期刊文献+
共找到2,380篇文章
< 1 2 119 >
每页显示 20 50 100
Spatiotemporal detection of land use/land cover changes and land surface temperature using Landsat and MODIS data across the coastal Kanyakumari district, India 被引量:2
1
作者 S.Chrisben Sam Gurugnanam Balasubramanian 《Geodesy and Geodynamics》 CSCD 2023年第2期172-181,共10页
This study assesses the changes in land use/land cover(LULC) and land surface temperature(LST) to identify their impacts from 2000 to 2020 along the coast of Kanyakumari district, India using remote sensing techniques... This study assesses the changes in land use/land cover(LULC) and land surface temperature(LST) to identify their impacts from 2000 to 2020 along the coast of Kanyakumari district, India using remote sensing techniques. Landsat images are used to estimate the LULC changes and the MODIS data for LST.The Maximum Likelihood Classification(MLC) method is used, and the LULC is classified into six categories: Agriculture Land, Barren Land, Salt Pan, Sandy Beach, Settlement, and Waterbody. Within the two decades of the present change detection study, upheave in the Settlement area of 49.89% is noticed, and the Agriculture Land is exploited by 20.09%. Salt Pan emits a high LST of 31.57°C, and the Waterbodies are noticed with a low LST of 28.9°C. However, the overall rate of LST decreased by 0.56°C during this period. This study will help policymakers make appropriate planning and management to overcome the impact of LULC and LST in the forthcoming years. 展开更多
关键词 land use/land cover land surface temperature landSAT MODIS and remote sensing
下载PDF
Land use/land cover change responses to ecological water conveyance in the lower reaches of Tarim River,China
2
作者 WANG Shanshan ZHOU Kefa +2 位作者 ZUO Qiting WANG Jinlin WANG Wei 《Journal of Arid Land》 SCIE CSCD 2021年第12期1274-1286,共13页
The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natur... The Tarim River is the longest inland river in China and is considered as an important river to protect the oasis economy and environment of the Tarim Basin.However,excessive exploitation and over-utilization of natural resources,particularly water resources,have triggered a series of ecological and environmental problems,such as the reduction in the volume of water in the main river,deterioration of water quality,drying up of downstream rivers,degradation of vegetation,and land desertification.In this study,the land use/land cover change(LUCC)responses to ecological water conveyance in the lower reaches of the Tarim River were investigated using ENVI(Environment for Visualizing Images)and GIS(Geographic Information System)data analysis software for the period of 1990-2018.Multi-temporal remote sensing images and ecological water conveyance data from 1990 to 2018 were used.The results indicate that LUCC covered an area of 2644.34 km^(2) during this period,accounting for 15.79%of the total study area.From 1990 to 2018,wetland,farmland,forestland,and artificial surfaces increased by 533.42 km^(2)(216.77%),446.68 km^(2)(123.66%),284.55 km^(2)(5.67%),and 57.51 km^(2)(217.96%),respectively,whereas areas covered by grassland and other land use/land cover types,such as Gobi,bare soil,and deserts,decreased by 103.34 km2(14.31%)and 1218.83 km2(11.75%),respectively.Vegetation area decreased first and then increased,with the order of 2010<2000<1990<2018.LUCC in the overflow and stagnant areas in the lower reaches of the Tarim River was mainly characterized by fragmentation,irregularity,and complexity.By analyzing the LUCC responses to 19 rounds of ecological water conveyance in the lower reaches of the Tarim River from 2000 to the end of 2018,we proposed guidelines for the rational development and utilization of water and soil resources and formulation of strategies for the sustainable development of the lower reaches of the Tarim River.This study provides scientific guidance for optimal scheduling of water resources in the region. 展开更多
关键词 land use/land cover change(LUCC) remote sensing land use dynamic index ecological water conveyance Tarim River
下载PDF
Impacts of Regional-Scale Land Use/Land Cover Change on Diurnal Temperature Range 被引量:5
3
作者 HUA Wen-Jian CHEN Hai-Shan 《Advances in Climate Change Research》 SCIE 2013年第3期166-172,共7页
The NCAR Community Atmosphere Model(CAM4.0)was used to investigate the climate efects of land use/land cover change(LUCC).Two simulations,one with potential land cover without significant human intervention and the ot... The NCAR Community Atmosphere Model(CAM4.0)was used to investigate the climate efects of land use/land cover change(LUCC).Two simulations,one with potential land cover without significant human intervention and the other with current land use,were conducted.Results show that the impacts of LUCC on diurnal temperature range(DTR)are more significant than on mean surface air temperature.The global average annual DTR change due to LUCC is–0.1℃,which is three times as large as the mean temperature change.LUCC influences regional DTR as simulated by the model.In the mid-latitudes,LUCC leads to a decrease in DTR,which is mainly caused by the reduction in daily maximum temperature.However,there are some diferences in the low latitudes.The reduction in DTR in East Asia is mainly the result of the decrease in daily maximum temperature,while in India,the decrease in DTR is due to the increase in daily minimum temperature.In general,the LUCC significantly controls the DTR change through the changes in canopy evaporation and transpiration. 展开更多
关键词 land use/land cover change DIURNAL temperature range CLIMATE change
下载PDF
Spatial features of land use/land cover change in the United States 被引量:3
4
作者 GAO Zhiqiang,LIU Jiyuan,DENG Xiangzheng(Inst. of Geographic Sciences and Nat ural Resources Research, CAS, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 2003年第1期63-70,共8页
With the classifi cation data covering American land-use/land-cover (LUCC) with 30 m resolu tion from the project of National Land Cover Data (NLCD), we normalize d them and made their resolution changed into 1 km ... With the classifi cation data covering American land-use/land-cover (LUCC) with 30 m resolu tion from the project of National Land Cover Data (NLCD), we normalize d them and made their resolution changed into 1 km ×1 km, created the data of American land-use grade and analyzed the spatial distribution and featur es of American LUCC as well as the influence of population and altit ude on the land-use grade in light of methods of sampling analysis a nd correlation study. Based on the analysis, we concluded that forestr y and grassland, accounting for 71.24% of the whole country, has taken the main part of American land cover, and besides, construction and arable land has occupied 19.22% of the total land, the rest of land cover types, including water area, wetland and underdeveloped land, is 9. 54% of the country's total. The developing potential of American land resources is enormous with less destroyed and disturbed ecological environment. Although, in some sense, the population and altitude influence the sp atial variation of American land-use grade respectively, the influence of spatial variation of altitude and population density on that of la nd-use grade is not significanct. 展开更多
关键词 land-use/land-cover change (LUCC) grade of land use correlation analysis
下载PDF
Application of Remote Sensing Techniques and Geographic Information Systems to Analyze Land Surface Temperature in Response to Land Use/Land Cover Change in Greater Cairo Region, Egypt 被引量:2
5
作者 Mohamed Aboelnour Bernard A. Engel 《Journal of Geographic Information System》 2018年第1期57-88,共32页
The Greater Cairo Region (GCR), Egypt has experienced rapid urban expansion and broad development over the past several decades. Due to such development, this region faces many environmental consequences. In order to ... The Greater Cairo Region (GCR), Egypt has experienced rapid urban expansion and broad development over the past several decades. Due to such development, this region faces many environmental consequences. In order to mitigate such consequences, it is essential to examine the historical change to measure the urban sprawl of GCR, and its effect on land surface temperature (LST). The objective of this study is to fulfill this goal. It does so by generating land use/land cover (LULC) maps derived from Landsat 5 TM for 1990 and 2003 and Landsat 8 OLI for 2016, using several classification techniques. A spectral radiance model and a web-based atmospheric correction model were used to successfully evaluate LST from thermal bands of Landsat data. Overall accuracy of Landsat derived land use data were 90.3%, 96.5% and 94.9% for years 1990, 2003 and 2016, respectively. The LULC change analysis revealed vegetation loss to urban land by an amount of 7.73% and from barren lands to urban uses by 8.70% within a 26-year timespan (1990-2016). This rapid urban growth significantly decreases vegetation areas, consequently increasing the LST and modifying the urban microclimate. Results from this study can help policy-makers characterize the evolution of urban construction for future developments. 展开更多
关键词 landSAT land Surface Temperature land use change Accuracy Assessment GREATER CAIRO REGION
下载PDF
Land Use/Land Cover Changes of Ago-Owu Forest Reserve, Osun State, Nigeria Using Remote Sensing Techniques 被引量:1
6
作者 Meshach O. Aderele Tomiyosi S. Bola David O. Oke 《Open Journal of Forestry》 2020年第4期401-411,共11页
Remote sensing (RS) and GIS are important methods for land use assessment and land cover transition. In this study, land use/land cover changes in the Ago-Owu Forest Reserve, Osun State, Nigeria have been assessed. La... Remote sensing (RS) and GIS are important methods for land use assessment and land cover transition. In this study, land use/land cover changes in the Ago-Owu Forest Reserve, Osun State, Nigeria have been assessed. Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI were acquired for 1986, 2002 and 2017 respectively. The three scenes corresponded to path 190 and row 055 of WRS-2 (Worldwide Reference System). The processing of the imagery was preceded by the clipping of the study area from the satellite image. The boundary of the reserve was carefully digitized and used to clip the imagery to produce an image map of the forest reserve. Using the supervised image classification procedure, training sites were used to produce land use/land cover maps. The same classification scheme was used for the 1986, 2002 and 2017 images to facilitate the detection of change. The differences in the area covered by the different polygons between the three sets of images were measured in km2. The results show that during 1986 and 2017, there is a dramatic increase of build-up areas with a change of 55.65 km2 and sparse vegetation (farmland and grassland) with a change of 53.97 km2, while a dramatic decrease of dense vegetation (forest areas) with a change of 109.61 km2. The consequence of these results is that over the years, the population of people living in the forest reserve has increased and many of them are engaged in farming, leading to an increase in farmland. In addition, logging activities continued unabated in the forest reserve, as demonstrated by a sharp increase in the deforested area within the reserve. The maps produced in this study will serve as a planning tool for the Osun State Forestry Department to plan reforestation activities for the forest reserve. 展开更多
关键词 Remote Sensing landSAT Forest Reserve Geographical Information System land use and land cover changes
下载PDF
An Appraisal of Land Use/Land Cover Change Scenario of Tummalapalle, Cuddapah Region, India—A Remote Sensing and GIS Perspective 被引量:2
7
作者 Yenamala Sreedhar Arveti Nagaraju Gurram Murali Krishna 《Advances in Remote Sensing》 2016年第4期232-245,共14页
The study was aimed at appraising the changing land use/land cover scenario of Tummalapalle region in Cuddapah district of Andhra Pradesh using Remote sensing data and GIS technology. The region is considered as it ha... The study was aimed at appraising the changing land use/land cover scenario of Tummalapalle region in Cuddapah district of Andhra Pradesh using Remote sensing data and GIS technology. The region is considered as it has rich uranium reserves and is experiencing a remarkable expansion in recent times. The land use/land cover change analysis was carried out using IRS P6 LISS-III and LANDSAT-8 OLI multitemporal data pertaining to the years 2006 and 2016. The image classification resulted in five major land use/land cover classes namely built-up, agricultural, forest, wasteland and water bodies. The study noticed that the areas under built-up and agricultural classes are found increased from 0.94 km<sup>2</sup> (0.84%) to 2.75 km<sup>2</sup> (2.44%) and 61.68 km<sup>2</sup> (54.84%) to 63.91 km<sup>2</sup> (56.82%), respectively during 2006-2016. Area under forest, wasteland and water bodies are found decreased considerably from 3.09 km<sup>2</sup> (2.75%) to 0.86 km<sup>2</sup> (0.76%), 43.71 km<sup>2</sup> (38.56%) to 42.60 km<sup>2</sup> (37.88%) and 3.05 km<sup>2</sup> (2.71%) to 2.35 km<sup>2</sup> (2.09%), respectively. The study recommends development of industrial based economy by optimally utilizing the existing land resource (scrub and wasteland classes) and simultaneously extending the agricultural practices to other possible areas to make them more productive. 展开更多
关键词 Remote Sensing and GIS Image Classification land use/land cover Tummalapalle
下载PDF
Assessing land use/land cover change impacts on the hydrology of Nyong River Basin, Cameroon
8
作者 EWANE Basil Ewane Heon Ho LEE 《Journal of Mountain Science》 SCIE CSCD 2020年第1期50-67,共18页
Uncontrolled land use land cover change(LULCC) is impacting watershed hydrology,particularly in tropical watersheds in developing countries. We assessed the extent of LULCC in the southern portion of the Nyong River b... Uncontrolled land use land cover change(LULCC) is impacting watershed hydrology,particularly in tropical watersheds in developing countries. We assessed the extent of LULCC in the southern portion of the Nyong River basin through analysis of three land use maps in 1987, 2000 and2014. LULCC impact on hydrological variables of the Mbalmayo, Olama, Pont So’o, Messam, and Nsimi sub-watersheds of the southern portion of the Nyong River basin were evaluated by using the linear regression modeling and the Mann-Kendall test. This study reveals that dense forest cover decreased by16%, young secondary forest increased by 18%,agricultural/cropland increased by 10%, and built-up area/bare soil increased by 3% from 1987 to 2014.The decrease in dense forest cover at 0.6% per year on average was driven by indiscriminate expansion of subsistence agricultural/cropland through shifting and fallow cultivation farming systems. Nonsignificant trends in total discharge, high flows, and low flows were observed in the large sub-watersheds of Mbalmayo and Olama from 1998 to 2013 with LULCC within the watershed. In contrast, significant decreasing trends in stream discharge(up to-5.1%and-5.9%), and significant increasing trends in high flows(up to 2.1% and 6.3%), respectively, were observed in the small sub-watersheds of Pont So’o and Messam from 1998 to 2013, particularly with increase in agricultural/cropland cover and decrease in dense forest cover. However, we found nonsignificant trends in mean annual discharge and low flows for all and whole watershed with LULCC. The results reveal spatially varying trends of stream discharge, low flows and high flows among the subwatersheds with LULCC within the study watershed.The results suggest that the impacts of LULCC on watershed hydrology are easily detected in small subwatersheds than in large sub-watersheds. Therefore,the magnitude of dense forest cover loss must be significantly greater than 16% to cause significant changes and common trends in the hydrology of the sub-watersheds of the southern portion of the Nyong River basin. The Mann-Kendall and Regression approaches show appreciable potential for modelling the impacts of LULCC on the hydrology of the southern portion of the Nyong River basin and for informing forest management. 展开更多
关键词 LULCC land cover land use Stream discharge Linear regression modeling Nyong River basin Mann-Kendall test
下载PDF
Evaluating Land Use/Land Cover Change and Its Socioeconomic Implications in Agarfa District of Bale Zone, Southeastern Ethiopia
9
作者 Teha Turi Hussien Hayicho Haji Kedir 《Journal of Environmental Protection》 2019年第3期369-388,共20页
A systematic analysis of land use/cover change is so decisive to exactly understand the extent of change and take essential measures to curb down the rate of changes and protect the land cover resources sustainably. T... A systematic analysis of land use/cover change is so decisive to exactly understand the extent of change and take essential measures to curb down the rate of changes and protect the land cover resources sustainably. This land use/land cover change study was conducted in Agarfa district of Bale zone, Oromia Regional State, Southeastern Ethiopia. The objectives of this study were to evaluate the trends, drivers and its socio-economic and environmental implication in study area. A descriptive research method was employed to achieve the intended objectives of the study. In the three years (1976, 1995, and 2014) Landsat Satellite images and socio-economic survey were the main data sources for this study. ERDAS Imagine and Arch-GIS tools were used to classify and generate land use/land cover maps of the study area. Survey questionnaires, key informant interviews, and field observation were employed to obtain information on drivers and its socio-economic and environmental implication in the district. The results show that the land use/land cover of the study area had changed dramatically during the period of 38 years. A rapid loss of forest land and shrub land cover in the landscape took place between 1976 and 2014. Conversely, agriculture and grazing lands were increased by 30% and 42% respectively at the expense of the lost land use/land cover types. Forest land is the most converted cover type during the entire study period. In the 38 years, forest lands diminished by over 65% of the original forest cover that was existed at the base year (1976). Local climate change, declining agricultural productivity and livestock quantity and quality and scarcity of fuel wood and constructional materials were some of the socio-economic and livelihood impacts of land use and land cover change of the study area. Thus, this finding affords information to land users and policy makers on extent of the change and social forces leading to this changes and its subsequent implication on local socio-economic and environmental conditions of the study area. 展开更多
关键词 land use/land cover change Evaluation Image Classification Impacts of land use land cover change Agarfa DISTRICT GIS and Remote Sensing
下载PDF
1998’s floods in the Changjiang River and the land use/land cover change in the upper and middle-lower reaches in the past 50 years
10
作者 LU Qi, DENG Xiang-zheng (Institute of Geography, Chinese Academy of Sciences, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 2000年第1期45-51,共7页
Flood of Changjiang River (the Yangtze) in 1998 is so serious that it arouses our keen concern about its causes. In this paper, the authors bring out a brief history of the flood disaster happened to the Changjiang R... Flood of Changjiang River (the Yangtze) in 1998 is so serious that it arouses our keen concern about its causes. In this paper, the authors bring out a brief history of the flood disaster happened to the Changjiang River Valley in the last six centuries and analyze the causes for the frequent flood disaters based on the land use and land cover change in the upper and middle-lower reaches of the Changjiang River. 展开更多
关键词 land use land cover change Chanajiang River flood
下载PDF
Impact of Land Use/Land Cover Change on Surface Temperature Condition of Awka Town, Nigeria
11
作者 Chukwudi P. Nzoiwu Emmanuel I. Agulue +1 位作者 Samuel Mbah Chidera P. Igboanugo 《Journal of Geographic Information System》 2017年第6期763-776,共14页
This paper is aimed at identifying the land use/cover types in Awka in relation to their temporal dynamics, the extent of land use change in the city and effects of land use change on surface temperature. Multitempora... This paper is aimed at identifying the land use/cover types in Awka in relation to their temporal dynamics, the extent of land use change in the city and effects of land use change on surface temperature. Multitemporal Landsat TM, ETM+ and OLI imageries were obtained at 15 years interval for 1986, 2000 and 2015 respectively. Image classification was conducted using supervised classification method. The result showed that built-up area has been on the increase, expanding from 9.55 sqkm in 1986 to 21.3 sqkm in 2000 and 21.45 sqkm in 2015. Cultivated lands have maintained a steady decline since 2000 having lost about 3.29 sqkm of its area. Similarly, vegetation, made up of dense, savanna and riparian, has been on a decline from a total of 33.69sqkm in 1986 to 21.407 sqkm losing about 12.29 sqkm of its area and increased by a mere 4.07 sqkm in 2015. These alterations had given rise to an average increase of 2.2&#176;C in surface radiant temperature. This study recommends that relevant government planning agencies (ACTDA, ASHDC, etc.) should factor in the concept of greening and green spaces into their development policies and strategies to ensure that fair, conducive microclimate and sustainable environment is maintained in the Awka urban area. 展开更多
关键词 landSAT land use/cover Supervised Classification MULTITEMPORAL land Surface Temperature
下载PDF
Land Use/Land Cover Changes from 1995 to 2017 in Trang Bang, Southern Vietnam
12
作者 Thi Bich Phuong Nguyen Xin Zhang +1 位作者 Wei Wu Hongbin Liu 《Agricultural Sciences》 2019年第3期413-422,共10页
Trang Bang is the largest agricultural production district of TayNinh province, Vietnam that has a great influence on the socio-economic development of the whole province. This study assessed land use - land cover cha... Trang Bang is the largest agricultural production district of TayNinh province, Vietnam that has a great influence on the socio-economic development of the whole province. This study assessed land use - land cover change in Trang Bang district from 1995 to 2017, the results provide scientific evidence for the safe and effective identification of causes and safeguards for mulch. The study was conducted by an expert classification system and the land use/land cover (LULC) was classified into 6 classes: food-crops, fruit-tree, water, built-up, industry and shrub. The result showed that the LULC there decreased between 1995 and 2017. All the two land cover types (food-crops, fruit-tree) decreased 141.2 km2 (41.4%) in 2017 compared with 1995, while the area of industrial and urban land (industry, built-up) increased 70.0 km2 (20.6%). The overall classification accuracies in 1995, 2007, and 2017 were 94.2%, 98.0%, and 96.3% respectively. The overall kappa coefficients for the image classification were 0.90, 0.97, and 0.94 in 1995, 2007, and 2017 respectively. In general, the average classification was above 90%, and this proved that the classification was reliable and acceptable. The result show that the LULC in the study area decreased during 1997-2017 and tended to decrease in recent years. 展开更多
关键词 SAI Gon River Dau Tieng DAM land use/land cover Trang Bang Classification Remote Sensing
下载PDF
Land Use/Land Cover Change Detection in Pokhara Metropolitan, Nepal Using Remote Sensing
13
作者 Sanjeev Kumar Raut Puran Chaudhary Laxmi Thapa 《Journal of Geoscience and Environment Protection》 2020年第8期25-35,共11页
Land use and land cover are essential for maintaining and managing the natural resources on the earth surface. A complex set of economic, demographic, social, cultural, technological, and environmental processes usual... Land use and land cover are essential for maintaining and managing the natural resources on the earth surface. A complex set of economic, demographic, social, cultural, technological, and environmental processes usually result in the change in the land use/land cover change (LULC). Pokhara Metropolitan is influenced mainly by the combination of various driving forces: geographical location, high rate of population growth, economic opportunity, globalization, tourism activities, and political activities. In addition to this, geographically steep slope, rugged terrain, and fragile geomorphic conditions and the frequency of earthquakes, floods, and landslides make the Pokhara Metropolitan region a disaster-prone area. The increment of the population along with infrastructure development of a given territory leads towards the urbanization. It has been rapidly changing due to urbanization, industrialization and internal migration since the 1970s. The landscapes and ground patterns are frequently changing on time and prone to disaster. Here a study has been carried to study on LULC for the last 18 years (2000-2018). The supervised classification on Landsat Imagery was performed and verified the classification through computing the error matrix. Besides, the water bodies and vegetation area were extracted through the Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDWI) respectively. This research shows that during the last 18 years the agricultural areas diminishing by 15.66% while urban area is increasing by 13.2%. This research is beneficial for preparing the plan and policy in the sustainable development of Pokhara Metropolitan. 展开更多
关键词 Error Matrix land use/land cover (LULC) Normalized Difference Vegeta-tion Index (NDVI) Normalized Difference Water Index (NDWI) Supervised Image Classification Remote Sensing Urban Growth
下载PDF
Comprehending drivers of land use land cover change from 1999 to 2021 in the Pithoragarh District,Kumaon Himalaya,Uttarakhand,India
14
作者 Mahika PHARTIYAL Sanjeev SHARMA 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2394-2407,共14页
The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial an... The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial and temporal patterns of landscape.These changes are the combined effects of anthropogenic and natural/climatic factors.The present study attempts to monitor and comprehend the main drivers behind LULC changes(1999-2021)in the Himalayan region of Pithoragarh district,Uttarakhand.Pithoragarh district is a border district,remotely located in the north-east region of Uttarakhand,India.The study draws upon primary and secondary data sources.A total of 400 household surveys and five group discussions from 38 villages were conducted randomly to understand the climate perception of the local community and the drivers of change.Satellite imagery,CRU(Climatic Research Unit)climate data and climate perception data from the field have been used to comprehensively comprehend,analyze,and discuss the trends and reasons for LULC change.GIS and remote sensing techniques were used to construct LULC maps.This multifaceted approach ensures comprehensive and corroborated information.Five classes were identified and formed viz-cultivation,barren,settlement,snow,and vegetation.Results show that vegetation and builtup have increased whereas cultivation,barren land,and snow cover have decreased.The study further aims to elucidate the causes behind LULC changes in the spatially heterogeneous region,distinguishing between those attributed to human activities,climate shifts,and the interconnected impacts of both.The study provides a comprehensive picture of the study area and delivers a targeted understanding of local drivers and their potential remedies by offering a foundation for formulating sustainable adaptation policies in the region. 展开更多
关键词 Himalayan region land use/land cover change Anthropogenic factors Climate change Socioecological system
下载PDF
Spatiotemporal characteristics and driving mechanisms of land use/land cover(LULC)changes in the Jinghe River Basin,China
15
作者 WANG Yinping JIANG Rengui +4 位作者 YANG Mingxiang XIE Jiancang ZHAO Yong LI Fawen LU Xixi 《Journal of Arid Land》 SCIE CSCD 2024年第1期91-109,共19页
Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and... Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and transfer rate of LULC in the Jinghe River Basin(JRB),China using LULC data from 2000 to 2020.Through trajectory analysis,knowledge maps,chord diagrams,and standard deviation ellipse method,we examined the spatiotemporal characteristics of LULC changes.We further established an index system encompassing natural factors(digital elevation model(DEM),slope,aspect,and curvature),socio-economic factors(gross domestic product(GDP)and population),and accessibility factors(distance from railways,distance from highways,distance from water,and distance from residents)to investigate the driving mechanisms of LULC changes using factor detector and interaction detector in the geographical detector(Geodetector).The key findings indicate that from 2000 to 2020,the JRB experienced significant LULC changes,particularly for farmland,forest,and grassland.During the study period,LULC change trajectories were categorized into stable,early-stage,late-stage,repeated,and continuous change types.Besides the stable change type,the late-stage change type predominated the LULC change trajectories,comprising 83.31% of the total change area.The period 2010-2020 witnessed more active LULC changes compared to the period 2000-2010.The LULC changes exhibited a discrete spatial expansion trend during 2000-2020,predominantly extending from southeast to northwest of the JRB.Influential driving factors on LULC changes included slope,GDP,and distance from highways.The interaction detection results imply either bilinear or nonlinear enhancement for any two driving factors impacting the LULC changes from 2000 to 2020.This comprehensive understanding of the spatiotemporal characteristics and driving mechanisms of LULC changes offers valuable insights for the planning and sustainable management of LULC in the JRB. 展开更多
关键词 land use/land cover(LULC)changes driving mechanisms trajectory analysis geographical detector(Geodetector) Grain for Green Project Jinghe River Basin
下载PDF
Land use and cover change and influencing factor analysis in the Shiyang River Basin,China
16
作者 ZHAO Yaxuan CAO Bo +4 位作者 SHA Linwei CHENG Jinquan ZHAO Xuanru GUAN Weijin PAN Baotian 《Journal of Arid Land》 SCIE CSCD 2024年第2期246-265,共20页
Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and ... Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas. 展开更多
关键词 land use and cover classification land use and cover change(LUCC) climate change random forest accuracy assessment three-dimensional sampling method Shiyang River Basin
下载PDF
Spatiotemporal dynamics of land use/land cover(LULC)changes and its impact on land surface temperature:A case study in New Town Kolkata,eastern India
17
作者 Bubun MAHATA Siba Sankar SAHU +2 位作者 Archishman SARDAR Laxmikanta RANA Mukul MAITY 《Regional Sustainability》 2024年第2期26-48,共23页
Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land ... Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land cover(LULC)changes on LST and determined the intensity of urban heat island(UHI)in New Town Kolkata(a smart city),eastern India,from 1991 to 2021 at 10-a intervals using various series of Landsat multi-spectral and thermal bands.This study used the maximum likelihood algorithm for image classification and other methods like the correlation analysis and hotspot analysis(Getis–Ord Gi^(*) method)to examine the impact of LULC changes on urban thermal environment.This study noticed that the area percentage of built-up land increased rapidly from 21.91%to 45.63%during 1991–2021,with a maximum positive change in built-up land and a maximum negative change in sparse vegetation.The mean temperature significantly increased during the study period(1991–2021),from 16.31℃to 22.48℃in winter,29.18℃to 34.61℃in summer,and 19.18℃to 27.11℃in autumn.The result showed that impervious surfaces contribute to higher LST,whereas vegetation helps decrease it.Poor ecological status has been found in built-up land,and excellent ecological status has been found in vegetation and water body.The hot spot and cold spot areas shifted their locations every decade due to random LULC changes.Even after New Town Kolkata became a smart city,high LST has been observed.Overall,this study indicated that urbanization and changes in LULC patterns can influence the urban thermal environment,and appropriate planning is needed to reduce LST.This study can help policy-makers create sustainable smart cities. 展开更多
关键词 Urbanization land use/land cover (LULC)changes land surface temperature Urban heat island Hotspot analysis Smart city
下载PDF
An Analysis of Land Use and Land Cover Changes, and Implications for Conservation in Mukumbura (Ward 2), Mt Darwin, Zimbabwe, 2002-2022
18
作者 Musekiwa Innocent Maruza Edson Gandiwa +3 位作者 Never Muboko Ishmael Sango Tawanda Tarakini Nobert Tafadzwa Mukomberanwa 《Open Journal of Ecology》 2024年第9期706-730,共25页
Understanding trends of land use land cover (LULC) changes is important for biodiversity monitoring and conservation planning, and identifying the areas affected by change and designing sustainable solutions to reduce... Understanding trends of land use land cover (LULC) changes is important for biodiversity monitoring and conservation planning, and identifying the areas affected by change and designing sustainable solutions to reduce the changes. The study aims to evaluate and quantify the historical changes in land use and land cover in Mukumbura (Ward 2), Mt Darwin, Zimbabwe, from 2002 to 2022. The objective of the study was to analyse the LULC changes in Ward 2 (Mukumbura), Mt Darwin, Northern Zimbabwe, for a period of 20 years using geospatial techniques. Landsat satellite images were processed using Google Earth Engine (GEE) and the supervised classification with maximum likelihood algorithm was employed to generate LULC maps between 2002 and 2022 with a five (5) year interval, investigating the following variables, forest cover, barren land, water cover and the fields. Findings revealed a substantial reduction in forest cover by 38.8%, water bodies (wetlands, ponds, and rivers) declined by 55.6%, whilst fields (crop/agricultural fields) increased by 93.3% and the barren land cover increased by 26.3% from 2002 to 2022. These findings point to substantial changes in LULC over the observed years. LULC changes have resulted in habitat fragmentation, reduced biodiversity, and the disruption of ecosystem functions. The study concludes that if these deforestation trends, cultivation, and settlement land expansion continue, the ward will have limited indigenous fruit trees. Therefore, the causes for LULC changes must be controlled, sustainable forest resources use practiced, hence the need to domesticate the indigenous fruit trees in arborloo toilets. 展开更多
关键词 Anthropogenic Activities DEFORESTATION Geospatial Analysis land use/land cover Supervised Classification
下载PDF
Trends of Land Use and Land Cover Change in the Savannah Ecological of the Protected Area Reserve Partielle de Dosso, Niger
19
作者 Amadou Issoufou Abdourhimou Moussa Boubacar +2 位作者 Habou Rabiou Soumana Idrissa Mahamane Ali 《Natural Resources》 2024年第3期61-68,共8页
Information on the dynamics of savannah is important to a country's plan to overcome the problems of uncontrolled development and environmental hazards. Taking the reserve partielle de Dosso, Niger as the case stu... Information on the dynamics of savannah is important to a country's plan to overcome the problems of uncontrolled development and environmental hazards. Taking the reserve partielle de Dosso, Niger as the case study area, this paper analyzed the long-term land use land cover change from 2002 to 2022. Satellite images were processed by using Google Earth Engine (GEE). Therefore, four major land cover classes were identified based on spectral characteristics of Land sat, namely, built-up, vegetation, cropland, bare land and water. The result revealed that barren and built-up areas increased at the expense of vegetation and water. From the four major land use land cover the large area is covered by vegetation which comprises about 192963.5 hectares followed by cropland and water consisting of 32506.43 and 1596.4 hectares respectively. The built-up area gained substantial area (most) during the study period. The reduction in some of the land cover/uses underlines the dangerous trend of the pressure poised by population growth and the changing functionality. Land cover change is influenced by a variety of societal factors operating on several spatial and temporal levels. The area estimates and spatial distributions of the LULC classes produced from the current study will assist local authorities, managers, and other stakeholders in decision-making and planning regarding forest land cover and uses. 展开更多
关键词 land use/cover change Detection CLASSIFICATION Dosso
下载PDF
Historical Changes and Multi-scenario Prediction of Land Use and Terrestrial Ecosystem Carbon Storage in China
20
作者 AN Yue TAN Xuelan +2 位作者 REN Hui LI Yinqi ZHOU Zhou 《Chinese Geographical Science》 SCIE CSCD 2024年第3期487-503,共17页
Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-R... Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-RCPs)published by the Intergovernmental Panel on Climate Change(IPCC)and incorporates the Policy Control Scenario(PCS)regulated by China’s land management policies.The Future Land Use Simulation(FLUS)model is employed to generate a 1 km resolution land use/cover change(LUCC)dataset for China in 2030 and 2060.Based on the carbon density dataset of China’s terrestrial ecosystems,the study analyses CS changes and their relationship with land use changes spanning from 1990 to 2060.The findings indicate that the quantitative changes in land use in China from 1990 to 2020 are characterised by a reduction in the area proportion of cropland and grassland,along with an increase in the impervious surface and forest area.This changing trend is projected to continue under the PCS from 2020 to 2060.Under the SSPs-RCPs scenario,the proportion of cropland and impervious surface predominantly increases,while the proportions of forest and grassland continuously decrease.Carbon loss in China’s carbon storage from 1990 to 2020 amounted to 0.53×10^(12)kg,primarily due to the reduced area of cropland and grassland.In the SSPs-RCPs scenario,more significant carbon loss occurs,reaching a peak of8.07×10^(12)kg in the SSP4-RCP3.4 scenario.Carbon loss is mainly concentrated in the southeastern coastal area and the Beijing-TianjinHebei(BTH)region of China,with urbanisation and deforestation identified as the primary drivers.In the future,it is advisable to enhance the protection of forests and grassland while stabilising cropland areas and improving the intensity of urban land.These research findings offer valuable data support for China’s land management policy,land space optimisation,and the achievement of dual-carbon targets. 展开更多
关键词 land use change Future land use Simulation(FLUS)model carbon storage carbon density dataset land use scenario China
下载PDF
上一页 1 2 119 下一页 到第
使用帮助 返回顶部