Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(ex...Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong,Macao,Taiwan,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.展开更多
After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical ...After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical models for the plume-surface interaction(PSI)and the crater formation based on Computational Fluid Dynamics(CFD)methods and the erosion model modified from Roberts’Theory.Comparative studies of cases were conducted with different nozzle heights and soil mechanical properties.The increase in cohesion and internal friction angle leads to a decrease in erosion rate and maximum crater depth,with the cohesion having a greater impact.The influence of the nozzle height is not clear,as it interacts with the position of the Shock Diamond to jointly control the erosion process.Furthermore,we categorized the evolution of landing craters into the dispersive and the concentrated erosion modes based on the morphological characteristics.Finally,we estimated the upper limits of the Martian soil’s mechanical properties near Tianwen-1 landing site,with the cohesion ranging from 2612 to 2042 Pa and internal friction angle from 25°to 41°.展开更多
Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect o...Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils.展开更多
Improving cultivated land use eco-efficiency(CLUE)can effectively promote agricultural sustainability,particularly in developing countries where CLUE is generally low.This study used provincial-level data from China t...Improving cultivated land use eco-efficiency(CLUE)can effectively promote agricultural sustainability,particularly in developing countries where CLUE is generally low.This study used provincial-level data from China to evaluate the spatiotemporal evolution of CLUE from 2000 to 2020 and identified the influencing factors of CLUE by using a panel Tobit model.In addition,given the undesirable outputs of agricultural production,we incorporated carbon emissions and nonpoint source pollution into the global benchmark-undesirable output-super efficiency-slacks-based measure(GB-US-SBM)model,which combines global benchmark technology,undesirable output,super efficiency,and slacks-based measure.The results indicated that there was an upward trend in CLUE in China from 2000 to 2020,with an increase rate of 2.62%.The temporal evolution of CLUE in China could be classified into three distinct stages:a period of fluctuating decrease(2000-2007),a phase of gradual increase(2008-2014),and a period of rapid growth(2015-2020).The major grain-producing areas(MPAs)had a lower CLUE than their counterparts,namely,non-major grain-production areas(non-MPAs).The spatial agglomeration effect followed a northeast-southwest strip distribution;and the movement path of barycentre revealed a"P"shape,with Luoyang City,Henan Province,as the centre.In terms of influencing factors of CLUE,investment in science and technology played the most vital role in improving CLUE,while irrigation index had the most negative effect.It should be noted that these two influencing factors had different impacts on MPAs and non-MPAs.Therefore,relevant departments should formulate policies to enhance the level of science and technology,improve irrigation condition,and promote sustainable utilization of cultivated land.展开更多
利用全国40个地面台站的观测资料对ERA5及ERA5-Land两种不同空间分辨率的再分析资料开展了地面风速误差评估研究,结果表明:ERA5和ERA5-Land资料多年平均风速偏差的平均值分别为0.08 m s^(−1)、-0.06 m s^(−1),偏差的最大值分别为0.46 m ...利用全国40个地面台站的观测资料对ERA5及ERA5-Land两种不同空间分辨率的再分析资料开展了地面风速误差评估研究,结果表明:ERA5和ERA5-Land资料多年平均风速偏差的平均值分别为0.08 m s^(−1)、-0.06 m s^(−1),偏差的最大值分别为0.46 m s^(−1)、-0.19 m s^(−1),相对偏差的平均值为4.4%、-2.0%,相对偏差的最大值分别为33.0%、-10.1%;月平均风速线性拟合方程的斜率分别为0.93、0.97,截距分别为0.29 m s^(−1)、0.02 m s^(−1),相关系数分别为0.98、0.99;月平均风速均方根误差的平均值分别为0.17 m s^(−1)、0.14 m s^(−1),均方根误差的最大值分别为0.49 m s^(−1)、0.22 m s^(−1),相对均方根误差的平均值为7.4%、5.7%,相对均方根误差的最大值分别为35.2%、13.3%。ERA5-Land高分辨率资料地面风速误差相对较低,有利于提高风能资源评估的准确性。展开更多
Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise ...Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise of land surface temperature(LST),which consequently have caused a variety of environmental issues and threated the sustainable development of urban areas.Greenbelts are employed as an urban planning containment policy to regulate urban expansion,safeguard natural open spaces,and serve adaptation and mitigation functions.And they are regarded as a powerful measure for enhancing urban environmental sustainability.Despite the fact that,the relation between landscape structure change and variation of LST has been examined thoroughly in many studies,but there is a limitation concerning this relation in semi-arid climate and in greenbelts as well,with the lacking of comprehensive research combing both aspects.Accordingly,this study investigated the spatiotemporal changes of landscape pattern of LULC and their relationship with variation of LST within an inner greenbelt in the semi-arid Erbil City of northern Iraq.The study utilized remote sensing data to retrieve LST,classified LULC,and calculated landscape metrics for analyzing spatial changes during the study period.The results indicated that both composition and configuration of LULC had an impact on the variation of LST in the study area.The Pearson's correlation showed the significant effect of Vegetation 1 type(VH),cultivated land(CU),and bare soil(BS)on LST,as increase of LST was related to the decrease of VH and the increases of CU and BS,while,neither Vegetation 2 type(VL)nor built-up(BU)had any effects.Additionally,the spatial distribution of LULC also exhibited significant effects on LST,as LST was strongly correlated with landscape indices for VH,CU,and BS.However,for BU,only aggregation index metric affected LST,while none of VL metrics had a relation.The study provides insights for landscape planners and policymakers to not only develop more green spaces in greenbelt but also optimize the spatial landscape patterns to reduce the influence of LST on the urban environment,and further promote sustainable development and enhance well-being in the cities with semi-arid climate.展开更多
Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-R...Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-RCPs)published by the Intergovernmental Panel on Climate Change(IPCC)and incorporates the Policy Control Scenario(PCS)regulated by China’s land management policies.The Future Land Use Simulation(FLUS)model is employed to generate a 1 km resolution land use/cover change(LUCC)dataset for China in 2030 and 2060.Based on the carbon density dataset of China’s terrestrial ecosystems,the study analyses CS changes and their relationship with land use changes spanning from 1990 to 2060.The findings indicate that the quantitative changes in land use in China from 1990 to 2020 are characterised by a reduction in the area proportion of cropland and grassland,along with an increase in the impervious surface and forest area.This changing trend is projected to continue under the PCS from 2020 to 2060.Under the SSPs-RCPs scenario,the proportion of cropland and impervious surface predominantly increases,while the proportions of forest and grassland continuously decrease.Carbon loss in China’s carbon storage from 1990 to 2020 amounted to 0.53×10^(12)kg,primarily due to the reduced area of cropland and grassland.In the SSPs-RCPs scenario,more significant carbon loss occurs,reaching a peak of8.07×10^(12)kg in the SSP4-RCP3.4 scenario.Carbon loss is mainly concentrated in the southeastern coastal area and the Beijing-TianjinHebei(BTH)region of China,with urbanisation and deforestation identified as the primary drivers.In the future,it is advisable to enhance the protection of forests and grassland while stabilising cropland areas and improving the intensity of urban land.These research findings offer valuable data support for China’s land management policy,land space optimisation,and the achievement of dual-carbon targets.展开更多
Land use and cover change(LUCC)is important for the provision of ecosystem services.An increasing number of recent studies link LUCC processes to ecosystem services and human well-being at different scales recently.Ho...Land use and cover change(LUCC)is important for the provision of ecosystem services.An increasing number of recent studies link LUCC processes to ecosystem services and human well-being at different scales recently.However,the dynamic of land use and its drivers receive insufficient attention within ecological function areas,particularly in quantifying the dynamic roles of climate change and human activities on land use based on a long time series.This study utilizes geospatial analysis and geographical detectors to examine the temporal dynamics of land use patterns and their underlying drivers in the Hedong Region of the Gansu Province from 1990 to 2020.Results indicated that grassland,cropland,and forestland collectively accounted for approximately 99% of the total land area.Cropland initially increased and then decreased after 2000,while grassland decreased with fluctuations.In contrast,forestland and construction land were continuously expanded,with net growth areas of 6235.2 and 455.9 km^(2),respectively.From 1990 to 2020,cropland was converted to grassland,and both of them were converted to forestland as a whole.The expansion of construction land primarily originated from cropland.From 2000 to 2005,land use experienced intensified temporal dynamics and a shift of relatively active zones from the central to the southeastern region.Grain yield,economic factors,and precipitation were the major factors accounting for most land use changes.Climatic impacts on land use changes were stronger before 1995,succeeded by the impact of animal husbandry during 1995-2000,followed by the impacts of grain production and gross domestic product(GDP)after 2000.Moreover,agricultural and pastoral activities,coupled with climate change,exhibited stronger enhancement effects after 2000 through their interaction with population and economic factors.These patterns closely correlated with ecological restoration projects in China since 1999.This study implies the importance of synergy between human activity and climate change for optimizing land use via ecological patterns in the ecological function area.展开更多
Sustainable intensification of cultivated land use(SICLU) and large-scale operations(LSO) are widely acknowledged strategies for enhancing agricultural performance.However,the existing literature has faced challenges ...Sustainable intensification of cultivated land use(SICLU) and large-scale operations(LSO) are widely acknowledged strategies for enhancing agricultural performance.However,the existing literature has faced challenges in precisely defining SICLU and constructing comprehensive indicators,which has hindered the exploration of factors influencing LSO within the SICLU framework.To address this gap,we integrated self-efficacy theory into the design of an index framework for evaluating SICLU.We subsequently employed econometric models to analyze the significant factors that impact LSO.Our findings reveal that SICLU can be divided into four key dimensions:intensive management,efficient output,resource conservation,and ecological environment optimization.Furthermore,it is crucial to incorporate belief-based cognitive factors into the index system,as farmers’ understanding of fertilizer and pesticide application significantly influences their willingness to engage in LSO.Moreover,we identify grain market turnover as the most influential factor in promoting LSO,with single-factor contribution rates reaching 70.9% for cultivated land transfer willingness and 62.5% for the total planting areas.Interestingly,unlike irrigation and agricultural machinery inputs,increased labor inputs correspond to larger planting areas for farmers.This trend may be attributed to reduced labor availability because of rural labor migration,whereas the reduction in irrigation and agricultural input is contingent on innovations in production practices and the transfer of cultivated land management rights.Importantly,SICLU dynamically influences LSO,with each index related to SICLU having an optimal range that fosters LSO.These insights offer valuable guidance for policymakers,emphasizing farmers as their central focus,with the adjustment of input and output factors as a means to achieve LSO as the ultimate goal.In conclusion,we propose research avenues for further enriching the SICLU framework to ensure that it aligns with the specific characteristics of regional agricultural development.展开更多
The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holisti...The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover(LULC)to foster sustainable planning that is tailored to the region's unique resource endowments.However,existing LULC classification methods demonstrate inadequate accuracy,hindering effective regional planning.In this study,we established a two-level LULC classification system(8 primary types and 22 secondary types)for the Tuha Basin.By employing Landsat 5/7/8 imagery at 5-a intervals,we developed the LULC dataset of the Tuha Basin from 1990 to 2020,conducted the accuracy assessment and spatiotemporal evolution analysis,and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation(Markov-FLUS)model.The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types,respectively.Compared with the seven mainstream LULC products(GlobeLand30,Global 30-meter Land Cover with Fine Classification System(GLC_FCS30),Finer Resolution Observation and Monitoring of Global Land Cover PLUS(FROM_GLC PLUS),ESA Global Land Cover(ESA_LC),Esri Land Cover(ESRI_LC),China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset(CNLUCC),and China Annual Land Cover Dataset(CLCD))in 2020,our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features,thereby yielding high-quality data backups for land resource analyses within the basin.In 2020,unused land(78.0%of the study area)and grassland(18.6%)were the dominant LULC types of the basin;although cropland and construction land constituted less than 1.0%of the total area,they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami.Between 1990 and 2020,cropland and construction land exhibited a rapid expansion,and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond.In future scenario simulations,significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario,whereas the wetland area will decrease,suggesting the need for ecological attention under this development pathway.In contrast,the economic development scenario underscores the fast-paced expansion of construction land,primarily from the conversion of unused land,highlighting the significant developmental potential of unused land with a slowing increase in cropland.Special attention should thus be directed toward ecological and cropland protection during development.This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.展开更多
The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial an...The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial and temporal patterns of landscape.These changes are the combined effects of anthropogenic and natural/climatic factors.The present study attempts to monitor and comprehend the main drivers behind LULC changes(1999-2021)in the Himalayan region of Pithoragarh district,Uttarakhand.Pithoragarh district is a border district,remotely located in the north-east region of Uttarakhand,India.The study draws upon primary and secondary data sources.A total of 400 household surveys and five group discussions from 38 villages were conducted randomly to understand the climate perception of the local community and the drivers of change.Satellite imagery,CRU(Climatic Research Unit)climate data and climate perception data from the field have been used to comprehensively comprehend,analyze,and discuss the trends and reasons for LULC change.GIS and remote sensing techniques were used to construct LULC maps.This multifaceted approach ensures comprehensive and corroborated information.Five classes were identified and formed viz-cultivation,barren,settlement,snow,and vegetation.Results show that vegetation and builtup have increased whereas cultivation,barren land,and snow cover have decreased.The study further aims to elucidate the causes behind LULC changes in the spatially heterogeneous region,distinguishing between those attributed to human activities,climate shifts,and the interconnected impacts of both.The study provides a comprehensive picture of the study area and delivers a targeted understanding of local drivers and their potential remedies by offering a foundation for formulating sustainable adaptation policies in the region.展开更多
Coastal land transformation has been identified as a topic of research in many countries around the world.Several studies have been conducted to determine the causes and impacts of land transformation.However,much les...Coastal land transformation has been identified as a topic of research in many countries around the world.Several studies have been conducted to determine the causes and impacts of land transformation.However,much less is understood about coupling change detection,factors,impacts,and adaptation strategies for coastal land transformation at a global scale.This review aims to present a systematic review of global coastal land transformation and its leading research areas.From 1,741 documents of Scopus and Web of Science,60 studies have been selected using the PRISMA-2020 guideline.Results revealed that existing literature included four leading focus areas regarding coastal land transformation:change detection,driving factors,impacts,and adaptation measures.These focus areas were further analyzed,and it was found that more than 80%of studies used Landsat imagery to detect land transformation.Population growth and urbanization were among the major driving factors identified.This review further identified that about 37%of studies included impact analysis.These studies identified impacts on ecosystems,land surface temperature,migration,water quality,and occupational effects as significant impacts.However,only four studies included adaptation strategies.This review explored the scope of comprehensive research in coastal land transformation,addressing change detection,factor and impact analysis,and mitigation-adaptation strategies.The research also proposes a conceptual framework for comprehensive coastal land transformation analysis.The framework can provide potential decision-making guidance for future studies in coastal land transformation.展开更多
Land use/land cover represents the interactive and comprehensive influences between human activities and natural conditions,leading to potential conflicts among natural and human-related issues as well as among stakeh...Land use/land cover represents the interactive and comprehensive influences between human activities and natural conditions,leading to potential conflicts among natural and human-related issues as well as among stakeholders.This study introduced economic standards for farmers.A hybrid approach(CA-ABM)of cellular automaton(CA)and an agent-based model(ABM)was developed to effectively deal with social and land-use synergic issues to examine human–environment interactions and projections of land-use conversions for a humid basin in south China.Natural attributes and socioeconomic data were used to analyze land use/land cover and its drivers of change.The major modules of the CA-ABM are initialization,migration,assets,land suitability,and land-use change decisions.Empirical estimates of the factors influencing the urban land-use conversion probability were captured using parameters based on a spatial logistic regression(SLR)model.Simultaneously,multicriteria evaluation(MCE)and Markov models were introduced to obtain empirical estimates of the factors affecting the probability of ecological land conversion.An agent-based CA-SLR-MCE-Markov(ABCSMM)land-use conversion model was proposed to explore the impacts of policies on land-use conversion.This model can reproduce observed land-use patterns and provide links for forest transition and urban expansion to land-use decisions and ecosystem services.The results demonstrated land-use simulations under multi-policy scenarios,revealing the usefulness of the model for normative research on land-use management.展开更多
Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and ...Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.展开更多
With economic development and urbanization in China,the rural settlements have experienced great change.To explore the evolution process of rural settlements in terms of land,population and industry can reveal the dev...With economic development and urbanization in China,the rural settlements have experienced great change.To explore the evolution process of rural settlements in terms of land,population and industry can reveal the development law of rural spatial distribution,population structure and industrial economy in different stages and regions.Studying the development status and evolution characteristics of villages in the upper Tuojiang River basin in Southwest China in the past 20 years are of significant value.The upper Tuojiang River basin includes the main types of terrain found in the Southwest region:mountainous,plains,and hills,exhibiting a certain typicality of geographical characteristics.This study took towns and townships at the town-level scale as the basic unit of research,and constructed an evaluation system for village evolution based on'land,population,and industry'.It employed Criteria Importance Through Inter-Criteria Correlation(CRITIC)analysis to examine the characteristics of village evolution in the area from 2000 to 2020,and used geographic detector analysis to identify the leading factors affecting village evolution.The results show that:(1)From 2000 to 2010,villages in the upper Tuojiang River basin experienced significant changes,and the pace of these transformations slowed from 2010 to 2020.(2)From a comprehensive perspective,from 2000 to 2020,villages in hilly areas show a decline,while villages in plain areas near the city center show a positive urbanization development.(3)Road accessibility and distance from the city center are the main factors that explain the spatial differentiation of village evolution degree in the study area.This study elucidates the spatiotemporal evolution characteristics of villages in the upper Tuojiang River basin and identifies the primary factors contributing to their changes,which will provide a reference for investigating the development of rural areas in different terrains of Southwest China.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.42071222,41771194)。
文摘Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong,Macao,Taiwan,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.
基金supported by the Key Research Program of the Institute of Geology and Geophysics,CAS(Nos.IGGCAS-202102 and IGGCAS-201904)the National Natural Science Foundation of China(No.42230111)the CAS Key Technology Talent Program。
文摘After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical models for the plume-surface interaction(PSI)and the crater formation based on Computational Fluid Dynamics(CFD)methods and the erosion model modified from Roberts’Theory.Comparative studies of cases were conducted with different nozzle heights and soil mechanical properties.The increase in cohesion and internal friction angle leads to a decrease in erosion rate and maximum crater depth,with the cohesion having a greater impact.The influence of the nozzle height is not clear,as it interacts with the position of the Shock Diamond to jointly control the erosion process.Furthermore,we categorized the evolution of landing craters into the dispersive and the concentrated erosion modes based on the morphological characteristics.Finally,we estimated the upper limits of the Martian soil’s mechanical properties near Tianwen-1 landing site,with the cohesion ranging from 2612 to 2042 Pa and internal friction angle from 25°to 41°.
基金sponsored by the National Key Research and Development Program of China(Grant No.2020YFC1808102).
文摘Aquifer thermal energy storage(ATES)system has received attention for heating or cooling buildings.However,it is well known that land subsidence becomes a major environmental concern for ATES projects.Yet,the effect of temperature on land subsidence has received practically no attention in the past.This paper presents a thermo-hydro-mechanical(THM)coupled numerical study on an ATES system in Shanghai,China.Four water wells were installed for seasonal heating and cooling of an agriculture greenhouse.The target aquifer at a depth of 74e104.5 m consisted of alternating layers of sand and silty sand and was covered with clay.Groundwater level,temperature,and land subsidence data from 2015 to 2017 were collected using field monitoring instruments.Constrained by data,we constructed a field scale three-dimensional(3D)model using TOUGH(Transport of Unsaturated Groundwater and Heat)and FLAC3D(Fast Lagrangian Analysis of Continua)equipped with a thermo-elastoplastic constitutive model.The effectiveness of the numerical model was validated by field data.The model was used to reproduce groundwater flow,heat transfer,and mechanical responses in porous media over three years and capture the thermo-and pressure-induced land subsidence.The results show that the maximum thermoinduced land subsidence accounts for about 60%of the total subsidence.The thermo-induced subsidence is slightly greater in winter than that in summer,and more pronounced near the cold well area than the hot well area.This study provides some valuable guidelines for controlling land subsidence caused by ATES systems installed in soft soils.
基金supported by the National Natural Science Foundation of China(72373117)the Chinese Universities Scientific Fund(Z1010422003)+1 种基金the Major Project of the Key Research Base of Humanities and Social Sciences of the Ministry of Education(22JJD790052)the Qinchuangyuan Project of Shaanxi Province(QCYRCXM-2022-145).
文摘Improving cultivated land use eco-efficiency(CLUE)can effectively promote agricultural sustainability,particularly in developing countries where CLUE is generally low.This study used provincial-level data from China to evaluate the spatiotemporal evolution of CLUE from 2000 to 2020 and identified the influencing factors of CLUE by using a panel Tobit model.In addition,given the undesirable outputs of agricultural production,we incorporated carbon emissions and nonpoint source pollution into the global benchmark-undesirable output-super efficiency-slacks-based measure(GB-US-SBM)model,which combines global benchmark technology,undesirable output,super efficiency,and slacks-based measure.The results indicated that there was an upward trend in CLUE in China from 2000 to 2020,with an increase rate of 2.62%.The temporal evolution of CLUE in China could be classified into three distinct stages:a period of fluctuating decrease(2000-2007),a phase of gradual increase(2008-2014),and a period of rapid growth(2015-2020).The major grain-producing areas(MPAs)had a lower CLUE than their counterparts,namely,non-major grain-production areas(non-MPAs).The spatial agglomeration effect followed a northeast-southwest strip distribution;and the movement path of barycentre revealed a"P"shape,with Luoyang City,Henan Province,as the centre.In terms of influencing factors of CLUE,investment in science and technology played the most vital role in improving CLUE,while irrigation index had the most negative effect.It should be noted that these two influencing factors had different impacts on MPAs and non-MPAs.Therefore,relevant departments should formulate policies to enhance the level of science and technology,improve irrigation condition,and promote sustainable utilization of cultivated land.
文摘利用全国40个地面台站的观测资料对ERA5及ERA5-Land两种不同空间分辨率的再分析资料开展了地面风速误差评估研究,结果表明:ERA5和ERA5-Land资料多年平均风速偏差的平均值分别为0.08 m s^(−1)、-0.06 m s^(−1),偏差的最大值分别为0.46 m s^(−1)、-0.19 m s^(−1),相对偏差的平均值为4.4%、-2.0%,相对偏差的最大值分别为33.0%、-10.1%;月平均风速线性拟合方程的斜率分别为0.93、0.97,截距分别为0.29 m s^(−1)、0.02 m s^(−1),相关系数分别为0.98、0.99;月平均风速均方根误差的平均值分别为0.17 m s^(−1)、0.14 m s^(−1),均方根误差的最大值分别为0.49 m s^(−1)、0.22 m s^(−1),相对均方根误差的平均值为7.4%、5.7%,相对均方根误差的最大值分别为35.2%、13.3%。ERA5-Land高分辨率资料地面风速误差相对较低,有利于提高风能资源评估的准确性。
文摘Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise of land surface temperature(LST),which consequently have caused a variety of environmental issues and threated the sustainable development of urban areas.Greenbelts are employed as an urban planning containment policy to regulate urban expansion,safeguard natural open spaces,and serve adaptation and mitigation functions.And they are regarded as a powerful measure for enhancing urban environmental sustainability.Despite the fact that,the relation between landscape structure change and variation of LST has been examined thoroughly in many studies,but there is a limitation concerning this relation in semi-arid climate and in greenbelts as well,with the lacking of comprehensive research combing both aspects.Accordingly,this study investigated the spatiotemporal changes of landscape pattern of LULC and their relationship with variation of LST within an inner greenbelt in the semi-arid Erbil City of northern Iraq.The study utilized remote sensing data to retrieve LST,classified LULC,and calculated landscape metrics for analyzing spatial changes during the study period.The results indicated that both composition and configuration of LULC had an impact on the variation of LST in the study area.The Pearson's correlation showed the significant effect of Vegetation 1 type(VH),cultivated land(CU),and bare soil(BS)on LST,as increase of LST was related to the decrease of VH and the increases of CU and BS,while,neither Vegetation 2 type(VL)nor built-up(BU)had any effects.Additionally,the spatial distribution of LULC also exhibited significant effects on LST,as LST was strongly correlated with landscape indices for VH,CU,and BS.However,for BU,only aggregation index metric affected LST,while none of VL metrics had a relation.The study provides insights for landscape planners and policymakers to not only develop more green spaces in greenbelt but also optimize the spatial landscape patterns to reduce the influence of LST on the urban environment,and further promote sustainable development and enhance well-being in the cities with semi-arid climate.
基金Under the auspices of the National Natural Science Foundation of China(No.41971219,41571168)Natural Science Foundation of Hunan Province(No.2020JJ4372)Philosophy and Social Science Fund Project of Hunan Province(No.18ZDB015)。
文摘Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-RCPs)published by the Intergovernmental Panel on Climate Change(IPCC)and incorporates the Policy Control Scenario(PCS)regulated by China’s land management policies.The Future Land Use Simulation(FLUS)model is employed to generate a 1 km resolution land use/cover change(LUCC)dataset for China in 2030 and 2060.Based on the carbon density dataset of China’s terrestrial ecosystems,the study analyses CS changes and their relationship with land use changes spanning from 1990 to 2060.The findings indicate that the quantitative changes in land use in China from 1990 to 2020 are characterised by a reduction in the area proportion of cropland and grassland,along with an increase in the impervious surface and forest area.This changing trend is projected to continue under the PCS from 2020 to 2060.Under the SSPs-RCPs scenario,the proportion of cropland and impervious surface predominantly increases,while the proportions of forest and grassland continuously decrease.Carbon loss in China’s carbon storage from 1990 to 2020 amounted to 0.53×10^(12)kg,primarily due to the reduced area of cropland and grassland.In the SSPs-RCPs scenario,more significant carbon loss occurs,reaching a peak of8.07×10^(12)kg in the SSP4-RCP3.4 scenario.Carbon loss is mainly concentrated in the southeastern coastal area and the Beijing-TianjinHebei(BTH)region of China,with urbanisation and deforestation identified as the primary drivers.In the future,it is advisable to enhance the protection of forests and grassland while stabilising cropland areas and improving the intensity of urban land.These research findings offer valuable data support for China’s land management policy,land space optimisation,and the achievement of dual-carbon targets.
基金funded by the National Natural Science Foundation of China(U20A2098,41701219)the National Key Research and Development Program of China(2019YFC0507801)。
文摘Land use and cover change(LUCC)is important for the provision of ecosystem services.An increasing number of recent studies link LUCC processes to ecosystem services and human well-being at different scales recently.However,the dynamic of land use and its drivers receive insufficient attention within ecological function areas,particularly in quantifying the dynamic roles of climate change and human activities on land use based on a long time series.This study utilizes geospatial analysis and geographical detectors to examine the temporal dynamics of land use patterns and their underlying drivers in the Hedong Region of the Gansu Province from 1990 to 2020.Results indicated that grassland,cropland,and forestland collectively accounted for approximately 99% of the total land area.Cropland initially increased and then decreased after 2000,while grassland decreased with fluctuations.In contrast,forestland and construction land were continuously expanded,with net growth areas of 6235.2 and 455.9 km^(2),respectively.From 1990 to 2020,cropland was converted to grassland,and both of them were converted to forestland as a whole.The expansion of construction land primarily originated from cropland.From 2000 to 2005,land use experienced intensified temporal dynamics and a shift of relatively active zones from the central to the southeastern region.Grain yield,economic factors,and precipitation were the major factors accounting for most land use changes.Climatic impacts on land use changes were stronger before 1995,succeeded by the impact of animal husbandry during 1995-2000,followed by the impacts of grain production and gross domestic product(GDP)after 2000.Moreover,agricultural and pastoral activities,coupled with climate change,exhibited stronger enhancement effects after 2000 through their interaction with population and economic factors.These patterns closely correlated with ecological restoration projects in China since 1999.This study implies the importance of synergy between human activity and climate change for optimizing land use via ecological patterns in the ecological function area.
基金Under the auspices of National Natural Science Foundation of China(No.42071226,41671176)Taishan Scholars Youth Expert Support Plan of Shandong Province(No.TSQN202306183)。
文摘Sustainable intensification of cultivated land use(SICLU) and large-scale operations(LSO) are widely acknowledged strategies for enhancing agricultural performance.However,the existing literature has faced challenges in precisely defining SICLU and constructing comprehensive indicators,which has hindered the exploration of factors influencing LSO within the SICLU framework.To address this gap,we integrated self-efficacy theory into the design of an index framework for evaluating SICLU.We subsequently employed econometric models to analyze the significant factors that impact LSO.Our findings reveal that SICLU can be divided into four key dimensions:intensive management,efficient output,resource conservation,and ecological environment optimization.Furthermore,it is crucial to incorporate belief-based cognitive factors into the index system,as farmers’ understanding of fertilizer and pesticide application significantly influences their willingness to engage in LSO.Moreover,we identify grain market turnover as the most influential factor in promoting LSO,with single-factor contribution rates reaching 70.9% for cultivated land transfer willingness and 62.5% for the total planting areas.Interestingly,unlike irrigation and agricultural machinery inputs,increased labor inputs correspond to larger planting areas for farmers.This trend may be attributed to reduced labor availability because of rural labor migration,whereas the reduction in irrigation and agricultural input is contingent on innovations in production practices and the transfer of cultivated land management rights.Importantly,SICLU dynamically influences LSO,with each index related to SICLU having an optimal range that fosters LSO.These insights offer valuable guidance for policymakers,emphasizing farmers as their central focus,with the adjustment of input and output factors as a means to achieve LSO as the ultimate goal.In conclusion,we propose research avenues for further enriching the SICLU framework to ensure that it aligns with the specific characteristics of regional agricultural development.
基金supported by the Third Xinjiang Scientific Expedition Program (2022xjkk1100)the Tianchi Talent Project
文摘The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover(LULC)to foster sustainable planning that is tailored to the region's unique resource endowments.However,existing LULC classification methods demonstrate inadequate accuracy,hindering effective regional planning.In this study,we established a two-level LULC classification system(8 primary types and 22 secondary types)for the Tuha Basin.By employing Landsat 5/7/8 imagery at 5-a intervals,we developed the LULC dataset of the Tuha Basin from 1990 to 2020,conducted the accuracy assessment and spatiotemporal evolution analysis,and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation(Markov-FLUS)model.The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types,respectively.Compared with the seven mainstream LULC products(GlobeLand30,Global 30-meter Land Cover with Fine Classification System(GLC_FCS30),Finer Resolution Observation and Monitoring of Global Land Cover PLUS(FROM_GLC PLUS),ESA Global Land Cover(ESA_LC),Esri Land Cover(ESRI_LC),China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset(CNLUCC),and China Annual Land Cover Dataset(CLCD))in 2020,our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features,thereby yielding high-quality data backups for land resource analyses within the basin.In 2020,unused land(78.0%of the study area)and grassland(18.6%)were the dominant LULC types of the basin;although cropland and construction land constituted less than 1.0%of the total area,they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami.Between 1990 and 2020,cropland and construction land exhibited a rapid expansion,and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond.In future scenario simulations,significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario,whereas the wetland area will decrease,suggesting the need for ecological attention under this development pathway.In contrast,the economic development scenario underscores the fast-paced expansion of construction land,primarily from the conversion of unused land,highlighting the significant developmental potential of unused land with a slowing increase in cropland.Special attention should thus be directed toward ecological and cropland protection during development.This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.
文摘The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial and temporal patterns of landscape.These changes are the combined effects of anthropogenic and natural/climatic factors.The present study attempts to monitor and comprehend the main drivers behind LULC changes(1999-2021)in the Himalayan region of Pithoragarh district,Uttarakhand.Pithoragarh district is a border district,remotely located in the north-east region of Uttarakhand,India.The study draws upon primary and secondary data sources.A total of 400 household surveys and five group discussions from 38 villages were conducted randomly to understand the climate perception of the local community and the drivers of change.Satellite imagery,CRU(Climatic Research Unit)climate data and climate perception data from the field have been used to comprehensively comprehend,analyze,and discuss the trends and reasons for LULC change.GIS and remote sensing techniques were used to construct LULC maps.This multifaceted approach ensures comprehensive and corroborated information.Five classes were identified and formed viz-cultivation,barren,settlement,snow,and vegetation.Results show that vegetation and builtup have increased whereas cultivation,barren land,and snow cover have decreased.The study further aims to elucidate the causes behind LULC changes in the spatially heterogeneous region,distinguishing between those attributed to human activities,climate shifts,and the interconnected impacts of both.The study provides a comprehensive picture of the study area and delivers a targeted understanding of local drivers and their potential remedies by offering a foundation for formulating sustainable adaptation policies in the region.
文摘Coastal land transformation has been identified as a topic of research in many countries around the world.Several studies have been conducted to determine the causes and impacts of land transformation.However,much less is understood about coupling change detection,factors,impacts,and adaptation strategies for coastal land transformation at a global scale.This review aims to present a systematic review of global coastal land transformation and its leading research areas.From 1,741 documents of Scopus and Web of Science,60 studies have been selected using the PRISMA-2020 guideline.Results revealed that existing literature included four leading focus areas regarding coastal land transformation:change detection,driving factors,impacts,and adaptation measures.These focus areas were further analyzed,and it was found that more than 80%of studies used Landsat imagery to detect land transformation.Population growth and urbanization were among the major driving factors identified.This review further identified that about 37%of studies included impact analysis.These studies identified impacts on ecosystems,land surface temperature,migration,water quality,and occupational effects as significant impacts.However,only four studies included adaptation strategies.This review explored the scope of comprehensive research in coastal land transformation,addressing change detection,factor and impact analysis,and mitigation-adaptation strategies.The research also proposes a conceptual framework for comprehensive coastal land transformation analysis.The framework can provide potential decision-making guidance for future studies in coastal land transformation.
基金supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(2021ZT090543)the National Natural Science Foundation of China(U20A20117)the Key-Area Research and Development Program of Guangdong Province(2020B1111380003).
文摘Land use/land cover represents the interactive and comprehensive influences between human activities and natural conditions,leading to potential conflicts among natural and human-related issues as well as among stakeholders.This study introduced economic standards for farmers.A hybrid approach(CA-ABM)of cellular automaton(CA)and an agent-based model(ABM)was developed to effectively deal with social and land-use synergic issues to examine human–environment interactions and projections of land-use conversions for a humid basin in south China.Natural attributes and socioeconomic data were used to analyze land use/land cover and its drivers of change.The major modules of the CA-ABM are initialization,migration,assets,land suitability,and land-use change decisions.Empirical estimates of the factors influencing the urban land-use conversion probability were captured using parameters based on a spatial logistic regression(SLR)model.Simultaneously,multicriteria evaluation(MCE)and Markov models were introduced to obtain empirical estimates of the factors affecting the probability of ecological land conversion.An agent-based CA-SLR-MCE-Markov(ABCSMM)land-use conversion model was proposed to explore the impacts of policies on land-use conversion.This model can reproduce observed land-use patterns and provide links for forest transition and urban expansion to land-use decisions and ecosystem services.The results demonstrated land-use simulations under multi-policy scenarios,revealing the usefulness of the model for normative research on land-use management.
基金supported by the Central Government to Guide Local Technological Development(23ZYQH0298)the Science and Technology Project of Gansu Province(20JR10RA656,22JR5RA416)the Science and Technology Project of Wuwei City(WW2202YFS006).
文摘Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.
基金The authors thank the project of Remote Sensing Data and Related Parameters Processing in Southwest China(Project No.612106241)the project of Urban Remote Sensing Data Processing and Multi-Source Integration in Central China(Project No.111/611508101).
文摘With economic development and urbanization in China,the rural settlements have experienced great change.To explore the evolution process of rural settlements in terms of land,population and industry can reveal the development law of rural spatial distribution,population structure and industrial economy in different stages and regions.Studying the development status and evolution characteristics of villages in the upper Tuojiang River basin in Southwest China in the past 20 years are of significant value.The upper Tuojiang River basin includes the main types of terrain found in the Southwest region:mountainous,plains,and hills,exhibiting a certain typicality of geographical characteristics.This study took towns and townships at the town-level scale as the basic unit of research,and constructed an evaluation system for village evolution based on'land,population,and industry'.It employed Criteria Importance Through Inter-Criteria Correlation(CRITIC)analysis to examine the characteristics of village evolution in the area from 2000 to 2020,and used geographic detector analysis to identify the leading factors affecting village evolution.The results show that:(1)From 2000 to 2010,villages in the upper Tuojiang River basin experienced significant changes,and the pace of these transformations slowed from 2010 to 2020.(2)From a comprehensive perspective,from 2000 to 2020,villages in hilly areas show a decline,while villages in plain areas near the city center show a positive urbanization development.(3)Road accessibility and distance from the city center are the main factors that explain the spatial differentiation of village evolution degree in the study area.This study elucidates the spatiotemporal evolution characteristics of villages in the upper Tuojiang River basin and identifies the primary factors contributing to their changes,which will provide a reference for investigating the development of rural areas in different terrains of Southwest China.