Foreign language teaching practice is developing rapidly,but research on foreign language teacher learning is currently relatively fragmented and unstructured.The book Foreign Language Teacher Learning,written by Prof...Foreign language teaching practice is developing rapidly,but research on foreign language teacher learning is currently relatively fragmented and unstructured.The book Foreign Language Teacher Learning,written by Professor Kang Yan from Capital Normal University,published in September 2022,makes a systematic introduction to foreign language teacher learning,which to some extent makes up for this shortcoming.Her book presents the lineage of foreign language teacher learning research at home and abroad,analyzes both theoretical and practical aspects,reviews the cuttingedge research results,and foresees the future development trend,painting a complete research picture for researchers in the field of foreign language teaching and teacher education as well as front-line teachers interested in foreign language teacher learning.This is an important inspiration for conducting foreign language teacher learning research in the future.And this paper makes a review of the book from aspects such as its content,major characteristics,contributions and limitations.展开更多
In this study,we aim to investigate the reciprocal influence between language motivation and English speaking fluency among language learners,and to draw implications for effective teaching methodologies.By analyzing ...In this study,we aim to investigate the reciprocal influence between language motivation and English speaking fluency among language learners,and to draw implications for effective teaching methodologies.By analyzing multiple cases of language learners in conjunction with relevant theories and practical insights,the study uncovers a dynamic correlation between language motivation and speaking fluency.The research findings indicate that heightened language motivation can positively impact learners’speaking fluency,while improved oral skills,in turn,bolster learners’language confidence and motivation.Building on these insights,the study proposes impactful teaching approaches,such as cultivating learners’enthusiasm for language acquisition,providing diverse opportunities for oral practice,and fostering active engagement in language communication.These strategies are designed to enhance language motivation and speaking fluency among learners,offering valuable guidance and reference for educators.展开更多
The study of language and gender,especially the study of gender language differences involves many fields such as psychology,sociology,anthropology,language and literature,news media,education,and so on.Starting from ...The study of language and gender,especially the study of gender language differences involves many fields such as psychology,sociology,anthropology,language and literature,news media,education,and so on.Starting from the broad definition of gender language,this paper composes and reviews the research history of domestic gender language and its differences.Around the research history of domestic gender language,the research period is divided according to the timeline into germination,genesis,and growth.Divided by theme and content,the main content is the phenomenon of sexism in language;the second is the study of gender language style differences;the third is the root causes of sexism and verbal gender differences,i.e.,the construction of the corresponding theories;and the fourth is the discussion of the limitations of the study of gender language in foreign countries.展开更多
Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requir...Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.展开更多
Objective:Despite the decrease in the number of foreign visitors and residents in Japan due to the coronavirus disease 2019,a resurgence is remarkable from 2022.However,Japan's medical support system for foreign p...Objective:Despite the decrease in the number of foreign visitors and residents in Japan due to the coronavirus disease 2019,a resurgence is remarkable from 2022.However,Japan's medical support system for foreign patients,especially residents,is inadequate,with language barriers potentially causing health disparities.Comprehensive interpretation and translation services are challenging,but“plain Japanese”may be a viable alternative for foreign patients with basic Japanese language skills.This study explores the application and obstacles of plain Japanese in the medical sector.Methods:A literature review was performed across these databases:Web of Science,PubMed,Google Scholar,Scopus,CINAHL Plus,Springer Link and Ichushi-Web(Japanese medical literature).The search covered themes related to healthcare,care for foreign patients,and scholarly articles,and was conducted in July 2023.Results:The study incorporated five papers.Each paper emphasized the language barriers foreign residents in Japan face when accessing healthcare,highlighting the critical role and necessity of plain Japanese in medical environments.Most of the reports focused on the challenges of delivering medical care to foreign patients and the training of healthcare professionals in using plain Japanese for communication.Conclusion:The knowledge and application of plain Japanese among healthcare professionals are inadequate,and literature also remains scarce.With the increasing number of foreign residents in Japan,the establishment of a healthcare system that effectively uses plain Japanese is essential.However,plain Japanese may not be the optimal linguistic assistance in certain situations,thus it is imperative to encourage more research and reports on healthcare services using plain Japanese.展开更多
Deaf people or people facing hearing issues can communicate using sign language(SL),a visual language.Many works based on rich source language have been proposed;however,the work using poor resource language is still ...Deaf people or people facing hearing issues can communicate using sign language(SL),a visual language.Many works based on rich source language have been proposed;however,the work using poor resource language is still lacking.Unlike other SLs,the visuals of the Urdu Language are different.This study presents a novel approach to translating Urdu sign language(UrSL)using the UrSL-CNN model,a convolutional neural network(CNN)architecture specifically designed for this purpose.Unlike existingworks that primarily focus on languageswith rich resources,this study addresses the challenge of translating a sign language with limited resources.We conducted experiments using two datasets containing 1500 and 78,000 images,employing a methodology comprising four modules:data collection,pre-processing,categorization,and prediction.To enhance prediction accuracy,each sign image was transformed into a greyscale image and underwent noise filtering.Comparative analysis with machine learning baseline methods(support vectormachine,GaussianNaive Bayes,randomforest,and k-nearest neighbors’algorithm)on the UrSL alphabets dataset demonstrated the superiority of UrSL-CNN,achieving an accuracy of 0.95.Additionally,our model exhibited superior performance in Precision,Recall,and F1-score evaluations.This work not only contributes to advancing sign language translation but also holds promise for improving communication accessibility for individuals with hearing impairments.展开更多
As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects in...As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain.This review paper systematically investigates the role of ChatGPT in diverse NLP tasks,including information extraction,Name Entity Recognition(NER),event extraction,relation extraction,Part of Speech(PoS)tagging,text classification,sentiment analysis,emotion recognition and text annotation.The novelty of this work lies in its comprehensive analysis of the existing literature,addressing a critical gap in understanding ChatGPT’s adaptability,limitations,and optimal application.In this paper,we employed a systematic stepwise approach following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)framework to direct our search process and seek relevant studies.Our review reveals ChatGPT’s significant potential in enhancing various NLP tasks.Its adaptability in information extraction tasks,sentiment analysis,and text classification showcases its ability to comprehend diverse contexts and extract meaningful details.Additionally,ChatGPT’s flexibility in annotation tasks reducesmanual efforts and accelerates the annotation process,making it a valuable asset in NLP development and research.Furthermore,GPT-4 and prompt engineering emerge as a complementary mechanism,empowering users to guide the model and enhance overall accuracy.Despite its promising potential,challenges persist.The performance of ChatGP Tneeds tobe testedusingmore extensivedatasets anddiversedata structures.Subsequently,its limitations in handling domain-specific language and the need for fine-tuning in specific applications highlight the importance of further investigations to address these issues.展开更多
With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily meas...With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily measured by the number of parameters, but also the subsequent escalation in computational demands, hardware and software prerequisites for training, all culminating in a substantial financial investment as well. In this paper, we present novel techniques like supervision, parallelization, and scoring functions to get better results out of chains of smaller language models, rather than relying solely on scaling up model size. Firstly, we propose an approach to quantify the performance of a Smaller Language Models (SLM) by introducing a corresponding supervisor model that incrementally corrects the encountered errors. Secondly, we propose an approach to utilize two smaller language models (in a network) performing the same task and retrieving the best relevant output from the two, ensuring peak performance for a specific task. Experimental evaluations establish the quantitative accuracy improvements on financial reasoning and arithmetic calculation tasks from utilizing techniques like supervisor models (in a network of model scenario), threshold scoring and parallel processing over a baseline study.展开更多
This paper explores the lexical association patterns of English as a second language and their relationship with language proficiency.Through the vocabulary association test,the study analyzes the differences in vocab...This paper explores the lexical association patterns of English as a second language and their relationship with language proficiency.Through the vocabulary association test,the study analyzes the differences in vocabulary association between learners with different language levels.The participants were 100 non-native English-speaking un-dergraduate students from a top 200 university,such as the University of Nottingham,and a university outside the top 200,such as the University of Aberdeen;the two groups of learners differed in their vocabulary size and learning style.It was found that the two groups of learners differed significantly in vocabulary size,language background,and learning experience.In addition,the study raises three core questions:first,learners’lexical association patterns,second,dif-ferences in association among learners with different language proficiency levels,and third,other variables that affect vocabulary association ability.The limitations of the study are that reaction time was not measured and the influence of native language background on word association was not fully considered;future research should further explore these aspects.展开更多
In recent years,large language models(LLMs)have made significant progress in natural language processing(NLP).These models not only perform well in a variety of language tasks but also show great potential in the medi...In recent years,large language models(LLMs)have made significant progress in natural language processing(NLP).These models not only perform well in a variety of language tasks but also show great potential in the medical field.This paper aims to explore the application of LLMs in clinical dialogues,analyzing their role in improving the efficiency of doctor-patient communication,aiding in diagnosis and treatment,and providing emotional support.The paper also discusses the challenges and limitations of the model in terms of privacy protection,ethical issues,and practical applications.Through comprehensive analysis,we conclude that applying LLMs in clinical dialogues is promising.However,it requires careful consideration and caution by practitioners in practice.展开更多
This paper reviews the research on second language acquisition from the perspective of positive psychology.First,it introduces the background and purpose of the study and discusses the significance of the application ...This paper reviews the research on second language acquisition from the perspective of positive psychology.First,it introduces the background and purpose of the study and discusses the significance of the application of positive psychology in the field of language acquisition.Then,the basic theories of positive psychology,including the core concepts and principles of positive psychology,are summarized.Subsequently,the theory of second language acquisition is defined and outlined,including the definition,characteristics,and related developmental theories of second language acquisition.On this basis,the study of second language acquisition from the perspective of positive psychology is discussed in detail.By combing and synthesizing the literature,this paper summarizes the current situation and trend of second language acquisition research under the perspective of positive psychology and puts forward some future research directions and suggestions.展开更多
Nowadays,the Communicative Language Teaching Approach has gained significant popularity in the field of foreign language teaching.However,there appears to be a stagnation in its application effects.Therefore,this thes...Nowadays,the Communicative Language Teaching Approach has gained significant popularity in the field of foreign language teaching.However,there appears to be a stagnation in its application effects.Therefore,this thesis aims to investigate the present state of CLT implementation and identify the factors influencing its execution within English major classrooms at Chinese universities from a student perspective.30 students responded to the questionnaire and 5 students participated in interviews to provide detailed insights.Through analysis,it was observed that CLT has been widely used in English classes and received positive feedback from students.Factors including the Test-oriented Educational system,teacher factors,student factors,and the Chinese traditional Confucius idea about teaching have an important impact on its implementation.Additionally,this article offers potential recommendations aimed at reconciling the CLT Approach with the Chinese educational context.展开更多
With the rapid development of artificial intelligence, large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. These models have great potential to enha...With the rapid development of artificial intelligence, large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. These models have great potential to enhance database query systems, enabling more intuitive and semantic query mechanisms. Our model leverages LLM’s deep learning architecture to interpret and process natural language queries and translate them into accurate database queries. The system integrates an LLM-powered semantic parser that translates user input into structured queries that can be understood by the database management system. First, the user query is pre-processed, the text is normalized, and the ambiguity is removed. This is followed by semantic parsing, where the LLM interprets the pre-processed text and identifies key entities and relationships. This is followed by query generation, which converts the parsed information into a structured query format and tailors it to the target database schema. Finally, there is query execution and feedback, where the resulting query is executed on the database and the results are returned to the user. The system also provides feedback mechanisms to improve and optimize future query interpretations. By using advanced LLMs for model implementation and fine-tuning on diverse datasets, the experimental results show that the proposed method significantly improves the accuracy and usability of database queries, making data retrieval easy for users without specialized knowledge.展开更多
Language security is an important part of national security,and in the current complex international environment,the issue of language security is becoming more and more prominent and has become an unignorable part of...Language security is an important part of national security,and in the current complex international environment,the issue of language security is becoming more and more prominent and has become an unignorable part of national security strategy.As the bridge and link of international communication,foreign language talents’language skills and the level of national security awareness directly affect our country’s international image and the effect of international communication.Therefore,the establishment of a foreign language talent cultivation mode based on the concept of language security is not only an important way to improve the quality of foreign language education but also a realistic need to safeguard national security and promote international exchanges.Starting from the influence of the language security concept on foreign language talent cultivation,this paper analyzes the foreign language talent cultivation mode based on the language security concept,with a view to providing new ideas and methods for the development of foreign language education.展开更多
Learning programming and using programming languages are the essential aspects of computer science education.Students use programming languages to write their programs.These computer programs(students or practitioners...Learning programming and using programming languages are the essential aspects of computer science education.Students use programming languages to write their programs.These computer programs(students or practitioners written)make computers artificially intelligent and perform the tasks needed by the users.Without these programs,the computer may be visioned as a pointless machine.As the premise of writing programs is situated with specific programming languages,enormous efforts have been made to develop and create programming languages.However,each program-ming language is domain-specific and has its nuances,syntax and seman-tics,with specific pros and cons.These language-specific details,including syntax and semantics,are significant hurdles for novice programmers.Also,the instructors of introductory programming courses find these language specificities as the biggest hurdle in students learning,where more focus is on syntax than logic development and actual implementation of the program.Considering the conceptual difficulty of programming languages and novice students’struggles with the language syntax,this paper describes the design and development of a Context-Free Grammar(CFG)of a programming language for the novice,newcomers and students who do not have computer science as their major.Due to its syntax proximity to daily conversations,this paper hypothesizes that this language will be easy to use and understand by novice programmers.This paper systematically designed the language by identifying themes from various existing programming languages(e.g.,C,Python).Additionally,this paper surveyed computer science experts from industry and academia,where experts self-reported their satisfaction with the newly designed language.The results indicate that 93%of the experts reported satisfaction with the NewBee for novice,newcomer and non-Computer Sci-ence(CS)major students.展开更多
Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the ...Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field.展开更多
The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Infor...The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Information (PII) and other confidential or protected information that may have been memorized during training, specifically during a fine-tuning or customization process. We describe different black-box attacks from potential adversaries and study their impact on the amount and type of information that may be recovered from commonly used and deployed LLMs. Our research investigates the relationship between PII leakage, memorization, and factors such as model size, architecture, and the nature of attacks employed. The study utilizes two broad categories of attacks: PII leakage-focused attacks (auto-completion and extraction attacks) and memorization-focused attacks (various membership inference attacks). The findings from these investigations are quantified using an array of evaluative metrics, providing a detailed understanding of LLM vulnerabilities and the effectiveness of different attacks.展开更多
The purpose of this study is to examine and present the procedures and the tools that are described in the literature for observing preschool children's communication competence. Informal and formal standardised test...The purpose of this study is to examine and present the procedures and the tools that are described in the literature for observing preschool children's communication competence. Informal and formal standardised testing activities are included and a distinction is made on traditional and computer-based screening and diagnosis. The results of study illustrate the current trends of the literature and discuss the possibility of the computer-based screening and diagnosis to partially make up for the expert-personnel shortage展开更多
Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whe...Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive,negative,neutral,or any other personal emotion to understand the sentiment context of the text.Sentiment analysis is essential in business and society because it impacts strategic decision-making.Sentiment analysis involves challenges due to lexical variation,an unlabeled dataset,and text distance correlations.The execution time increases due to the sequential processing of the sequence models.However,the calculation times for the Transformer models are reduced because of the parallel processing.This study uses a hybrid deep learning strategy to combine the strengths of the Transformer and Sequence models while ignoring their limitations.In particular,the proposed model integrates the Decoding-enhanced with Bidirectional Encoder Representations from Transformers(BERT)attention(DeBERTa)and the Gated Recurrent Unit(GRU)for sentiment analysis.Using the Decoding-enhanced BERT technique,the words are mapped into a compact,semantic word embedding space,and the Gated Recurrent Unit model can capture the distance contextual semantics correctly.The proposed hybrid model achieves F1-scores of 97%on the Twitter Large Language Model(LLM)dataset,which is much higher than the performance of new techniques.展开更多
Large Language Models(LLMs)are increasingly demonstrating their ability to understand natural language and solve complex tasks,especially through text generation.One of the relevant capabilities is contextual learning...Large Language Models(LLMs)are increasingly demonstrating their ability to understand natural language and solve complex tasks,especially through text generation.One of the relevant capabilities is contextual learning,which involves the ability to receive instructions in natural language or task demonstrations to generate expected outputs for test instances without the need for additional training or gradient updates.In recent years,the popularity of social networking has provided a medium through which some users can engage in offensive and harmful online behavior.In this study,we investigate the ability of different LLMs,ranging from zero-shot and few-shot learning to fine-tuning.Our experiments show that LLMs can identify sexist and hateful online texts using zero-shot and few-shot approaches through information retrieval.Furthermore,it is found that the encoder-decoder model called Zephyr achieves the best results with the fine-tuning approach,scoring 86.811%on the Explainable Detection of Online Sexism(EDOS)test-set and 57.453%on the Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter(HatEval)test-set.Finally,it is confirmed that the evaluated models perform well in hate text detection,as they beat the best result in the HatEval task leaderboard.The error analysis shows that contextual learning had difficulty distinguishing between types of hate speech and figurative language.However,the fine-tuned approach tends to produce many false positives.展开更多
文摘Foreign language teaching practice is developing rapidly,but research on foreign language teacher learning is currently relatively fragmented and unstructured.The book Foreign Language Teacher Learning,written by Professor Kang Yan from Capital Normal University,published in September 2022,makes a systematic introduction to foreign language teacher learning,which to some extent makes up for this shortcoming.Her book presents the lineage of foreign language teacher learning research at home and abroad,analyzes both theoretical and practical aspects,reviews the cuttingedge research results,and foresees the future development trend,painting a complete research picture for researchers in the field of foreign language teaching and teacher education as well as front-line teachers interested in foreign language teacher learning.This is an important inspiration for conducting foreign language teacher learning research in the future.And this paper makes a review of the book from aspects such as its content,major characteristics,contributions and limitations.
文摘In this study,we aim to investigate the reciprocal influence between language motivation and English speaking fluency among language learners,and to draw implications for effective teaching methodologies.By analyzing multiple cases of language learners in conjunction with relevant theories and practical insights,the study uncovers a dynamic correlation between language motivation and speaking fluency.The research findings indicate that heightened language motivation can positively impact learners’speaking fluency,while improved oral skills,in turn,bolster learners’language confidence and motivation.Building on these insights,the study proposes impactful teaching approaches,such as cultivating learners’enthusiasm for language acquisition,providing diverse opportunities for oral practice,and fostering active engagement in language communication.These strategies are designed to enhance language motivation and speaking fluency among learners,offering valuable guidance and reference for educators.
文摘The study of language and gender,especially the study of gender language differences involves many fields such as psychology,sociology,anthropology,language and literature,news media,education,and so on.Starting from the broad definition of gender language,this paper composes and reviews the research history of domestic gender language and its differences.Around the research history of domestic gender language,the research period is divided according to the timeline into germination,genesis,and growth.Divided by theme and content,the main content is the phenomenon of sexism in language;the second is the study of gender language style differences;the third is the root causes of sexism and verbal gender differences,i.e.,the construction of the corresponding theories;and the fourth is the discussion of the limitations of the study of gender language in foreign countries.
文摘Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.
文摘Objective:Despite the decrease in the number of foreign visitors and residents in Japan due to the coronavirus disease 2019,a resurgence is remarkable from 2022.However,Japan's medical support system for foreign patients,especially residents,is inadequate,with language barriers potentially causing health disparities.Comprehensive interpretation and translation services are challenging,but“plain Japanese”may be a viable alternative for foreign patients with basic Japanese language skills.This study explores the application and obstacles of plain Japanese in the medical sector.Methods:A literature review was performed across these databases:Web of Science,PubMed,Google Scholar,Scopus,CINAHL Plus,Springer Link and Ichushi-Web(Japanese medical literature).The search covered themes related to healthcare,care for foreign patients,and scholarly articles,and was conducted in July 2023.Results:The study incorporated five papers.Each paper emphasized the language barriers foreign residents in Japan face when accessing healthcare,highlighting the critical role and necessity of plain Japanese in medical environments.Most of the reports focused on the challenges of delivering medical care to foreign patients and the training of healthcare professionals in using plain Japanese for communication.Conclusion:The knowledge and application of plain Japanese among healthcare professionals are inadequate,and literature also remains scarce.With the increasing number of foreign residents in Japan,the establishment of a healthcare system that effectively uses plain Japanese is essential.However,plain Japanese may not be the optimal linguistic assistance in certain situations,thus it is imperative to encourage more research and reports on healthcare services using plain Japanese.
文摘Deaf people or people facing hearing issues can communicate using sign language(SL),a visual language.Many works based on rich source language have been proposed;however,the work using poor resource language is still lacking.Unlike other SLs,the visuals of the Urdu Language are different.This study presents a novel approach to translating Urdu sign language(UrSL)using the UrSL-CNN model,a convolutional neural network(CNN)architecture specifically designed for this purpose.Unlike existingworks that primarily focus on languageswith rich resources,this study addresses the challenge of translating a sign language with limited resources.We conducted experiments using two datasets containing 1500 and 78,000 images,employing a methodology comprising four modules:data collection,pre-processing,categorization,and prediction.To enhance prediction accuracy,each sign image was transformed into a greyscale image and underwent noise filtering.Comparative analysis with machine learning baseline methods(support vectormachine,GaussianNaive Bayes,randomforest,and k-nearest neighbors’algorithm)on the UrSL alphabets dataset demonstrated the superiority of UrSL-CNN,achieving an accuracy of 0.95.Additionally,our model exhibited superior performance in Precision,Recall,and F1-score evaluations.This work not only contributes to advancing sign language translation but also holds promise for improving communication accessibility for individuals with hearing impairments.
文摘As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain.This review paper systematically investigates the role of ChatGPT in diverse NLP tasks,including information extraction,Name Entity Recognition(NER),event extraction,relation extraction,Part of Speech(PoS)tagging,text classification,sentiment analysis,emotion recognition and text annotation.The novelty of this work lies in its comprehensive analysis of the existing literature,addressing a critical gap in understanding ChatGPT’s adaptability,limitations,and optimal application.In this paper,we employed a systematic stepwise approach following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)framework to direct our search process and seek relevant studies.Our review reveals ChatGPT’s significant potential in enhancing various NLP tasks.Its adaptability in information extraction tasks,sentiment analysis,and text classification showcases its ability to comprehend diverse contexts and extract meaningful details.Additionally,ChatGPT’s flexibility in annotation tasks reducesmanual efforts and accelerates the annotation process,making it a valuable asset in NLP development and research.Furthermore,GPT-4 and prompt engineering emerge as a complementary mechanism,empowering users to guide the model and enhance overall accuracy.Despite its promising potential,challenges persist.The performance of ChatGP Tneeds tobe testedusingmore extensivedatasets anddiversedata structures.Subsequently,its limitations in handling domain-specific language and the need for fine-tuning in specific applications highlight the importance of further investigations to address these issues.
文摘With the continuous evolution and expanding applications of Large Language Models (LLMs), there has been a noticeable surge in the size of the emerging models. It is not solely the growth in model size, primarily measured by the number of parameters, but also the subsequent escalation in computational demands, hardware and software prerequisites for training, all culminating in a substantial financial investment as well. In this paper, we present novel techniques like supervision, parallelization, and scoring functions to get better results out of chains of smaller language models, rather than relying solely on scaling up model size. Firstly, we propose an approach to quantify the performance of a Smaller Language Models (SLM) by introducing a corresponding supervisor model that incrementally corrects the encountered errors. Secondly, we propose an approach to utilize two smaller language models (in a network) performing the same task and retrieving the best relevant output from the two, ensuring peak performance for a specific task. Experimental evaluations establish the quantitative accuracy improvements on financial reasoning and arithmetic calculation tasks from utilizing techniques like supervisor models (in a network of model scenario), threshold scoring and parallel processing over a baseline study.
文摘This paper explores the lexical association patterns of English as a second language and their relationship with language proficiency.Through the vocabulary association test,the study analyzes the differences in vocabulary association between learners with different language levels.The participants were 100 non-native English-speaking un-dergraduate students from a top 200 university,such as the University of Nottingham,and a university outside the top 200,such as the University of Aberdeen;the two groups of learners differed in their vocabulary size and learning style.It was found that the two groups of learners differed significantly in vocabulary size,language background,and learning experience.In addition,the study raises three core questions:first,learners’lexical association patterns,second,dif-ferences in association among learners with different language proficiency levels,and third,other variables that affect vocabulary association ability.The limitations of the study are that reaction time was not measured and the influence of native language background on word association was not fully considered;future research should further explore these aspects.
文摘In recent years,large language models(LLMs)have made significant progress in natural language processing(NLP).These models not only perform well in a variety of language tasks but also show great potential in the medical field.This paper aims to explore the application of LLMs in clinical dialogues,analyzing their role in improving the efficiency of doctor-patient communication,aiding in diagnosis and treatment,and providing emotional support.The paper also discusses the challenges and limitations of the model in terms of privacy protection,ethical issues,and practical applications.Through comprehensive analysis,we conclude that applying LLMs in clinical dialogues is promising.However,it requires careful consideration and caution by practitioners in practice.
文摘This paper reviews the research on second language acquisition from the perspective of positive psychology.First,it introduces the background and purpose of the study and discusses the significance of the application of positive psychology in the field of language acquisition.Then,the basic theories of positive psychology,including the core concepts and principles of positive psychology,are summarized.Subsequently,the theory of second language acquisition is defined and outlined,including the definition,characteristics,and related developmental theories of second language acquisition.On this basis,the study of second language acquisition from the perspective of positive psychology is discussed in detail.By combing and synthesizing the literature,this paper summarizes the current situation and trend of second language acquisition research under the perspective of positive psychology and puts forward some future research directions and suggestions.
文摘Nowadays,the Communicative Language Teaching Approach has gained significant popularity in the field of foreign language teaching.However,there appears to be a stagnation in its application effects.Therefore,this thesis aims to investigate the present state of CLT implementation and identify the factors influencing its execution within English major classrooms at Chinese universities from a student perspective.30 students responded to the questionnaire and 5 students participated in interviews to provide detailed insights.Through analysis,it was observed that CLT has been widely used in English classes and received positive feedback from students.Factors including the Test-oriented Educational system,teacher factors,student factors,and the Chinese traditional Confucius idea about teaching have an important impact on its implementation.Additionally,this article offers potential recommendations aimed at reconciling the CLT Approach with the Chinese educational context.
文摘With the rapid development of artificial intelligence, large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. These models have great potential to enhance database query systems, enabling more intuitive and semantic query mechanisms. Our model leverages LLM’s deep learning architecture to interpret and process natural language queries and translate them into accurate database queries. The system integrates an LLM-powered semantic parser that translates user input into structured queries that can be understood by the database management system. First, the user query is pre-processed, the text is normalized, and the ambiguity is removed. This is followed by semantic parsing, where the LLM interprets the pre-processed text and identifies key entities and relationships. This is followed by query generation, which converts the parsed information into a structured query format and tailors it to the target database schema. Finally, there is query execution and feedback, where the resulting query is executed on the database and the results are returned to the user. The system also provides feedback mechanisms to improve and optimize future query interpretations. By using advanced LLMs for model implementation and fine-tuning on diverse datasets, the experimental results show that the proposed method significantly improves the accuracy and usability of database queries, making data retrieval easy for users without specialized knowledge.
基金Heilongjiang Province Undergraduate University’s First Batch of Foreign Language Education Reform and Innovation Project:“Practical Research on Foreign Language Talent Cultivation Based on the Concept of Language Security in the Context of New Liberal Arts”(HWX2022018-B)Heilongjiang Province Higher Education Teaching Reform Project:A Mixed Training Study on the“Interdisciplinary Integration”Ability of University Foreign Language Teachers in the Context of New Liberal Arts(SJGY20220444)。
文摘Language security is an important part of national security,and in the current complex international environment,the issue of language security is becoming more and more prominent and has become an unignorable part of national security strategy.As the bridge and link of international communication,foreign language talents’language skills and the level of national security awareness directly affect our country’s international image and the effect of international communication.Therefore,the establishment of a foreign language talent cultivation mode based on the concept of language security is not only an important way to improve the quality of foreign language education but also a realistic need to safeguard national security and promote international exchanges.Starting from the influence of the language security concept on foreign language talent cultivation,this paper analyzes the foreign language talent cultivation mode based on the language security concept,with a view to providing new ideas and methods for the development of foreign language education.
基金supported by the startup fund provided to Dr.Saira Anwar by Texas A&M University,College Station,USA.Any opinions,findings,conclusion,or recommendations expressed in this material do not necessarily reflect those of Texas A&M University。
文摘Learning programming and using programming languages are the essential aspects of computer science education.Students use programming languages to write their programs.These computer programs(students or practitioners written)make computers artificially intelligent and perform the tasks needed by the users.Without these programs,the computer may be visioned as a pointless machine.As the premise of writing programs is situated with specific programming languages,enormous efforts have been made to develop and create programming languages.However,each program-ming language is domain-specific and has its nuances,syntax and seman-tics,with specific pros and cons.These language-specific details,including syntax and semantics,are significant hurdles for novice programmers.Also,the instructors of introductory programming courses find these language specificities as the biggest hurdle in students learning,where more focus is on syntax than logic development and actual implementation of the program.Considering the conceptual difficulty of programming languages and novice students’struggles with the language syntax,this paper describes the design and development of a Context-Free Grammar(CFG)of a programming language for the novice,newcomers and students who do not have computer science as their major.Due to its syntax proximity to daily conversations,this paper hypothesizes that this language will be easy to use and understand by novice programmers.This paper systematically designed the language by identifying themes from various existing programming languages(e.g.,C,Python).Additionally,this paper surveyed computer science experts from industry and academia,where experts self-reported their satisfaction with the newly designed language.The results indicate that 93%of the experts reported satisfaction with the NewBee for novice,newcomer and non-Computer Sci-ence(CS)major students.
基金We acknowledge funding from NSFC Grant 62306283.
文摘Since the 1950s,when the Turing Test was introduced,there has been notable progress in machine language intelligence.Language modeling,crucial for AI development,has evolved from statistical to neural models over the last two decades.Recently,transformer-based Pre-trained Language Models(PLM)have excelled in Natural Language Processing(NLP)tasks by leveraging large-scale training corpora.Increasing the scale of these models enhances performance significantly,introducing abilities like context learning that smaller models lack.The advancement in Large Language Models,exemplified by the development of ChatGPT,has made significant impacts both academically and industrially,capturing widespread societal interest.This survey provides an overview of the development and prospects from Large Language Models(LLM)to Large Multimodal Models(LMM).It first discusses the contributions and technological advancements of LLMs in the field of natural language processing,especially in text generation and language understanding.Then,it turns to the discussion of LMMs,which integrates various data modalities such as text,images,and sound,demonstrating advanced capabilities in understanding and generating cross-modal content,paving new pathways for the adaptability and flexibility of AI systems.Finally,the survey highlights the prospects of LMMs in terms of technological development and application potential,while also pointing out challenges in data integration,cross-modal understanding accuracy,providing a comprehensive perspective on the latest developments in this field.
文摘The recent interest in the deployment of Generative AI applications that use large language models (LLMs) has brought to the forefront significant privacy concerns, notably the leakage of Personally Identifiable Information (PII) and other confidential or protected information that may have been memorized during training, specifically during a fine-tuning or customization process. We describe different black-box attacks from potential adversaries and study their impact on the amount and type of information that may be recovered from commonly used and deployed LLMs. Our research investigates the relationship between PII leakage, memorization, and factors such as model size, architecture, and the nature of attacks employed. The study utilizes two broad categories of attacks: PII leakage-focused attacks (auto-completion and extraction attacks) and memorization-focused attacks (various membership inference attacks). The findings from these investigations are quantified using an array of evaluative metrics, providing a detailed understanding of LLM vulnerabilities and the effectiveness of different attacks.
文摘The purpose of this study is to examine and present the procedures and the tools that are described in the literature for observing preschool children's communication competence. Informal and formal standardised testing activities are included and a distinction is made on traditional and computer-based screening and diagnosis. The results of study illustrate the current trends of the literature and discuss the possibility of the computer-based screening and diagnosis to partially make up for the expert-personnel shortage
文摘Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive,negative,neutral,or any other personal emotion to understand the sentiment context of the text.Sentiment analysis is essential in business and society because it impacts strategic decision-making.Sentiment analysis involves challenges due to lexical variation,an unlabeled dataset,and text distance correlations.The execution time increases due to the sequential processing of the sequence models.However,the calculation times for the Transformer models are reduced because of the parallel processing.This study uses a hybrid deep learning strategy to combine the strengths of the Transformer and Sequence models while ignoring their limitations.In particular,the proposed model integrates the Decoding-enhanced with Bidirectional Encoder Representations from Transformers(BERT)attention(DeBERTa)and the Gated Recurrent Unit(GRU)for sentiment analysis.Using the Decoding-enhanced BERT technique,the words are mapped into a compact,semantic word embedding space,and the Gated Recurrent Unit model can capture the distance contextual semantics correctly.The proposed hybrid model achieves F1-scores of 97%on the Twitter Large Language Model(LLM)dataset,which is much higher than the performance of new techniques.
基金This work is part of the research projects LaTe4PoliticES(PID2022-138099OBI00)funded by MICIU/AEI/10.13039/501100011033the European Regional Development Fund(ERDF)-A Way of Making Europe and LT-SWM(TED2021-131167B-I00)funded by MICIU/AEI/10.13039/501100011033the European Union NextGenerationEU/PRTR.Mr.Ronghao Pan is supported by the Programa Investigo grant,funded by the Region of Murcia,the Spanish Ministry of Labour and Social Economy and the European Union-NextGenerationEU under the“Plan de Recuperación,Transformación y Resiliencia(PRTR).”。
文摘Large Language Models(LLMs)are increasingly demonstrating their ability to understand natural language and solve complex tasks,especially through text generation.One of the relevant capabilities is contextual learning,which involves the ability to receive instructions in natural language or task demonstrations to generate expected outputs for test instances without the need for additional training or gradient updates.In recent years,the popularity of social networking has provided a medium through which some users can engage in offensive and harmful online behavior.In this study,we investigate the ability of different LLMs,ranging from zero-shot and few-shot learning to fine-tuning.Our experiments show that LLMs can identify sexist and hateful online texts using zero-shot and few-shot approaches through information retrieval.Furthermore,it is found that the encoder-decoder model called Zephyr achieves the best results with the fine-tuning approach,scoring 86.811%on the Explainable Detection of Online Sexism(EDOS)test-set and 57.453%on the Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter(HatEval)test-set.Finally,it is confirmed that the evaluated models perform well in hate text detection,as they beat the best result in the HatEval task leaderboard.The error analysis shows that contextual learning had difficulty distinguishing between types of hate speech and figurative language.However,the fine-tuned approach tends to produce many false positives.