1 Significance of All Solid State Laser (DPL) Technology in Field of LaserBecause of the advantages of high conversion efficiency, good beam quality, small size and light weight, DPL becomes the hotspot and priority o...1 Significance of All Solid State Laser (DPL) Technology in Field of LaserBecause of the advantages of high conversion efficiency, good beam quality, small size and light weight, DPL becomes the hotspot and priority of development of laser technology. It may be the main body of laser in the future and replace gas laser and liquid laser. It is a great revolution of laser technology.The developed countries vie in developing DPL. China has achieved great success in this field, but there is a wide gap between the developed countries and us. We should attach great importance to it.展开更多
It is shown that for laser technologies it was necessary to create a new branch of physics: Relaxed Optics (synthesis of methods of the physical optics, quantum electronics, physical chemistry, physics of irreversible...It is shown that for laser technologies it was necessary to create a new branch of physics: Relaxed Optics (synthesis of methods of the physical optics, quantum electronics, physical chemistry, physics of irreversible phenomena in unitary system). It is allowed to explain complex chain processes of interaction light and matter. Possible applications of Relaxed Optical methods for the modeling of the laser-induced processes phenomena, including laser implantation (surface and subsurface processes), laser-induced optical breakdown (volume processes) and laser annealing of radiation and other defects in solid, are discussed. Perspectives of using these methods for the creation of new laser technologies, including creation new types of optoelectronic devices (heterostructures, diffraction lattices, etc.), resolution the problems of metallurgy, material science, painting, architecture and a building, are analyzed.展开更多
Hybrid laser technologies for deposition of thin films and basic schemes of combination of pulsed laser deposition (PLD) with magnetron sputtering and RF discharges or two lasers or three laser deposition systems are ...Hybrid laser technologies for deposition of thin films and basic schemes of combination of pulsed laser deposition (PLD) with magnetron sputtering and RF discharges or two lasers or three laser deposition systems are presented. Experiences with deposition of chromium doped diamond-like carbon (DLC) films for coating of prostheses are described. Layers of different chromium concentrations were prepared using hybrid systems (PLD + magnetron sputtering or by double PLD). Results of physical and mechanical characterization of film properties and biomedical tests of trivalent and toxic hexavalent chromium are given. Experiences with double laser deposition of DLC layers doped with silver are also mentioned.展开更多
Here,we discuss an important problem in medicine as development of efctive strategies for brain drug delivery.This problem is related to the blood-brain barrier(BBB),which is a“customs”controlling the entrance of di...Here,we discuss an important problem in medicine as development of efctive strategies for brain drug delivery.This problem is related to the blood-brain barrier(BBB),which is a“customs”controlling the entrance of different molecules from blood into the brain protecting the normal function of central nervous system(CNS).We show three interfaces of anatomical side of BBB and two functional types of BBB一physical and transporter barriers.Although this protective mechanism is essential for health of CNS,it also creates a hindrance to the entry of drugs into the brain.The BBB was discovered over 100 years ago but till now,there is no efective methods for brain drug delivery.There ane more than 70 approaches for overcoming BBB incuding physical,chenical and biological techniques but all of these tools have limitation to be widely used in clinical practice due to invasi venes,challenge in performing,very costly or lim-itation of drug concentration.Photodynamic therapy(PDT)is usual clinical method of surgical navigation for the resection of brain tumor and anti-cancer therapy.Nowadays,the application of PDT is considered as a potential promising tool for brain drug delivery via opening of BBB.Here,we show the first sucoessful experimental results in this field discussing the adventures and disadv antages of PDT-related BBB disruption as well as altematives to overcome these limitations and possi ble mechanisms with new pathways for brain clearance via gly mphatic and lymphatic systems.展开更多
Few-layer molybdenum disulfide(MoS2) is emerging as a promising quasi-two-dimensional material for photonics and optoelectronics, further extending the library of suitable layered nanomaterials with exceptional opti...Few-layer molybdenum disulfide(MoS2) is emerging as a promising quasi-two-dimensional material for photonics and optoelectronics, further extending the library of suitable layered nanomaterials with exceptional optical properties for use in saturable absorber devices that enable short-pulse generation in laser systems. In this work, we catalog and review the nonlinear optical properties of few-layer MoS2, summarize recent progress in processing and integration into saturable absorber devices, and comment on the current status and future perspectives of MoS2-based pulsed lasers.展开更多
The emission wavelength of a laser is physically predetermined by the gain medium used. Consequently, arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optic...The emission wavelength of a laser is physically predetermined by the gain medium used. Consequently, arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optical parametric generation, requiring complex optical setups and spectrally sliced supercontinuum, taking advantage of a simpler fiber technology: a fixed-wavelength pump laser pulse is converted into a spectrally very broadband output, from which the required resulting wavelength is then optically filtered. Unfortunately, this process is associated with an inherently poor noise figure, which often precludes many realistic applications of such supercontinuum sources. Here, we show that by adding only one passive optical element—a tapered photonic crystal fiber—to a fixed-wavelength femtosecond laser, one can in a very simple manner resonantly convert the laser emission wavelength into an ultra-wide and continuous range of desired wavelengths, with very low inherent noise, and without mechanical realignment of the laser. This is achieved by exploiting the double interplay of nonlinearity and chirp in the laser source and chirp and phase matching in the tapered fiber. As a first demonstration of this simple and inexpensive technology, we present a femtosecond fiber laser continuously tunable across the entire red–green–blue spectral range.展开更多
Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positio...Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak,cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laserscanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation quality assessment with the laser scanning technology can be reduced by 70%e90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.展开更多
This paper presents the state of art of laser technologies in Poland. A list of primary laser technology development centers is included. The involvement of Polish scientists in the development of lasers and fourth ge...This paper presents the state of art of laser technologies in Poland. A list of primary laser technology development centers is included. The involvement of Polish scientists in the development of lasers and fourth generation synchrotron light sources as well as their applications is discussed. The development of laser applications in medical therapy and diagnostics, material micro- and macro-processing as well as environmental monitoring and protection, safety, and security is presented.展开更多
The study of wind erosion processes is of great importance to the prevention and control of soil wind erosion.In this study,three structurally intact soil samples were collected from the steppe of Inner Mongolia Auton...The study of wind erosion processes is of great importance to the prevention and control of soil wind erosion.In this study,three structurally intact soil samples were collected from the steppe of Inner Mongolia Autonomous Region,China and placed in a wind tunnel where they were subjected to six different wind speeds(10,15,17,20,25,and 30 m/s)to simulate wind erosion in the wind tunnel.After each test,the soil surfaces were scanned by a 3D laser scanner to create a high-resolution Digital Elevation Model(DEM),and the changes in wind erosion mass and microtopography were quantified.Based on this,we performed further analysis of wind erosion-controlling factors.The study results showed that the average measurement error between the 3D laser scanning method and weighing method was 6.23%for the three undisturbed soil samples.With increasing wind speed,the microtopography on the undisturbed soil surface first became smooth,and then fine stripes and pits gradually developed.In the initial stage of wind erosion processes,the ability of the soil to resist wind erosion was mainly affected by the soil hardness.In the late stage of wind erosion processes,the degree of soil erosion was mainly affected by soil organic matter and CaCO_(3)content.The results of this study are expected to provide a theoretical basis for soil wind erosion control and promote the application of 3D laser scanners in wind erosion monitoring.展开更多
A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP...A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AIGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3roW, and the threshold is 37mA at room temperature and continuous wave operation.展开更多
A 32 Gb/s monolithically integrated electroabsorption modulated laser is fabricated by selective area growth technology. The threshold current of the device is below 13mA. The output power exceeds 10mW at 0V bias when...A 32 Gb/s monolithically integrated electroabsorption modulated laser is fabricated by selective area growth technology. The threshold current of the device is below 13mA. The output power exceeds 10mW at 0V bias when the injection current of the distributed feedback laser is 100mA at 25℃. The side mode suppression ratio is over 50 dB. A 32Gb/s eye diagram is measured with a 3.SVpp nonreturn-to-zero pseudorandom modulation signal at -2.3 V bias. A clearly opening eyediagram with a dynamic extinction ratio of 8.01 dB is obtained.展开更多
After more than 30 years of scientific and social development, surveying and mapping technology by leaps and bounds, engineering surveying technology has undergone tremendous changes. In the process of protecting anci...After more than 30 years of scientific and social development, surveying and mapping technology by leaps and bounds, engineering surveying technology has undergone tremendous changes. In the process of protecting ancient buildings, it is necessary to obtain the precise dimensions of architectural details. In this study, the path of 3D laser scanning combined with BIM technology is explored. Taking the observation and protection of the ancestral hall of the Liu family as an example, this study aims to draw drawings that reflect the relevant information about the ancient buildings, the accurate three-dimensional model of ancient buildings is established with BIM technology, which provides new methods and ideas for the research and protection of ancient buildings. .展开更多
In order to ensure the safety in using a large cylindrical storage tank,it is necessary to regularly detect its defonnatioii.The traditional total station method has high accuracy in determining the deformation,howeve...In order to ensure the safety in using a large cylindrical storage tank,it is necessary to regularly detect its defonnatioii.The traditional total station method has high accuracy in determining the deformation,however,it has a low measxirement efficiency.Long-term observation means,there are more risks in the petrochemical plant,therefore,this paper proposes the usage of the 3D laser scanner,replacing the traditional total station to determine the defbnnation of a large cylindrical storage tank.The Matlab program,is compiled to calculate the point cloud data,while the tank deformation is analyzed from two different points which are,the local concave convex degree and the ovality degree.It is concluded that,the difference between the data obtained by 3D laser scanning,and total station is within the range of oil tank deformation limit,therefore,3D laser scanner can be used for oil tank deformation detection.展开更多
To overcome the shortcomings of the single-shot autocorrelation SSA where only one pulse width is obtained when the SSA is applied to measure the pulse width of ultrashort laser pulses a modified SSA for measuring the...To overcome the shortcomings of the single-shot autocorrelation SSA where only one pulse width is obtained when the SSA is applied to measure the pulse width of ultrashort laser pulses a modified SSA for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions is proposed. The spatiotemporal characteristics of femtosecond laser pulses output from the Ti sapphire regenerative amplifier system are experimentally measured by the proposed method. It was found that the complex spatial characteristics are measured accurately.The pulse widths at different spatial positions are various which obey the Gaussian distribution.The pulse width at the same spatial position becomes narrow with the increase in input average power when femtosecond laser pulses pass through a carbon disulfide CS2 nonlinear medium.The experimental results verify that the proposed method is valid for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions.展开更多
Due to the rapid development of portable,wearable and implantable electronics in the fields of mobile communications,biomonitoring,and aerospace or defense,there is an increasing demand for miniaturized and lightweigh...Due to the rapid development of portable,wearable and implantable electronics in the fields of mobile communications,biomonitoring,and aerospace or defense,there is an increasing demand for miniaturized and lightweight energy storage devices.Micro-supercapacitors(MSCs)possessing long lifetime,high power density,environment friendliness and safety,have attracted great attention recently.Since the performance of the MSCs is mainly related to the structure of the active electrode,there is a great need to explore the efficient fabricating strategies to deterministically coordinate the structure and functionality of microdevices.Considering that laser technology possesses many superior features of facility,high-precision,low-cost,high-efficiency,shape-adaptability and maneuverability,herein we summarize the development of laser technologies in MSCs manufacturing,along with their strengths and weaknesses.The current achievements and challenges are also highlighted and discussed,aiming to provide a valuable reference for the rational design and manufacture of MSCs in the future.展开更多
In this paper, the compositions in a laser absorption region can be determined from the experiment of laser impulse coupling. When the ambient pressure varies from 9325 to 33325Pa, the compositions are vapour and plas...In this paper, the compositions in a laser absorption region can be determined from the experiment of laser impulse coupling. When the ambient pressure varies from 9325 to 33325Pa, the compositions are vapour and plasma; while from 35325 to 101325Pa, they are ambient air and plasma. By analysing the relation between the degree of compression and the ambient pressure, the compositions can be determined and the variation of plasma can be explained.展开更多
We demonstrated a monolithic, compact, diode-pumped gain-switched Nd:YVO4 laser at 1.064 μm wavelength with controllable repetition rate of 1 Hz to 25 kHz. Stable gain-switched pulse train with maximum repetition rat...We demonstrated a monolithic, compact, diode-pumped gain-switched Nd:YVO4 laser at 1.064 μm wavelength with controllable repetition rate of 1 Hz to 25 kHz. Stable gain-switched pulse train with maximum repetition rate of 25 kHz and pulse width of 16 ns was obtained.展开更多
(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corros...(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corrosion resistance,which is clearly superior to that of some typical bulk HEA and common engineering alloys.In order to obtain appropriate laser cladding preparation process parameters,the effects of laser energy density on the microstructure,microhardness,and corrosion resistance of(CoCrFeNi)95Nb5 HEA coating were closely studied.Results showed that as the laser energy density increases,precipitation of the Laves phase in(CoCrFeNi)95Nb5 HEA coating gradually decreases,and diffusion of the Fe element in the substrate intensifies,affecting the integrity of the(CoCrFeNi)95Nb5 HEA.This decreases the microhardness of(CoCrFeNi)95Nb5 HEA coatings.Moreover,the relative content of Cr2O3,Cr(OH)3,and Nb2O5 in the surface passive film of the coating decreases with increasing energy density,causing corrosion resistance to decrease.This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology,which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings.展开更多
文摘1 Significance of All Solid State Laser (DPL) Technology in Field of LaserBecause of the advantages of high conversion efficiency, good beam quality, small size and light weight, DPL becomes the hotspot and priority of development of laser technology. It may be the main body of laser in the future and replace gas laser and liquid laser. It is a great revolution of laser technology.The developed countries vie in developing DPL. China has achieved great success in this field, but there is a wide gap between the developed countries and us. We should attach great importance to it.
文摘It is shown that for laser technologies it was necessary to create a new branch of physics: Relaxed Optics (synthesis of methods of the physical optics, quantum electronics, physical chemistry, physics of irreversible phenomena in unitary system). It is allowed to explain complex chain processes of interaction light and matter. Possible applications of Relaxed Optical methods for the modeling of the laser-induced processes phenomena, including laser implantation (surface and subsurface processes), laser-induced optical breakdown (volume processes) and laser annealing of radiation and other defects in solid, are discussed. Perspectives of using these methods for the creation of new laser technologies, including creation new types of optoelectronic devices (heterostructures, diffraction lattices, etc.), resolution the problems of metallurgy, material science, painting, architecture and a building, are analyzed.
文摘Hybrid laser technologies for deposition of thin films and basic schemes of combination of pulsed laser deposition (PLD) with magnetron sputtering and RF discharges or two lasers or three laser deposition systems are presented. Experiences with deposition of chromium doped diamond-like carbon (DLC) films for coating of prostheses are described. Layers of different chromium concentrations were prepared using hybrid systems (PLD + magnetron sputtering or by double PLD). Results of physical and mechanical characterization of film properties and biomedical tests of trivalent and toxic hexavalent chromium are given. Experiences with double laser deposition of DLC layers doped with silver are also mentioned.
基金supported by Grant of Russian Science Foundation No.17-15-01263.
文摘Here,we discuss an important problem in medicine as development of efctive strategies for brain drug delivery.This problem is related to the blood-brain barrier(BBB),which is a“customs”controlling the entrance of different molecules from blood into the brain protecting the normal function of central nervous system(CNS).We show three interfaces of anatomical side of BBB and two functional types of BBB一physical and transporter barriers.Although this protective mechanism is essential for health of CNS,it also creates a hindrance to the entry of drugs into the brain.The BBB was discovered over 100 years ago but till now,there is no efective methods for brain drug delivery.There ane more than 70 approaches for overcoming BBB incuding physical,chenical and biological techniques but all of these tools have limitation to be widely used in clinical practice due to invasi venes,challenge in performing,very costly or lim-itation of drug concentration.Photodynamic therapy(PDT)is usual clinical method of surgical navigation for the resection of brain tumor and anti-cancer therapy.Nowadays,the application of PDT is considered as a potential promising tool for brain drug delivery via opening of BBB.Here,we show the first sucoessful experimental results in this field discussing the adventures and disadv antages of PDT-related BBB disruption as well as altematives to overcome these limitations and possi ble mechanisms with new pathways for brain clearance via gly mphatic and lymphatic systems.
基金support from the Royal Academy of Engineering (RAEng)
文摘Few-layer molybdenum disulfide(MoS2) is emerging as a promising quasi-two-dimensional material for photonics and optoelectronics, further extending the library of suitable layered nanomaterials with exceptional optical properties for use in saturable absorber devices that enable short-pulse generation in laser systems. In this work, we catalog and review the nonlinear optical properties of few-layer MoS2, summarize recent progress in processing and integration into saturable absorber devices, and comment on the current status and future perspectives of MoS2-based pulsed lasers.
基金Teknologi og Produktion,Det Frie Forskningsrad(FTP,DFF)(ALFIE)Research Executive Agency(REA)(EU Career Integration Grant 334324LIGHTER)+2 种基金H2020 European Research Council(ERC)(ERC-617521 NLL)National Cancer Institute(NCI)(1 R01 CA166309)Max-Planck-Gesellschaft(MPG)
文摘The emission wavelength of a laser is physically predetermined by the gain medium used. Consequently, arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optical parametric generation, requiring complex optical setups and spectrally sliced supercontinuum, taking advantage of a simpler fiber technology: a fixed-wavelength pump laser pulse is converted into a spectrally very broadband output, from which the required resulting wavelength is then optically filtered. Unfortunately, this process is associated with an inherently poor noise figure, which often precludes many realistic applications of such supercontinuum sources. Here, we show that by adding only one passive optical element—a tapered photonic crystal fiber—to a fixed-wavelength femtosecond laser, one can in a very simple manner resonantly convert the laser emission wavelength into an ultra-wide and continuous range of desired wavelengths, with very low inherent noise, and without mechanical realignment of the laser. This is achieved by exploiting the double interplay of nonlinearity and chirp in the laser source and chirp and phase matching in the tapered fiber. As a first demonstration of this simple and inexpensive technology, we present a femtosecond fiber laser continuously tunable across the entire red–green–blue spectral range.
基金supported by the National Natural Science Foundation of China(Grant No.51379109)
文摘Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak,cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laserscanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation quality assessment with the laser scanning technology can be reduced by 70%e90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.
文摘This paper presents the state of art of laser technologies in Poland. A list of primary laser technology development centers is included. The involvement of Polish scientists in the development of lasers and fourth generation synchrotron light sources as well as their applications is discussed. The development of laser applications in medical therapy and diagnostics, material micro- and macro-processing as well as environmental monitoring and protection, safety, and security is presented.
基金supported by National Natural Science Foundation of China(41871010)The Second Comprehensive Scientific Expedition to the Qinghai-Tibet Plateau of China(2019QZKK0906)。
文摘The study of wind erosion processes is of great importance to the prevention and control of soil wind erosion.In this study,three structurally intact soil samples were collected from the steppe of Inner Mongolia Autonomous Region,China and placed in a wind tunnel where they were subjected to six different wind speeds(10,15,17,20,25,and 30 m/s)to simulate wind erosion in the wind tunnel.After each test,the soil surfaces were scanned by a 3D laser scanner to create a high-resolution Digital Elevation Model(DEM),and the changes in wind erosion mass and microtopography were quantified.Based on this,we performed further analysis of wind erosion-controlling factors.The study results showed that the average measurement error between the 3D laser scanning method and weighing method was 6.23%for the three undisturbed soil samples.With increasing wind speed,the microtopography on the undisturbed soil surface first became smooth,and then fine stripes and pits gradually developed.In the initial stage of wind erosion processes,the ability of the soil to resist wind erosion was mainly affected by the soil hardness.In the late stage of wind erosion processes,the degree of soil erosion was mainly affected by soil organic matter and CaCO_(3)content.The results of this study are expected to provide a theoretical basis for soil wind erosion control and promote the application of 3D laser scanners in wind erosion monitoring.
基金Supported by the National Basic Research Program of China under Grant No 2012CB933501the National Natural Science Foundation of China under Grant Nos 61307033,61274070,61137003 and 61321063
文摘A single mode hybrid Ⅲ-Ⅴ/silicon on-chip laser based on the flip-chip bonding technology for on-chip optical interconnection is demonstrated. A single mode Fabry-Perot laser structure with micro-structures on an InP ridge waveguide is designed and fabricated on an InP/AIGaInAs multiple quantum well epitaxial layer structure wafer by using i-line lithography. Then, a silicon waveguide platform including a laser mounting stage is designed and fabricated on a silicon-on-insulator substrate. The single mode laser is flip-chip bonded on the laser mounting stage. The lasing light is butt-coupling to the silicon waveguide. The laser power output from a silicon waveguide is 1.3roW, and the threshold is 37mA at room temperature and continuous wave operation.
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2011AA010303and 2012AA012203the National Basic Research Program of China under Grant No 2011CB301702the National Natural Science Foundation of China under Grant Nos 61321063 and 6132010601
文摘A 32 Gb/s monolithically integrated electroabsorption modulated laser is fabricated by selective area growth technology. The threshold current of the device is below 13mA. The output power exceeds 10mW at 0V bias when the injection current of the distributed feedback laser is 100mA at 25℃. The side mode suppression ratio is over 50 dB. A 32Gb/s eye diagram is measured with a 3.SVpp nonreturn-to-zero pseudorandom modulation signal at -2.3 V bias. A clearly opening eyediagram with a dynamic extinction ratio of 8.01 dB is obtained.
文摘After more than 30 years of scientific and social development, surveying and mapping technology by leaps and bounds, engineering surveying technology has undergone tremendous changes. In the process of protecting ancient buildings, it is necessary to obtain the precise dimensions of architectural details. In this study, the path of 3D laser scanning combined with BIM technology is explored. Taking the observation and protection of the ancestral hall of the Liu family as an example, this study aims to draw drawings that reflect the relevant information about the ancient buildings, the accurate three-dimensional model of ancient buildings is established with BIM technology, which provides new methods and ideas for the research and protection of ancient buildings. .
基金National Natural Science Foundation of China(project number:41661091)Lanzhou Jiaotong University Excellent Platform Support Project(201806)。
文摘In order to ensure the safety in using a large cylindrical storage tank,it is necessary to regularly detect its defonnatioii.The traditional total station method has high accuracy in determining the deformation,however,it has a low measxirement efficiency.Long-term observation means,there are more risks in the petrochemical plant,therefore,this paper proposes the usage of the 3D laser scanner,replacing the traditional total station to determine the defbnnation of a large cylindrical storage tank.The Matlab program,is compiled to calculate the point cloud data,while the tank deformation is analyzed from two different points which are,the local concave convex degree and the ovality degree.It is concluded that,the difference between the data obtained by 3D laser scanning,and total station is within the range of oil tank deformation limit,therefore,3D laser scanner can be used for oil tank deformation detection.
基金The National Natural Science Foundation of China(No.61171081,No.61471164)the Natural Science Foundation of Hunan Province(No.14JJ6043)
文摘To overcome the shortcomings of the single-shot autocorrelation SSA where only one pulse width is obtained when the SSA is applied to measure the pulse width of ultrashort laser pulses a modified SSA for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions is proposed. The spatiotemporal characteristics of femtosecond laser pulses output from the Ti sapphire regenerative amplifier system are experimentally measured by the proposed method. It was found that the complex spatial characteristics are measured accurately.The pulse widths at different spatial positions are various which obey the Gaussian distribution.The pulse width at the same spatial position becomes narrow with the increase in input average power when femtosecond laser pulses pass through a carbon disulfide CS2 nonlinear medium.The experimental results verify that the proposed method is valid for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions.
基金supported by the National Key R&D Program of China(2017YFB1104300)NSFC(22075019,21604003)+1 种基金the Beijing Natural Science Foundation(2152028,2164070)the Beijing Municipal Science and Technology Commission(Z161100002116022)。
文摘Due to the rapid development of portable,wearable and implantable electronics in the fields of mobile communications,biomonitoring,and aerospace or defense,there is an increasing demand for miniaturized and lightweight energy storage devices.Micro-supercapacitors(MSCs)possessing long lifetime,high power density,environment friendliness and safety,have attracted great attention recently.Since the performance of the MSCs is mainly related to the structure of the active electrode,there is a great need to explore the efficient fabricating strategies to deterministically coordinate the structure and functionality of microdevices.Considering that laser technology possesses many superior features of facility,high-precision,low-cost,high-efficiency,shape-adaptability and maneuverability,herein we summarize the development of laser technologies in MSCs manufacturing,along with their strengths and weaknesses.The current achievements and challenges are also highlighted and discussed,aiming to provide a valuable reference for the rational design and manufacture of MSCs in the future.
基金Project supported by the National Science Foundation of China (Grant Nos 60578015 and 60208004)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20050288025)
文摘In this paper, the compositions in a laser absorption region can be determined from the experiment of laser impulse coupling. When the ambient pressure varies from 9325 to 33325Pa, the compositions are vapour and plasma; while from 35325 to 101325Pa, they are ambient air and plasma. By analysing the relation between the degree of compression and the ambient pressure, the compositions can be determined and the variation of plasma can be explained.
文摘We demonstrated a monolithic, compact, diode-pumped gain-switched Nd:YVO4 laser at 1.064 μm wavelength with controllable repetition rate of 1 Hz to 25 kHz. Stable gain-switched pulse train with maximum repetition rate of 25 kHz and pulse width of 16 ns was obtained.
基金This work was financially supported by the National Key R&D Program of China(No.2018YFB0606104)the National Natural Science Foundation of China(No.51702332).
文摘(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corrosion resistance,which is clearly superior to that of some typical bulk HEA and common engineering alloys.In order to obtain appropriate laser cladding preparation process parameters,the effects of laser energy density on the microstructure,microhardness,and corrosion resistance of(CoCrFeNi)95Nb5 HEA coating were closely studied.Results showed that as the laser energy density increases,precipitation of the Laves phase in(CoCrFeNi)95Nb5 HEA coating gradually decreases,and diffusion of the Fe element in the substrate intensifies,affecting the integrity of the(CoCrFeNi)95Nb5 HEA.This decreases the microhardness of(CoCrFeNi)95Nb5 HEA coatings.Moreover,the relative content of Cr2O3,Cr(OH)3,and Nb2O5 in the surface passive film of the coating decreases with increasing energy density,causing corrosion resistance to decrease.This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology,which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings.