We demonstrate an atmospheric transfer of microwave signal over a 120 m outdoor free-space link using a compact diode laser with a timing fluctuation suppression technique.Timing fluctuation and Allan Deviation are bo...We demonstrate an atmospheric transfer of microwave signal over a 120 m outdoor free-space link using a compact diode laser with a timing fluctuation suppression technique.Timing fluctuation and Allan Deviation are both measured to characterize the instability of transferred frequency incurred during the transfer process.By transferring a 100 MHz microwave signal within 4500 s,the total root-mean-square(RMS)timing fluctuation was measured to be about 6 ps,with a fractional frequency instability on the order of 1×10-12 at 1 s,and order of 7×10-15 at 1000 s.This portable atmospheric frequency transfer scheme with timing fluctuation suppression can be used to distribute an atomic clock-based frequency over a free-space link.展开更多
Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity...Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity slip between gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) x 104 Pa. The relaxation time corresponding to this transient process is in the range of 0.015-0.090ms for the two-phase flow formed inside the LJ and less than 0.5ms outside the LJ. It demonstrates the unique performance of this system for application to fast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulations of the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside the LJ, it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach number decreases. Due to compression by the shock wave at the end of the LJ, the flow pattern becomes two dimensional and viscous outside the LJ. Laser Doppler velocirneter (LDV) measurements of droplet velocities outside the LJ are in reasonably good agreement with the results of the simulation.展开更多
Satellite laser ranging(SLR)is an unambiguous measurement technique and generates high accuracy satellite orbit data.All satellites in the BeiDou navigation satellite system(BDS)carried laser retro-reflector arrays(LR...Satellite laser ranging(SLR)is an unambiguous measurement technique and generates high accuracy satellite orbit data.All satellites in the BeiDou navigation satellite system(BDS)carried laser retro-reflector arrays(LRAs),so they can be tracked by ground SLR stations in order to provide the accurate observation data.The Shanghai astronomical observatory(SHAO)designed the LRAs,and also developed the dedicated SLR systems using a 1 m-aperture telescope and a transportable cabin-based SLR system with a telescopes of 60 cm aperture.These enable BDS satellite ranging during daytime and nighttime with centimeter-level precision,allowing highly accurate estimations of satellite orbits.Moreover,some of the BDS satellites are also equipped with laser time transfer(LTT)payloads,which were developed by the SHAO and China Academy of Space Technology(CAST),providing a highly accurate time comparison between the satellites and ground clocks.This paper describes the dedicated SLR system and the design of the LRAs for BDS satellites,as well as global SLR measurements.The SLR tracking data is used for evaluating the orbit accuracy of BDS satellites and broadcast ephemeris,with an accuracy of less than 1 m.The LTT measurements to BDS satellites for a single shot have a precision of approximately 300 picoseconds,with a time stability of 20 picoseconds in 500 s.展开更多
Using time-dependent multilevel approach (TDML), this paper studies the dynamics of coherent control of Rydberg lithium atoms and demonstrates that Rydberg lithium atoms can be transferred to states of higher princi...Using time-dependent multilevel approach (TDML), this paper studies the dynamics of coherent control of Rydberg lithium atoms and demonstrates that Rydberg lithium atoms can be transferred to states of higher principal quantum number by exposing them to specially designed frequency-chirped laser pulses. The population transfer from n=70 to n=75 states of lithium atoms with efficiency more than 90% is achieved by means of the sequential adiabatic rapid passages. The results agree well with the experimental ones and show that the coherent control of the population transfer from the lower n to the higher n states can be accomplished by the optimization of the chirping parameters and the intensity of laser field.展开更多
激光时间传递技术是通过激光脉冲在空间的传播来实现地面与卫星时钟或地球上远距离两地时钟的同步,它具有很高的准确度和稳定度。一些国家已经成功进行了激光时间传递的试验,结果证明利用激光进行时钟之间的同步是有效可行的。介绍国内...激光时间传递技术是通过激光脉冲在空间的传播来实现地面与卫星时钟或地球上远距离两地时钟的同步,它具有很高的准确度和稳定度。一些国家已经成功进行了激光时间传递的试验,结果证明利用激光进行时钟之间的同步是有效可行的。介绍国内外已有的激光时间传递试验的情况和结果,重点介绍美国地面与机载原子钟之间的激光时间比对,以及法国的LASSO(LAser Syn-chronization from Stationary Orbit)和T2L2(Time Transfer by Laser Link)计划。展开更多
基金supported by ZTE Industry-Academia-Research Cooperation Funds,the National Natural Science Foundation of China under Grant Nos.61871084 and 61601084the National Key Research and Development Program of China under Grant No.2016YFB0502003the State Key Laboratory of Advanced Optical Communication Systems and Networks,China
文摘We demonstrate an atmospheric transfer of microwave signal over a 120 m outdoor free-space link using a compact diode laser with a timing fluctuation suppression technique.Timing fluctuation and Allan Deviation are both measured to characterize the instability of transferred frequency incurred during the transfer process.By transferring a 100 MHz microwave signal within 4500 s,the total root-mean-square(RMS)timing fluctuation was measured to be about 6 ps,with a fractional frequency instability on the order of 1×10-12 at 1 s,and order of 7×10-15 at 1000 s.This portable atmospheric frequency transfer scheme with timing fluctuation suppression can be used to distribute an atomic clock-based frequency over a free-space link.
基金Supported by the National Natural Science Foundation of China (No. 29876022) and Grant of State Key Laboratory of High Speed Hydrodynamics (No. 2007).
文摘Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for supersonic two-pha.se (gas-droplet) flow in the transient section inside and outside a Laval jet(LJ). The initial velocity slip between gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) x 104 Pa. The relaxation time corresponding to this transient process is in the range of 0.015-0.090ms for the two-phase flow formed inside the LJ and less than 0.5ms outside the LJ. It demonstrates the unique performance of this system for application to fast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulations of the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside the LJ, it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach number decreases. Due to compression by the shock wave at the end of the LJ, the flow pattern becomes two dimensional and viscous outside the LJ. Laser Doppler velocirneter (LDV) measurements of droplet velocities outside the LJ are in reasonably good agreement with the results of the simulation.
基金supported by the BDS and the National Natural Science Foundation of China(Grant No.11503068,U1631240)Shanghai Key Laboratory of Space Navigation and Position Techniques(Grant No.06DZ2101)+2 种基金CAS Key Technology Talent ProgramNatural science fund of Shanghai(20ZR1467500)the Key Research Program of the Chinese Academy of Sciences(ZDRW-KT-2019-3-6)。
文摘Satellite laser ranging(SLR)is an unambiguous measurement technique and generates high accuracy satellite orbit data.All satellites in the BeiDou navigation satellite system(BDS)carried laser retro-reflector arrays(LRAs),so they can be tracked by ground SLR stations in order to provide the accurate observation data.The Shanghai astronomical observatory(SHAO)designed the LRAs,and also developed the dedicated SLR systems using a 1 m-aperture telescope and a transportable cabin-based SLR system with a telescopes of 60 cm aperture.These enable BDS satellite ranging during daytime and nighttime with centimeter-level precision,allowing highly accurate estimations of satellite orbits.Moreover,some of the BDS satellites are also equipped with laser time transfer(LTT)payloads,which were developed by the SHAO and China Academy of Space Technology(CAST),providing a highly accurate time comparison between the satellites and ground clocks.This paper describes the dedicated SLR system and the design of the LRAs for BDS satellites,as well as global SLR measurements.The SLR tracking data is used for evaluating the orbit accuracy of BDS satellites and broadcast ephemeris,with an accuracy of less than 1 m.The LTT measurements to BDS satellites for a single shot have a precision of approximately 300 picoseconds,with a time stability of 20 picoseconds in 500 s.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774039)the Basic Research Program of Education Bureau of Henan Province of China(Grant No.072300410130)
文摘Using time-dependent multilevel approach (TDML), this paper studies the dynamics of coherent control of Rydberg lithium atoms and demonstrates that Rydberg lithium atoms can be transferred to states of higher principal quantum number by exposing them to specially designed frequency-chirped laser pulses. The population transfer from n=70 to n=75 states of lithium atoms with efficiency more than 90% is achieved by means of the sequential adiabatic rapid passages. The results agree well with the experimental ones and show that the coherent control of the population transfer from the lower n to the higher n states can be accomplished by the optimization of the chirping parameters and the intensity of laser field.
文摘激光时间传递技术是通过激光脉冲在空间的传播来实现地面与卫星时钟或地球上远距离两地时钟的同步,它具有很高的准确度和稳定度。一些国家已经成功进行了激光时间传递的试验,结果证明利用激光进行时钟之间的同步是有效可行的。介绍国内外已有的激光时间传递试验的情况和结果,重点介绍美国地面与机载原子钟之间的激光时间比对,以及法国的LASSO(LAser Syn-chronization from Stationary Orbit)和T2L2(Time Transfer by Laser Link)计划。