eigenfunctions with the line-tied boundary conditions are obtained. The growth rate and radial eigenfunctions are different in the two cases of P0 = 0 and P0 ≠ 0, which indicate that the effect of plasma pressure can not be ignored if it is large enough. This method allows us to understand the role of individual radial eigenfunctions, and is also computationally efficient compared to direct solutions of the MHD equations by the finite difference method.
文摘A three-dimensional (3-D) transient model has been developed to investigate plasma deformation driven by a magnetic field and its influence on arc stability in a circuit breaker. The 3-D distribution of electric current density is obtained from a current continuity equation along with the generalized Ohm's law; while the magnetic field induced by the current flowing through the arc column is calculated by the magnetic vector potential equation. When gas interacts with an arc column, fundamental factors, such as Ampere's law, Ohm's law, the turbulence model, transport equations of mass, momentum and energy of plasma flow, have to be coupled for aria- lyzing the phenomenon. The coupled interactions between arc and plasma flow are described in the fl'amework of time-dependent magnetohydrodynamic (MHD) equations in conjunction with a K-~ turbulence model. Simulations have been focused on sausage and kink instabilities in plasma (these phenomena are related tO pinch effects and electromagnetic fields). The 3-D sjm- ulation reveals the relation between plasma deformation and instability phenomena, which affect arc stability during circuit breaker operation. Plasma deformation is the consequence of coupled interactions between the electromagnetic force and plasma flow described in simulations.
基金Project supported by the National Natural Science Foundation of China(Grant No.61334002)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(Grant No.ZHD201206)the Program for New Century Excellent Talents in University(Grant No.NCET-12-0915)
文摘In this paper, a new current expression based on both the direct currect (DC) characteristics of the A1GaN/GaN high election mobility transistor (HEMT) and the hyperbolic tangent function tanh is proposed, by which we can describe the kink effect of the A1GaN/GaN HEMT well. Then, an improved EEHEMT model including the proposed current expression is presented. The simulated and measured results of Ⅰ-Ⅴ, S-parameter, and radio frequency (RF) large-signal characteristics are compared for a self-developed on-wafer A1GaN/GaN HEMT with ten gate fingers each being 0.4-μm long and 125-p-m wide (Such an A1GaN/GaN HEMT is denoted as A1GaN/GaN HEMT (10 × 125 μm)). The improved large signal model simulates the Ⅰ-Ⅴ characteristic much more accurately than the original one, and its transconductance and RF characteristics are also in excellent agreement with the measured data.
基金financia support from NSFC(Grant 10832005)the National Basic Research Program of China(Grant 2007CB936803)+1 种基金the National 863 Project(Grant2008AA03Z302)the support from the engineering faculty of Monash University through seed grant 2014
文摘Mechanical exfoliation is a widely used method to isolate high quality graphene layers from bulk graphite. In our recent experiments, some ordered microstructures, consisting of a periodic alternation of kinks and stripes, were observed in thin graphite flakes that were mechanically peeled from highly oriented pyrolytic graphite. In this paper, a theoretical model is presented to attribute the formation of such ordered structures to the alternation of two mechanical processes during the exfoliation: (1) peeling of a graphite flake and (2) mechanical buckling of the flake being sub- jected to bending. In this model, the width of the stripes L is determined by thickness h of the flakes, surface energy Y, and critical buckling strain ecr. Using some appropriate values of y and ecr that are within the ranges determined by other inde- pendent experiments and simulations, the predicted relations between the stripe width and the flake thickness agree reason- ably well with our experimental measurements. Conversely, measuring the L-h relations of the periodic microstructures in thin graphite flakes could help determine the critical mechan- ical buckling strain εcr and the interface energy γ.