The modified suction caisson(MSC) adds a short-skirted structure around the regular suction caissons to increase the lateral bearing capacity and limit the deflection. The MSC is suitable for acting as the offshore wi...The modified suction caisson(MSC) adds a short-skirted structure around the regular suction caissons to increase the lateral bearing capacity and limit the deflection. The MSC is suitable for acting as the offshore wind turbine foundation subjected to larger lateral loads compared with the imposed vertical loads. Determination of the lateral bearing capacity is a key issue for the MSC design. The formula estimating the lateral bearing capacity of the MSC was proposed in terms of the limit equilibrium method and was verified by the test results. Parametric studies on the lateral bearing capacity were also carried out. It was found that the lateral bearing capacity of the MSC increases with the increasing length and radius of the external skirt, and the lateral bearing capacity increases linearly with the increasing coefficient of subgrade reaction. The maximum lateral bearing capacity of the MSC is attained when the ratio of the radii of the internal compartment to the external skirt equals 0.82 and the ratio of the lengths of the external skirt to the internal compartment equals 0.48, provided that the steel usage of the MSC is kept constant.展开更多
The bucket foundation is a new type of foundation for offshore application to intermediate-depth waters. It has advantages over conventional ones. However, there is no consensus in the analysis and design of this type...The bucket foundation is a new type of foundation for offshore application to intermediate-depth waters. It has advantages over conventional ones. However, there is no consensus in the analysis and design of this type of foundation. In this paper, the lateral bearing capacity and the failure mechanism of multi-bucket foundations are studied with different connection stiffness and bucket spacing by use of a three-dimensional finite element method. Based on the numerical analysis results, a limit analysis method of plasticity for evaluating the lateral bearing capacity of large-spacing multi- bucket foundation with rigid connection in soft ground is proposed. This method provides a simple procedure that gives results comparable to those from the finite element analyses.展开更多
This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were appl...This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.展开更多
Soft clay soils cannot usually support large lateral loads,so clay soils must be improved to increase lateral resistance.The jet grouting method is one of the methods used to improve weak soils.In this paper,a series ...Soft clay soils cannot usually support large lateral loads,so clay soils must be improved to increase lateral resistance.The jet grouting method is one of the methods used to improve weak soils.In this paper,a series of 3D finite element studies were conducted using Plaxis 3D software to investigate the lateral behavior of piled rafts in improved soft clay utilizing the jet grouting method.Parametric models were analyzed to explore the influence of the width,depth,and location of the grouted clay on the lateral resistance.Additionally,the effect of vertical loads on the lateral behavior of piled rafts in grouted clay was also investigated.The numerical results indicate that the lateral resistance increases by increasing the dimensions of the jet grouting beneath and around the piled raft.Typical increases in lateral resistance are 11.2%,65%,177%,and 35%for applying jet grouting beside the raft,below the raft,below and around the raft,and grouted strips parallel to lateral loads,respectively.It was also found that increasing the depth of grouted clay enhances lateral resistance up to a certain depth,about 6 to 10 times the pile diameter(6 to 10D).In contrast,the improvement ratio is limited beyond 10D.Furthermore,the results demonstrate that the presence of vertical loads has a significant impact on sideward resistance.展开更多
It is disclosed a method for the stability analysis of foundation piles and piers subjected to lateral loading, both static and seismic conditions. The stability analysis for stratified soil is based upon the models o...It is disclosed a method for the stability analysis of foundation piles and piers subjected to lateral loading, both static and seismic conditions. The stability analysis for stratified soil is based upon the models of foundation soil-structure interaction and the Rankine's theory of earth passive pressure. In addition, its application is simpler and it can be solved using a spreadsheet. The procedure described in this work can be used in homogeneous soils as in stratified soils, considers the horizontal drag forces exerted by the soil mass against the foundation during an earthquake, can be used easily in the four pile and piers boundary cases, and considers the pore pressure generated in a fine saturated soil during an earthquake or during a rapid application of the horizontal load. The solution of two examples are shown, one in static condition and one in seismic condition, detailing the procedure step by step.展开更多
This study presents the results of field and numerical investigations of lateral stiffness, capacity, and failure mechanisms for plain piles and reinforced concrete piles in soft clay. A plastic-damage model is used t...This study presents the results of field and numerical investigations of lateral stiffness, capacity, and failure mechanisms for plain piles and reinforced concrete piles in soft clay. A plastic-damage model is used to simulate concrete piles and jet-grouting in the numerical analyses. The field study and numerical investigations show that by applying jet-grouting sur- rounding the upper 7.5D (D = pile diameter) of a pile, lateral stiffness and beating capacity of the pile are increased by about 110% and 100%, respectively. This is partially because the jet-grouting increases the apparent diameter of the pile, so as to en- large the extent of failure wedge and hence passive resistance in front of the reinforced pile. Moreover, the jet-grouting pro- vides a circumferential confinement to the concrete pile, which suppresses development of tensile stress in the pile. Corre- spondingly, tension-induced plastic damage in the concrete pile is reduced, causing less degradation of stiffness and strength of the pile than that of a plain pile. Effectiveness of the circumferential confinement provided by the jet-grouting, however, diminishes once the grouting cracks because of the significant vertical and circumferential tensile stress near its mid-depth. The lateral capacity of the jet-grouting reinforced pile is, therefore, governed by mobilized passive resistance of soil and plastic damage of jet-grouting.展开更多
The stability of a submarine pipeline on the seabed concerns the flow-pipe-soil coupling, with influential factors related to the ocean waves and/or currents, the pipeline and the surrounding soils. A flow-pipe-soil c...The stability of a submarine pipeline on the seabed concerns the flow-pipe-soil coupling, with influential factors related to the ocean waves and/or currents, the pipeline and the surrounding soils. A flow-pipe-soil coupling system generally has various instability modes, including the vertical and lateral on-bottom instabilities, the tunnel-erosion of the underlying soil and the subsequent vortex-induced vibrations(VIVs) of free-spanning pipelines. This paper reviews the recent advances of the slip-line field solutions to the bearing capacity, the flow-pipe-soil coupling mechanism and the prediction for the lateral instability, the multi-physical coupling analysis of the tunnel-erosion, and the coupling mechanics between the VIVs and the local scour. It is revealed that the mechanism competition always exists among various instability modes, e.g., the competition between the lateral-instability and the tunnel-erosion. Finally, the prospects and scientific challenges for predicting the instability of a long-distance submarine pipeline are discussed in the context of the deep-water oil and gas exploitations.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51639002 and 51379118)Shandong University of Science and Technology Scientific Found(Grant No.2015TDJH104)
文摘The modified suction caisson(MSC) adds a short-skirted structure around the regular suction caissons to increase the lateral bearing capacity and limit the deflection. The MSC is suitable for acting as the offshore wind turbine foundation subjected to larger lateral loads compared with the imposed vertical loads. Determination of the lateral bearing capacity is a key issue for the MSC design. The formula estimating the lateral bearing capacity of the MSC was proposed in terms of the limit equilibrium method and was verified by the test results. Parametric studies on the lateral bearing capacity were also carried out. It was found that the lateral bearing capacity of the MSC increases with the increasing length and radius of the external skirt, and the lateral bearing capacity increases linearly with the increasing coefficient of subgrade reaction. The maximum lateral bearing capacity of the MSC is attained when the ratio of the radii of the internal compartment to the external skirt equals 0.82 and the ratio of the lengths of the external skirt to the internal compartment equals 0.48, provided that the steel usage of the MSC is kept constant.
基金supported by the National Natural Science Foundation of China(Grant No.50639010)the Doctoral Special Branch Foundation by the Ministry of Education of China(Grant No.20060141017)
文摘The bucket foundation is a new type of foundation for offshore application to intermediate-depth waters. It has advantages over conventional ones. However, there is no consensus in the analysis and design of this type of foundation. In this paper, the lateral bearing capacity and the failure mechanism of multi-bucket foundations are studied with different connection stiffness and bucket spacing by use of a three-dimensional finite element method. Based on the numerical analysis results, a limit analysis method of plasticity for evaluating the lateral bearing capacity of large-spacing multi- bucket foundation with rigid connection in soft ground is proposed. This method provides a simple procedure that gives results comparable to those from the finite element analyses.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379118 and 51639002)SDUST Scientific Found(Grant No.2015KYTD104)
文摘This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.
文摘Soft clay soils cannot usually support large lateral loads,so clay soils must be improved to increase lateral resistance.The jet grouting method is one of the methods used to improve weak soils.In this paper,a series of 3D finite element studies were conducted using Plaxis 3D software to investigate the lateral behavior of piled rafts in improved soft clay utilizing the jet grouting method.Parametric models were analyzed to explore the influence of the width,depth,and location of the grouted clay on the lateral resistance.Additionally,the effect of vertical loads on the lateral behavior of piled rafts in grouted clay was also investigated.The numerical results indicate that the lateral resistance increases by increasing the dimensions of the jet grouting beneath and around the piled raft.Typical increases in lateral resistance are 11.2%,65%,177%,and 35%for applying jet grouting beside the raft,below the raft,below and around the raft,and grouted strips parallel to lateral loads,respectively.It was also found that increasing the depth of grouted clay enhances lateral resistance up to a certain depth,about 6 to 10 times the pile diameter(6 to 10D).In contrast,the improvement ratio is limited beyond 10D.Furthermore,the results demonstrate that the presence of vertical loads has a significant impact on sideward resistance.
文摘It is disclosed a method for the stability analysis of foundation piles and piers subjected to lateral loading, both static and seismic conditions. The stability analysis for stratified soil is based upon the models of foundation soil-structure interaction and the Rankine's theory of earth passive pressure. In addition, its application is simpler and it can be solved using a spreadsheet. The procedure described in this work can be used in homogeneous soils as in stratified soils, considers the horizontal drag forces exerted by the soil mass against the foundation during an earthquake, can be used easily in the four pile and piers boundary cases, and considers the pore pressure generated in a fine saturated soil during an earthquake or during a rapid application of the horizontal load. The solution of two examples are shown, one in static condition and one in seismic condition, detailing the procedure step by step.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.51325901)the International Science and Technology Cooperation Program of China(Grant No.2015DFE72830)State Key Program of National Natural Science of China(Grant No.51338009)
文摘This study presents the results of field and numerical investigations of lateral stiffness, capacity, and failure mechanisms for plain piles and reinforced concrete piles in soft clay. A plastic-damage model is used to simulate concrete piles and jet-grouting in the numerical analyses. The field study and numerical investigations show that by applying jet-grouting sur- rounding the upper 7.5D (D = pile diameter) of a pile, lateral stiffness and beating capacity of the pile are increased by about 110% and 100%, respectively. This is partially because the jet-grouting increases the apparent diameter of the pile, so as to en- large the extent of failure wedge and hence passive resistance in front of the reinforced pile. Moreover, the jet-grouting pro- vides a circumferential confinement to the concrete pile, which suppresses development of tensile stress in the pile. Corre- spondingly, tension-induced plastic damage in the concrete pile is reduced, causing less degradation of stiffness and strength of the pile than that of a plain pile. Effectiveness of the circumferential confinement provided by the jet-grouting, however, diminishes once the grouting cracks because of the significant vertical and circumferential tensile stress near its mid-depth. The lateral capacity of the jet-grouting reinforced pile is, therefore, governed by mobilized passive resistance of soil and plastic damage of jet-grouting.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11372319,11232012)the Strategic Priority Research Program(Type-B)of CAS(Grant No.XDB22030000)
文摘The stability of a submarine pipeline on the seabed concerns the flow-pipe-soil coupling, with influential factors related to the ocean waves and/or currents, the pipeline and the surrounding soils. A flow-pipe-soil coupling system generally has various instability modes, including the vertical and lateral on-bottom instabilities, the tunnel-erosion of the underlying soil and the subsequent vortex-induced vibrations(VIVs) of free-spanning pipelines. This paper reviews the recent advances of the slip-line field solutions to the bearing capacity, the flow-pipe-soil coupling mechanism and the prediction for the lateral instability, the multi-physical coupling analysis of the tunnel-erosion, and the coupling mechanics between the VIVs and the local scour. It is revealed that the mechanism competition always exists among various instability modes, e.g., the competition between the lateral-instability and the tunnel-erosion. Finally, the prospects and scientific challenges for predicting the instability of a long-distance submarine pipeline are discussed in the context of the deep-water oil and gas exploitations.