Potassium(K),calcium(Ca),and magnesium(Mg)are essential elements with important physiological functions in plants.Previous studies showed that leaf K,Ca,and Mg concentrations generally increase with increasing latitud...Potassium(K),calcium(Ca),and magnesium(Mg)are essential elements with important physiological functions in plants.Previous studies showed that leaf K,Ca,and Mg concentrations generally increase with increasing latitudes.However,recent meta-analyses suggested the possibility of a unimodal pattern in the concentrations of these elements along latitudinal gradients.The authenticity of this unimodal latitudinal pattern,however,requires validation through large-scale field experimental data,and exploration of the underlying mechanisms if the pattern is confirmed.Here,we collected leaves of common species of woody plants from 19 montane forests in the north-south transect of eastern China,including 322 species from 160 genera,67 families;and then determined leaf K,Ca,and Mg concentrations to explore their latitudinal patterns and driving mechanisms.Our results support unimodal latitudinal patterns for all three elements in woody plants across eastern China,with peak values at latitude 36.5±1.0°N.The shift of plant-functional-type compositions from evergreen broadleaves to deciduous broadleaves and to conifers along this latitudinal span was the key factor contributing to these patterns.Climatic factors,mainly temperature,and to a lesser extent solar radiation and precipitation,were the main environmental drivers.These factors,by altering the composition of plant communities and regulating plant physiological activities,influence the latitudinal patterns of plant nutrient concentrations.Our findings also suggest that high leaf K,Ca,and Mg concentrations may represent an adaptive strategy for plants to withstand water stress,which might be used to predict plant nutrient responses to climate changes at large scales,and broaden the understanding of biogeochemical cycling of K,Ca,and Mg.展开更多
Species richness generally decreases with increasing latitude,a biodiversity gradient that has long been considered as one of the few laws in ecology.This latitudinal diversity gradient has been observed in many major...Species richness generally decreases with increasing latitude,a biodiversity gradient that has long been considered as one of the few laws in ecology.This latitudinal diversity gradient has been observed in many major groups of organisms.In plants,the latitudinal diversity gradient has been observed in vascular plants,angiosperms,ferns,and liverworts.However,a conspicuous latitudinal diversity gradient in mosses at a global or continental scale has not been observed until now.Here,we analyze a comprehensive data set including moss species in each band of 20° in latitude worldwide.Our results show that moss species richness decreases strongly with increasing latitude,regardless of whether the globe is considered as a whole or different longitudinal segments(e.g.,Old World versus New World) are considered separately.This result holds when variation in area size among latitudinal bands is taken into account.Pearson's correlation coefficient between latitude and species richness is-0.99 for both the Northern and Southern Hemispheres.Because bryophytes are an extant lineage of early land plants and because mosses not only include most of extant species of bryophytes but also are important constituents of most terrestrial ecosystems,understanding geographic patterns of mosses is particularly important The finding of our study fills a critical knowledge gap.展开更多
Soil enzymes activities and microbial biomass have an important influence on nutrient cycling. The spatial distribution of soil enzymes activities and microbial biomass were examined along a latitudinal gradient in fa...Soil enzymes activities and microbial biomass have an important influence on nutrient cycling. The spatial distribution of soil enzymes activities and microbial biomass were examined along a latitudinal gradient in farmlands of Songliao Plain, Northeast China to assess the impact of climatic changes along the latitudinal transect on nutrient cycling in agroecosystems. Top soils (0-20 cm depth) were sampled in fields at 7 locations from north (Hallun) to south (Dashiqiao) in the end of October 2005 after maize harvest. The contents of total C, N, and P, C/N, available N, and available P increased with the latitude. The activities of invertase and acid phosphatase, microbial biomass (MB) C and N, and MBC/MBN were significantly correlated with latitude (P 〈 0.05, r^2 = 0.198, 0.635, 0.558, 0.211 and 0.317, respectively), that is, increasing with the latitude. Significant positive correlations (P 〈 0.05) were observed between invertase activity and the total N and available P, and between acid phosphatase activity and the total C, C/N, available N, total P and available P. The urease, acid phosphatase, and dehydrogenase activities were significantly correlated with the soil pH and electrical conductivity (EC) (P 〈 0.05). MBC and MBN were positively correlated with the total C, C/N, and available P (P 〈 0.05). The MBC/MBN ratio was positively correlated with the total C, total N, C/N, and available N (P 〈 0.05). The spatial distribution of soil enzyme activities and microbial biomass resulted from the changes in soil properties such as soil organic matter, soil pH, and EC, partially owing to variations in temperature and rainfall along the latitudinal gradient.展开更多
Combined studies of latitudinal and interannual variations of annual phytoplankton bloom peak in East Asian marginal seas(17°–58°N, including the northern South China Sea(SCS), Kuroshio waters, the Sea of J...Combined studies of latitudinal and interannual variations of annual phytoplankton bloom peak in East Asian marginal seas(17°–58°N, including the northern South China Sea(SCS), Kuroshio waters, the Sea of Japan and the Okhotsk Sea) are rarely. Based on satellite-retrieved ten-year(2003–2012) median timing of the annual Chlorophyll a concentration(Chl a) climax, here we report that this annual spring bloom peak generally delays from the SCS in January to the Okhotsk Sea in June at a rate of(21.20±2.86) km/d(decadal median±SD). Spring bloom is dominant feature of the phytoplankton annual cycle over these regions, except for the SCS which features winter bloom. The fluctuation of the annual peak timing is mainly within ±48 d departured from the decadal median peak date, therefore this period(the decadal median peak date ±48 d) is defined as annual spring bloom period. As sea surface temperature rises, earlier spring bloom peak timing but decreasing averaged Chl a biomass in the spring bloom period due to insufficient light is evident in the Okhotsk Sea from 2003 to 2012. For the rest of three study domains, there are no significant interannual variance trend of the peak timing and the averaged Chl a biomass. Furthermore this change of spring phytoplankton bloom timing and magnitude in the Okhotsk Sea challenges previous prediction that ocean warming would enhance algal productivity at high latitudes.展开更多
During the 2nd Chinese Arctic Research Expedition, 20 pair of atmospheric samples were collected on the cruising route from Shanghai to Arctic Ocean using NOAA/ESRL flask sampling unit. Mean concentration of CO2 and C...During the 2nd Chinese Arctic Research Expedition, 20 pair of atmospheric samples were collected on the cruising route from Shanghai to Arctic Ocean using NOAA/ESRL flask sampling unit. Mean concentration of CO2 and CH4 were analyzed in different latitude zone from 30°N to 80°N and the distribution characteristics were studied. Mean concentration of CO2 decrease toward high latitude which indicates the uptake effect of CO2 by ocean. Coinciding with the CH4 global distribution character, mean CH4 concentration increase from 45°N to the North Pole region. Regional or local air mass may influence the greenhouse gas concentrations near seashore in the middle latitude (30°N-45°N).展开更多
Three global tectonic systems that formed since the middle Jurassic (160Ma ago)are outlined based on the global map of the Cenozoic and Mesozoic tectonics edited by Ma Zongjin et al.(1996).They are the circum\|Pacific...Three global tectonic systems that formed since the middle Jurassic (160Ma ago)are outlined based on the global map of the Cenozoic and Mesozoic tectonics edited by Ma Zongjin et al.(1996).They are the circum\|Pacific tectonic system,the mid\|ocean ridge tectonic system and the intra\|continental tectonic system of the north hemisphere.The map shows that about 80% of the total length of the continental orogens are concentrate on the north hemisphere of the earth,of which a latitudinal mountain\|plateau chain occur within a zone between north latitude 20°and 50°.Seismic and volcanic activities demonstrate that the intracontinental tectonic system on the north hemisphere is still active.Whilst distribution of the continental deep\|focus earthquakes and almost ultra high\|pressure rock found so far over the World,that are assumed both related to recent or previous deep subduction of continent,along with this zone.The latitudinal mountain\|plateau chain is subdivided into four active tectonic region of Qinghai—Xizang(Tibet),Iranian,eastern mediterranean and North American,both characterized by an individual similar mountain\|plateau\|basin structure with major active boundaries or controlling faults (Fig.1).These active regions are all close to primary dynamic boundaries of continent\|continent collision.Solution of source mechanisms shows that regional tectonic stress field in these regions are dominated by a nearly NS or NNE—SSW direction compression corresponding to a local plate motions and a global compressive zone.Correlation between the formation of the continental latitudinal mountain\|plateau chain on north hemisphere and the oceanic plate tectonics is discussed using the information of the “Map of Magnetic Lineations of the World’s Ocean Basins (Cande et al.,1989)”and the Cenozoic and Mesozoic tectonic evolution in the continents.Total 49 accretion units formed during 6 accretion stages of the ocean spreading in three chief oceans (the Pacific,the India and the Atlantic)si nce 160Ma ago,are subdivided.The distinguished oceanic accretion tectonics in combination with the geometrical and kinematics data of adjust continental f ragments allowed outline of the development of the continental latitudinal tecto nic zone of north hemisphere.Whilst,two global asymmetrical geodynamic systems of north\|south an east\|west direction,that may be composed of meridional conve ction,latitudinal convection and inertial flow resulting from the variation of the Earth’s rotational velocity,are used to discuss on the two global geodynamic systems in which the intracontinental latitudinal tectonic zone developed.展开更多
The implication of density in latitudinal correction to gravity measurement is investigated and the inner Iink of the density or the level ellipsoid with its latitude is also predicted. In this paper the density inte...The implication of density in latitudinal correction to gravity measurement is investigated and the inner Iink of the density or the level ellipsoid with its latitude is also predicted. In this paper the density integral formulae or gravity potential at pole and equator of the revolving ellipsoid are derived. In accordance with the gravity potential condition at pole and on equator of tbe level ellip soid, the Iatitudinal density distribution function of the level ellipsoid is given and further the hypothesis that radial aud longitudinal mean density of the earth normally distribute along latitudinal direction and its latitudinal density on the equator is larger than those at poles is put forward.展开更多
This paper presents an engineering system approach of 2-D cylindrical model of mass balance calculations with convection,diffusion,and all potential photolysis,ozone generating and depleting chemical reactions conside...This paper presents an engineering system approach of 2-D cylindrical model of mass balance calculations with convection,diffusion,and all potential photolysis,ozone generating and depleting chemical reactions considered.This model was developed,validated,and tested under different conditions for the stratospheric ozone.The calculated ozone concentrations and profile in the stratosphere at both the Equator and mid-latitudinal location of 40°S were found to exhibit a similar and close profile and peak value of the published measured data.The discrepancy between the calculations and measurements for the average ozone concentration was shown to be less than 1%and the variation of distributions to be less than 19%.The latitudinal changes of ozone concentrations,distribution,and peak of the layer were found to shift from 9.41 ppm at mid-altitude of z=30 km at the Equator,to 7.81 ppm at z=34.5 km at 40°S,to 5.78 ppm at higher altitude z=39 km at the South Pole.The total ozone abundances at strategic latitudes at 0°S,20°S,40°S,60°S,and 90°S,were found to remain stable and not much changed,from 305 DU to 335 DU,except a smaller value of 288 DU at the South Pole.The possible explanations of ozone profile change and peak shifting as affected by solar/UV radiation,latitudinal locations,and ozone-depleting reactions were discussed and elaborated.The 2-D ozone Model presented in this paper is a robust,efficient,executable,and validated model for studying the complex ozone phenomena in the stratosphere.展开更多
The Mesozoic—Cenozoic latitudinal displacement amounts of terranes (or blocks) in the Qinghai—Tibet plateau were calculated in paleomagnetism. These terranes (or blocks) include Tarim and Qaidam blocks, East Kunlun,...The Mesozoic—Cenozoic latitudinal displacement amounts of terranes (or blocks) in the Qinghai—Tibet plateau were calculated in paleomagnetism. These terranes (or blocks) include Tarim and Qaidam blocks, East Kunlun, Baryan Har, Qiangtang, Lhasa and Himalaya terranes. The calculated results are listed in table 1. These results show that:(1) There was the latitudinal displacement difference between central area and southwestern area in the Tarim southern margin since the lower Cretaceous. There was a southward latitudinal movement from the beginning of middle Jurassic or upper Jurassic (Zhou Qingjie, 1992). The northward movement amounts of the Tarim northern margin since the Paleocene are greater than that of the Tarim southern margin. Tarim southern margin has moved northward about 1100km since the Paleocene, Tarim northern margin has done about 1700km. Qaidam has moved northward about 3100km since lower\|middle Jurassic. The northward displacement amount of Qaidam since Paleocene is about 810km, near to that of the central area, Tarim southern margin.展开更多
Climate is a key factor to determine the pattern of ecosystems;however,the latitudinal patterns of climatic variables in the arid and semiarid areas remain largely unclear when compared to humid areas.The topography o...Climate is a key factor to determine the pattern of ecosystems;however,the latitudinal patterns of climatic variables in the arid and semiarid areas remain largely unclear when compared to humid areas.The topography of the dry valleys of southwestern China plays an important role in the formation of climate.However,its impact on the climate remains qualitative.In this study,eight climatic variables from 12 meteorological stations were analyzed to explore their latitudinal patterns in the wet and dry seasons from 1961 to 2019.We also quantified the effects of local topography(RH10)on the climatic variables.The results were as follows:sunshine duration,total solar radiation,average temperature,and evaporation decreased significantly,and wind speed increased significantly with increasing latitude in the annual,wet,and dry seasons(P<0.001).Relative humidity and precipitation decreased significantly with increasing latitude in the wet season(P<0.001),and no obvious change pattern was observed in the dry season.Aridity index significantly decreased(toward dryness)with increasing latitude in the wet season and increased in the dry season(P<0.001).Wind speed had a significantly positive relationship with topography(RH10)(P<0.01),whereas precipitation and aridity index were negatively associated with topography in the wet season and positively associated with topography in the dry season.Dryness was positively associated with RH10 in the wet season,and negatively in the dry season.The results of our research could provide new perspectives for understanding the relationship between topography and drought in the dry valleys of southwestern China.展开更多
Primary result on the impact of the latitudinal distribution of whistler-mode chorus upon temporal evolution of the phase space density (PSD) of outer radiation belt energetic electrons was presented. We evaluate di...Primary result on the impact of the latitudinal distribution of whistler-mode chorus upon temporal evolution of the phase space density (PSD) of outer radiation belt energetic electrons was presented. We evaluate diffusion rates in pitch angle and momentum due to a band of chorus frequency distributed at a standard Gaussian spectrum, and solve a 2-D bounce-averaged momentum-pitch-angle Fokker-Planck equation at L = 4.5. It is shown that chorus is effective in accelerating electrons and can increase PSD for energy of ~1 MeV by a factor of 10 or more in about one day, which is consistent with observation. Moreover, the latitudinal distribution of chorus has a great impact on the acceleration of electrons. As the latitudinal distribution increases, the efficient acceleration region extends from higher pitch angles to lower pitch angles, and even covers the entire pitch angle region when chorus power reaches the maximum latitude λm = 45°.展开更多
The question of possible teleconnections between the middle latitude general circulation and the Indian south-west monsoon was investigated in this paper. Within the framework of a simple model it was shown that there...The question of possible teleconnections between the middle latitude general circulation and the Indian south-west monsoon was investigated in this paper. Within the framework of a simple model it was shown that there can exist such an interaction via the ultra-long Rossby waves.展开更多
The Ordos Basin in the western part of the North China Craton is commonly believed to be a multi-controlled oil- bearing basin. It is bounded by the Xing'an--Mongolian Orogen to the north, the Qingling Orogen to the ...The Ordos Basin in the western part of the North China Craton is commonly believed to be a multi-controlled oil- bearing basin. It is bounded by the Xing'an--Mongolian Orogen to the north, the Qingling Orogen to the south, the Lüliang mountain to the east and the Helanshan--Liupanshan mountain belt to the west. The interpretation of geophysical data reveals a latitudinal (38°) fault belt in the centre of the Ordos Basin, which controls the hydrocarbon generation, migration and accumulation in the basin. This study attempts to investigate this belt from outcrops and indicates a structurally controlled system of migration fairway within the fault belt.展开更多
The decrease in species richness toward higher latitudes is an expected biogeographical pattern.This pattern could be related to particular envi-ronmental constraints and the evolutionary history of clades.However,spe...The decrease in species richness toward higher latitudes is an expected biogeographical pattern.This pattern could be related to particular envi-ronmental constraints and the evolutionary history of clades.However,species richness does not fully represent the evolutionary history of the clades behind their distributions.Phylogenetic diversity better clarifies the role of historical factors in biogeographical patterns.We analyzed envi-ronmental and historical drivers related to latitudinal variation in species richness and phylogenetic diversity of Atlantic Forest endemic snakes.We implemented species distribution models,from voucherbased locality points,to map the snake ranges and diversity.We used generalized additive mixed models to evaluate the relationships among the diversity metrics and area,topographical roughness,and past climate change velocity since the Last Maximum Glacial in the Atlantic Forest latitudinal gradient.Contrary to the expected general pattern,species richness was higher toward higher latitudes,being positively related to past climatic stability.Species richness also increased with total area and higher topographical roughness.Phylogenetic diversity,on the other hand,showed opposite relationships related to the same factors.Phylogenetic diversity increased with lower climatic stability in lower latitudes.Thus,dimensions of diversity were affected in different ways by historical and environmental constraints in this unique and threatened biodiversity hotspot.展开更多
In this paper, the definition of latitudinal density and density flattening of the level ellipsoid is given, and integral formulas of latitudinal density for pole gravity and equator gravity are derived. According to ...In this paper, the definition of latitudinal density and density flattening of the level ellipsoid is given, and integral formulas of latitudinal density for pole gravity and equator gravity are derived. According to the pole gravity condition and equator gravity condition for the level ellipsoid, latitudinal density distribution function of the level ellipsoid is obtained. It is proved mathematically that latitudinal density of the earth's equator is larger than that of the pole, the earth's density flat-tening calculated preliminarily is 1/322, and hypothesis of the earth's latitudinal normal density is further proposed, so that theoretical preparation for studying the forming cause of the earth gravity in problems such as continent drift, mantle convection, and submarine extension is made well.展开更多
Comprehensive information on geographic patterns of leaf morphological traits in Chinese forests is still scarce.To explore the spatial patterns of leaf traits,we investigated leaf area(LA),leaf thickness(LT),specific...Comprehensive information on geographic patterns of leaf morphological traits in Chinese forests is still scarce.To explore the spatial patterns of leaf traits,we investigated leaf area(LA),leaf thickness(LT),specific leaf area(SLA),and leaf dry matter content(LDMC) across 847 species from nine typical forests along the North-South Transect of Eastern China(NSTEC) between July and August 2013,and also calculated the community weighted means(CWM) of leaf traits by determining the relative dominance of each species.Our results showed that,for all species,the means(± SE) of LA,LT,SLA,and LDMC were 2860.01 ± 135.37 mm2,0.17 ± 0.003 mm,20.15 ± 0.43 m2 kg–1,and 316.73 ± 3.81 mg g–1,respectively.Furthermore,latitudinal variation in leaf traits differed at the species and community levels.Generally,at the species level,SLA increased and LDMC decreased as latitude increased,whereas no clear latitudinal trends among LA or LT were found,which could be the result of shifts in plant functional types.When scaling up to the community level,more significant spatial patterns of leaf traits were observed(R2 = 0.46–0.71),driven by climate and soil N content.These results provided synthetic data compilation and analyses to better parameterize complex ecological models in the future,and emphasized the importance of scaling-up when studying the biogeographic patterns of plant traits.展开更多
Aims Invasive species occurrence and their effects on biodiversity may vary along latitudes.We examined the occurrence(species cover)and relative dominance(importance value)of invasive alligator weed,Alternanthera phi...Aims Invasive species occurrence and their effects on biodiversity may vary along latitudes.We examined the occurrence(species cover)and relative dominance(importance value)of invasive alligator weed,Alternanthera philoxeroides,in its terrestrial habitat in China through a large-scale latitudinal field investigation.Methods We established 59 plots along the latitudinal transect from 21°N to 37°N.We recorded species name,abundance,height and individual species coverage of plants in every quadrat.We then measuredα-species diversity variations associated with the A.philoxeroides community across the latitudinal range.We also analyzed the effect of latitude on plant species’distributions in this community by using canonical correspondence analysis(CCA).Important Findings We found that species cover and importance value of A.philoxe-roides increased in areas<35°N,but decreased at higher latitudes.Lower latitudes supported greater species diversity than higher latitudes.Small-scale invasion of A.philoxeroides was associated with higher species diversity,but community diversity was lower when A.philoxeroides species cover exceeded 36%.Community plant species changed from mesophyte to hygrophyte gradually from low to high latitude.Our research suggests that latitude had significant influences on community diversity which interacted with the biotic resistance of a community and impact of invasion.Consequently,A.philoxeroides may become more invasive and have greater negative impacts on community species diversity in higher latitudes as global climate changes.展开更多
In forest ecosystems,plant communities shape soil fungal communities through the provisioning of carbon.Although the variation in forest composition with latitude is well established,little is known about how soil fun...In forest ecosystems,plant communities shape soil fungal communities through the provisioning of carbon.Although the variation in forest composition with latitude is well established,little is known about how soil fungal communities vary with latitude.We collected soil samples from 17 forests,along a latitudinal transect in western China.Forest types covered included boreal,temperate,subtropical and tropical forests.We used 454 pyrosequencing techniques to analyze the soil communities.These data were correlated with abiotic and biotic variables to determine which factors most strongly influenced fungal community composition.Our results indicated that temperature,latitude,and plant diversity most strongly influence soil fungal community composition.Fungal diversity patterns were unimodal,with temperate forests(mid latitude)exhibiting the greatest diversity.Furthermore,these diversity patterns indicate that fungal diversity was highest in the forest systems with the lowest tree diversity(temperate forests).Different forest systems were dominated by different fungal subgroups,ectomycorrhizal fungi dominated in boreal and temperate forests;endomycorrhizal fungi dominated in the tropical rainforests,and non-mycorrhizal fungi were best represented in subtropical forests.Our results suggest that soil fungal communities are strongly dependent on vegetation type,with fungal diversity displaying an inverse relationship to plant diversity.展开更多
Iodine is an important trace element associated closely with human being, and it will influence human’s normal growth if lacking it. Meanwhile, iodine is an important catalyzer, and is important in atmospheric chemis...Iodine is an important trace element associated closely with human being, and it will influence human’s normal growth if lacking it. Meanwhile, iodine is an important catalyzer, and is important in atmospheric chemistry study. In nature, iodine is rich mainly in marine organism and sediment, and marine sediment has the largest storage of iodine. The analysis results of sediment samples obtained by the First Chinese National Arctic Research Expedition indicate that iodine contents in sediments in the Chukchi Sea and the Bering Sea are 98.1x10-6 and 73.8x10-6, respec-tively, which are higher than those in sediments of Chinese marginal seas and the southern Pacific Ocean, and show the trend of increase from low latitude to high latitude. This paper proposes a pattern of iodine latitudinal distribution on the basis of the distribution characteristic of iodine and its enrichment mechanism in sediments of the Chukchi Sea and the Bering Sea.展开更多
The acoustic Echo Intensity (EI) was recorded with 38k shipborne AcousticDoppler Current Profiler (AD-CP) in the Western Pacific in four cruises between Sept. 2001 and Oct.2002. The main Deep Scattering Layer (DSL) wa...The acoustic Echo Intensity (EI) was recorded with 38k shipborne AcousticDoppler Current Profiler (AD-CP) in the Western Pacific in four cruises between Sept. 2001 and Oct.2002. The main Deep Scattering Layer (DSL) was observed at 400m-600 m depth in the four cruises. Thelatitudinal variation of the main DSL, which has high level of back-scatter strength (BS) at highlatitude, is prominent during both nighttime and daytime. The influences of environmental conditionson the DSL are discussed. Since high-oxygen water in the north is a friendly environment of marineanimals which form the main DSL, more animals are expected to aggregate in the 400dbars-600dbarslayer in the north. Dissolved Oxygen (DO) is the principal factor that causes the main DSL to varywith latitude, and its spatial distributions result from formation and transport of North PacificIntermediate Water (NPIW).展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA26040202)the National Natural Science Foundation of China(41173083)+1 种基金SL was also supported by the National Natural Science Foundation of China(32001165)the Natural Science Foundation of Sichuan Province(2022NSFSC1753)。
文摘Potassium(K),calcium(Ca),and magnesium(Mg)are essential elements with important physiological functions in plants.Previous studies showed that leaf K,Ca,and Mg concentrations generally increase with increasing latitudes.However,recent meta-analyses suggested the possibility of a unimodal pattern in the concentrations of these elements along latitudinal gradients.The authenticity of this unimodal latitudinal pattern,however,requires validation through large-scale field experimental data,and exploration of the underlying mechanisms if the pattern is confirmed.Here,we collected leaves of common species of woody plants from 19 montane forests in the north-south transect of eastern China,including 322 species from 160 genera,67 families;and then determined leaf K,Ca,and Mg concentrations to explore their latitudinal patterns and driving mechanisms.Our results support unimodal latitudinal patterns for all three elements in woody plants across eastern China,with peak values at latitude 36.5±1.0°N.The shift of plant-functional-type compositions from evergreen broadleaves to deciduous broadleaves and to conifers along this latitudinal span was the key factor contributing to these patterns.Climatic factors,mainly temperature,and to a lesser extent solar radiation and precipitation,were the main environmental drivers.These factors,by altering the composition of plant communities and regulating plant physiological activities,influence the latitudinal patterns of plant nutrient concentrations.Our findings also suggest that high leaf K,Ca,and Mg concentrations may represent an adaptive strategy for plants to withstand water stress,which might be used to predict plant nutrient responses to climate changes at large scales,and broaden the understanding of biogeochemical cycling of K,Ca,and Mg.
文摘Species richness generally decreases with increasing latitude,a biodiversity gradient that has long been considered as one of the few laws in ecology.This latitudinal diversity gradient has been observed in many major groups of organisms.In plants,the latitudinal diversity gradient has been observed in vascular plants,angiosperms,ferns,and liverworts.However,a conspicuous latitudinal diversity gradient in mosses at a global or continental scale has not been observed until now.Here,we analyze a comprehensive data set including moss species in each band of 20° in latitude worldwide.Our results show that moss species richness decreases strongly with increasing latitude,regardless of whether the globe is considered as a whole or different longitudinal segments(e.g.,Old World versus New World) are considered separately.This result holds when variation in area size among latitudinal bands is taken into account.Pearson's correlation coefficient between latitude and species richness is-0.99 for both the Northern and Southern Hemispheres.Because bryophytes are an extant lineage of early land plants and because mosses not only include most of extant species of bryophytes but also are important constituents of most terrestrial ecosystems,understanding geographic patterns of mosses is particularly important The finding of our study fills a critical knowledge gap.
基金the National Key Basic Research Support Foundation of China (No.2005CB121105)theNational Natural Science Foundation of China (No.30670379).
文摘Soil enzymes activities and microbial biomass have an important influence on nutrient cycling. The spatial distribution of soil enzymes activities and microbial biomass were examined along a latitudinal gradient in farmlands of Songliao Plain, Northeast China to assess the impact of climatic changes along the latitudinal transect on nutrient cycling in agroecosystems. Top soils (0-20 cm depth) were sampled in fields at 7 locations from north (Hallun) to south (Dashiqiao) in the end of October 2005 after maize harvest. The contents of total C, N, and P, C/N, available N, and available P increased with the latitude. The activities of invertase and acid phosphatase, microbial biomass (MB) C and N, and MBC/MBN were significantly correlated with latitude (P 〈 0.05, r^2 = 0.198, 0.635, 0.558, 0.211 and 0.317, respectively), that is, increasing with the latitude. Significant positive correlations (P 〈 0.05) were observed between invertase activity and the total N and available P, and between acid phosphatase activity and the total C, C/N, available N, total P and available P. The urease, acid phosphatase, and dehydrogenase activities were significantly correlated with the soil pH and electrical conductivity (EC) (P 〈 0.05). MBC and MBN were positively correlated with the total C, C/N, and available P (P 〈 0.05). The MBC/MBN ratio was positively correlated with the total C, total N, C/N, and available N (P 〈 0.05). The spatial distribution of soil enzyme activities and microbial biomass resulted from the changes in soil properties such as soil organic matter, soil pH, and EC, partially owing to variations in temperature and rainfall along the latitudinal gradient.
基金The scientific research fund of the Second Institute of Oceanography,State Oceanic Administration,China under contract No.JG1417the Public Science and Technology Research Funds Projects of Ocean under contract No.201005030the National Natural Science Foundation of China under contract Nos 41476156 and 41321004
文摘Combined studies of latitudinal and interannual variations of annual phytoplankton bloom peak in East Asian marginal seas(17°–58°N, including the northern South China Sea(SCS), Kuroshio waters, the Sea of Japan and the Okhotsk Sea) are rarely. Based on satellite-retrieved ten-year(2003–2012) median timing of the annual Chlorophyll a concentration(Chl a) climax, here we report that this annual spring bloom peak generally delays from the SCS in January to the Okhotsk Sea in June at a rate of(21.20±2.86) km/d(decadal median±SD). Spring bloom is dominant feature of the phytoplankton annual cycle over these regions, except for the SCS which features winter bloom. The fluctuation of the annual peak timing is mainly within ±48 d departured from the decadal median peak date, therefore this period(the decadal median peak date ±48 d) is defined as annual spring bloom period. As sea surface temperature rises, earlier spring bloom peak timing but decreasing averaged Chl a biomass in the spring bloom period due to insufficient light is evident in the Okhotsk Sea from 2003 to 2012. For the rest of three study domains, there are no significant interannual variance trend of the peak timing and the averaged Chl a biomass. Furthermore this change of spring phytoplankton bloom timing and magnitude in the Okhotsk Sea challenges previous prediction that ocean warming would enhance algal productivity at high latitudes.
文摘During the 2nd Chinese Arctic Research Expedition, 20 pair of atmospheric samples were collected on the cruising route from Shanghai to Arctic Ocean using NOAA/ESRL flask sampling unit. Mean concentration of CO2 and CH4 were analyzed in different latitude zone from 30°N to 80°N and the distribution characteristics were studied. Mean concentration of CO2 decrease toward high latitude which indicates the uptake effect of CO2 by ocean. Coinciding with the CH4 global distribution character, mean CH4 concentration increase from 45°N to the North Pole region. Regional or local air mass may influence the greenhouse gas concentrations near seashore in the middle latitude (30°N-45°N).
文摘Three global tectonic systems that formed since the middle Jurassic (160Ma ago)are outlined based on the global map of the Cenozoic and Mesozoic tectonics edited by Ma Zongjin et al.(1996).They are the circum\|Pacific tectonic system,the mid\|ocean ridge tectonic system and the intra\|continental tectonic system of the north hemisphere.The map shows that about 80% of the total length of the continental orogens are concentrate on the north hemisphere of the earth,of which a latitudinal mountain\|plateau chain occur within a zone between north latitude 20°and 50°.Seismic and volcanic activities demonstrate that the intracontinental tectonic system on the north hemisphere is still active.Whilst distribution of the continental deep\|focus earthquakes and almost ultra high\|pressure rock found so far over the World,that are assumed both related to recent or previous deep subduction of continent,along with this zone.The latitudinal mountain\|plateau chain is subdivided into four active tectonic region of Qinghai—Xizang(Tibet),Iranian,eastern mediterranean and North American,both characterized by an individual similar mountain\|plateau\|basin structure with major active boundaries or controlling faults (Fig.1).These active regions are all close to primary dynamic boundaries of continent\|continent collision.Solution of source mechanisms shows that regional tectonic stress field in these regions are dominated by a nearly NS or NNE—SSW direction compression corresponding to a local plate motions and a global compressive zone.Correlation between the formation of the continental latitudinal mountain\|plateau chain on north hemisphere and the oceanic plate tectonics is discussed using the information of the “Map of Magnetic Lineations of the World’s Ocean Basins (Cande et al.,1989)”and the Cenozoic and Mesozoic tectonic evolution in the continents.Total 49 accretion units formed during 6 accretion stages of the ocean spreading in three chief oceans (the Pacific,the India and the Atlantic)si nce 160Ma ago,are subdivided.The distinguished oceanic accretion tectonics in combination with the geometrical and kinematics data of adjust continental f ragments allowed outline of the development of the continental latitudinal tecto nic zone of north hemisphere.Whilst,two global asymmetrical geodynamic systems of north\|south an east\|west direction,that may be composed of meridional conve ction,latitudinal convection and inertial flow resulting from the variation of the Earth’s rotational velocity,are used to discuss on the two global geodynamic systems in which the intracontinental latitudinal tectonic zone developed.
文摘The implication of density in latitudinal correction to gravity measurement is investigated and the inner Iink of the density or the level ellipsoid with its latitude is also predicted. In this paper the density integral formulae or gravity potential at pole and equator of the revolving ellipsoid are derived. In accordance with the gravity potential condition at pole and on equator of tbe level ellip soid, the Iatitudinal density distribution function of the level ellipsoid is given and further the hypothesis that radial aud longitudinal mean density of the earth normally distribute along latitudinal direction and its latitudinal density on the equator is larger than those at poles is put forward.
文摘This paper presents an engineering system approach of 2-D cylindrical model of mass balance calculations with convection,diffusion,and all potential photolysis,ozone generating and depleting chemical reactions considered.This model was developed,validated,and tested under different conditions for the stratospheric ozone.The calculated ozone concentrations and profile in the stratosphere at both the Equator and mid-latitudinal location of 40°S were found to exhibit a similar and close profile and peak value of the published measured data.The discrepancy between the calculations and measurements for the average ozone concentration was shown to be less than 1%and the variation of distributions to be less than 19%.The latitudinal changes of ozone concentrations,distribution,and peak of the layer were found to shift from 9.41 ppm at mid-altitude of z=30 km at the Equator,to 7.81 ppm at z=34.5 km at 40°S,to 5.78 ppm at higher altitude z=39 km at the South Pole.The total ozone abundances at strategic latitudes at 0°S,20°S,40°S,60°S,and 90°S,were found to remain stable and not much changed,from 305 DU to 335 DU,except a smaller value of 288 DU at the South Pole.The possible explanations of ozone profile change and peak shifting as affected by solar/UV radiation,latitudinal locations,and ozone-depleting reactions were discussed and elaborated.The 2-D ozone Model presented in this paper is a robust,efficient,executable,and validated model for studying the complex ozone phenomena in the stratosphere.
文摘The Mesozoic—Cenozoic latitudinal displacement amounts of terranes (or blocks) in the Qinghai—Tibet plateau were calculated in paleomagnetism. These terranes (or blocks) include Tarim and Qaidam blocks, East Kunlun, Baryan Har, Qiangtang, Lhasa and Himalaya terranes. The calculated results are listed in table 1. These results show that:(1) There was the latitudinal displacement difference between central area and southwestern area in the Tarim southern margin since the lower Cretaceous. There was a southward latitudinal movement from the beginning of middle Jurassic or upper Jurassic (Zhou Qingjie, 1992). The northward movement amounts of the Tarim northern margin since the Paleocene are greater than that of the Tarim southern margin. Tarim southern margin has moved northward about 1100km since the Paleocene, Tarim northern margin has done about 1700km. Qaidam has moved northward about 3100km since lower\|middle Jurassic. The northward displacement amount of Qaidam since Paleocene is about 810km, near to that of the central area, Tarim southern margin.
基金supported by the National Key Research and Development Program of China(2017YFC0505105)。
文摘Climate is a key factor to determine the pattern of ecosystems;however,the latitudinal patterns of climatic variables in the arid and semiarid areas remain largely unclear when compared to humid areas.The topography of the dry valleys of southwestern China plays an important role in the formation of climate.However,its impact on the climate remains qualitative.In this study,eight climatic variables from 12 meteorological stations were analyzed to explore their latitudinal patterns in the wet and dry seasons from 1961 to 2019.We also quantified the effects of local topography(RH10)on the climatic variables.The results were as follows:sunshine duration,total solar radiation,average temperature,and evaporation decreased significantly,and wind speed increased significantly with increasing latitude in the annual,wet,and dry seasons(P<0.001).Relative humidity and precipitation decreased significantly with increasing latitude in the wet season(P<0.001),and no obvious change pattern was observed in the dry season.Aridity index significantly decreased(toward dryness)with increasing latitude in the wet season and increased in the dry season(P<0.001).Wind speed had a significantly positive relationship with topography(RH10)(P<0.01),whereas precipitation and aridity index were negatively associated with topography in the wet season and positively associated with topography in the dry season.Dryness was positively associated with RH10 in the wet season,and negatively in the dry season.The results of our research could provide new perspectives for understanding the relationship between topography and drought in the dry valleys of southwestern China.
基金National Natural Science Foundation of China (Nos.40774078,40774079 and 40874076)the Special Fund for Public Welfare Industry of China (Meteorology)CYHY200806024the Visiting Scholar Foundation of State Key Laboratory for Space Weather,CAS
文摘Primary result on the impact of the latitudinal distribution of whistler-mode chorus upon temporal evolution of the phase space density (PSD) of outer radiation belt energetic electrons was presented. We evaluate diffusion rates in pitch angle and momentum due to a band of chorus frequency distributed at a standard Gaussian spectrum, and solve a 2-D bounce-averaged momentum-pitch-angle Fokker-Planck equation at L = 4.5. It is shown that chorus is effective in accelerating electrons and can increase PSD for energy of ~1 MeV by a factor of 10 or more in about one day, which is consistent with observation. Moreover, the latitudinal distribution of chorus has a great impact on the acceleration of electrons. As the latitudinal distribution increases, the efficient acceleration region extends from higher pitch angles to lower pitch angles, and even covers the entire pitch angle region when chorus power reaches the maximum latitude λm = 45°.
文摘The question of possible teleconnections between the middle latitude general circulation and the Indian south-west monsoon was investigated in this paper. Within the framework of a simple model it was shown that there can exist such an interaction via the ultra-long Rossby waves.
文摘The Ordos Basin in the western part of the North China Craton is commonly believed to be a multi-controlled oil- bearing basin. It is bounded by the Xing'an--Mongolian Orogen to the north, the Qingling Orogen to the south, the Lüliang mountain to the east and the Helanshan--Liupanshan mountain belt to the west. The interpretation of geophysical data reveals a latitudinal (38°) fault belt in the centre of the Ordos Basin, which controls the hydrocarbon generation, migration and accumulation in the basin. This study attempts to investigate this belt from outcrops and indicates a structurally controlled system of migration fairway within the fault belt.
基金supported by grants from Fundacao de Amparo a Pesquisa do Estado de Sao Paulo(FAPESP 2014/23677-9 and 2020/12658-4)Conselho Nacional de Desenvolvimento Cientifico e Tecnol6gico(CNPq,405447/2016-7).R.J.S.thanks CNPq for the research fellowship(307956/2022-9).J.A.R.A.thanks Instituto Serrapilheira for the postdoctoral fellowship.
文摘The decrease in species richness toward higher latitudes is an expected biogeographical pattern.This pattern could be related to particular envi-ronmental constraints and the evolutionary history of clades.However,species richness does not fully represent the evolutionary history of the clades behind their distributions.Phylogenetic diversity better clarifies the role of historical factors in biogeographical patterns.We analyzed envi-ronmental and historical drivers related to latitudinal variation in species richness and phylogenetic diversity of Atlantic Forest endemic snakes.We implemented species distribution models,from voucherbased locality points,to map the snake ranges and diversity.We used generalized additive mixed models to evaluate the relationships among the diversity metrics and area,topographical roughness,and past climate change velocity since the Last Maximum Glacial in the Atlantic Forest latitudinal gradient.Contrary to the expected general pattern,species richness was higher toward higher latitudes,being positively related to past climatic stability.Species richness also increased with total area and higher topographical roughness.Phylogenetic diversity,on the other hand,showed opposite relationships related to the same factors.Phylogenetic diversity increased with lower climatic stability in lower latitudes.Thus,dimensions of diversity were affected in different ways by historical and environmental constraints in this unique and threatened biodiversity hotspot.
基金President Foundation of the Chinese Academy of Sciences and Postdoctoral Foundation of Tongji University.
文摘In this paper, the definition of latitudinal density and density flattening of the level ellipsoid is given, and integral formulas of latitudinal density for pole gravity and equator gravity are derived. According to the pole gravity condition and equator gravity condition for the level ellipsoid, latitudinal density distribution function of the level ellipsoid is obtained. It is proved mathematically that latitudinal density of the earth's equator is larger than that of the pole, the earth's density flat-tening calculated preliminarily is 1/322, and hypothesis of the earth's latitudinal normal density is further proposed, so that theoretical preparation for studying the forming cause of the earth gravity in problems such as continent drift, mantle convection, and submarine extension is made well.
基金National Natural Science Foundation of China,No.31290221,No.31470506Chinese Academy of Sciences Strategic Priority Research Program,No.XDA05050702Program for Kezhen Distinguished Talents in Institute of Geographic Sciences and Natural Resources Research,CAS,No.2013RC102
文摘Comprehensive information on geographic patterns of leaf morphological traits in Chinese forests is still scarce.To explore the spatial patterns of leaf traits,we investigated leaf area(LA),leaf thickness(LT),specific leaf area(SLA),and leaf dry matter content(LDMC) across 847 species from nine typical forests along the North-South Transect of Eastern China(NSTEC) between July and August 2013,and also calculated the community weighted means(CWM) of leaf traits by determining the relative dominance of each species.Our results showed that,for all species,the means(± SE) of LA,LT,SLA,and LDMC were 2860.01 ± 135.37 mm2,0.17 ± 0.003 mm,20.15 ± 0.43 m2 kg–1,and 316.73 ± 3.81 mg g–1,respectively.Furthermore,latitudinal variation in leaf traits differed at the species and community levels.Generally,at the species level,SLA increased and LDMC decreased as latitude increased,whereas no clear latitudinal trends among LA or LT were found,which could be the result of shifts in plant functional types.When scaling up to the community level,more significant spatial patterns of leaf traits were observed(R2 = 0.46–0.71),driven by climate and soil N content.These results provided synthetic data compilation and analyses to better parameterize complex ecological models in the future,and emphasized the importance of scaling-up when studying the biogeographic patterns of plant traits.
基金Knowledge Innovation Program of Wuhan Botanical Garden(Y455437H05)supported by a National Science Foundation Postdoctoral Research Fellowship.
文摘Aims Invasive species occurrence and their effects on biodiversity may vary along latitudes.We examined the occurrence(species cover)and relative dominance(importance value)of invasive alligator weed,Alternanthera philoxeroides,in its terrestrial habitat in China through a large-scale latitudinal field investigation.Methods We established 59 plots along the latitudinal transect from 21°N to 37°N.We recorded species name,abundance,height and individual species coverage of plants in every quadrat.We then measuredα-species diversity variations associated with the A.philoxeroides community across the latitudinal range.We also analyzed the effect of latitude on plant species’distributions in this community by using canonical correspondence analysis(CCA).Important Findings We found that species cover and importance value of A.philoxe-roides increased in areas<35°N,but decreased at higher latitudes.Lower latitudes supported greater species diversity than higher latitudes.Small-scale invasion of A.philoxeroides was associated with higher species diversity,but community diversity was lower when A.philoxeroides species cover exceeded 36%.Community plant species changed from mesophyte to hygrophyte gradually from low to high latitude.Our research suggests that latitude had significant influences on community diversity which interacted with the biotic resistance of a community and impact of invasion.Consequently,A.philoxeroides may become more invasive and have greater negative impacts on community species diversity in higher latitudes as global climate changes.
基金This study was supported by grants from Ministry of Science and Technology(MOST)of China(973 Program No.2012CB416904)National Natural Science Foundation of China(No.90302013)+2 种基金Natural Science Foundation of Yunnan(2005C0056M)Wang K.C.Foundation,and grants(DEB-0620910,DEB-0218039)from U.S.National Science FoundationThe work was also partially funded by the CG Research Program 6:Forests,Trees and Agroforestry.ADNA sequence data are available via GenBank(accession no.KF411754-KF412201).
文摘In forest ecosystems,plant communities shape soil fungal communities through the provisioning of carbon.Although the variation in forest composition with latitude is well established,little is known about how soil fungal communities vary with latitude.We collected soil samples from 17 forests,along a latitudinal transect in western China.Forest types covered included boreal,temperate,subtropical and tropical forests.We used 454 pyrosequencing techniques to analyze the soil communities.These data were correlated with abiotic and biotic variables to determine which factors most strongly influenced fungal community composition.Our results indicated that temperature,latitude,and plant diversity most strongly influence soil fungal community composition.Fungal diversity patterns were unimodal,with temperate forests(mid latitude)exhibiting the greatest diversity.Furthermore,these diversity patterns indicate that fungal diversity was highest in the forest systems with the lowest tree diversity(temperate forests).Different forest systems were dominated by different fungal subgroups,ectomycorrhizal fungi dominated in boreal and temperate forests;endomycorrhizal fungi dominated in the tropical rainforests,and non-mycorrhizal fungi were best represented in subtropical forests.Our results suggest that soil fungal communities are strongly dependent on vegetation type,with fungal diversity displaying an inverse relationship to plant diversity.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 49873015 40176017) and the Special Foundation for the First Chinese National Arctic Research Expedition.
文摘Iodine is an important trace element associated closely with human being, and it will influence human’s normal growth if lacking it. Meanwhile, iodine is an important catalyzer, and is important in atmospheric chemistry study. In nature, iodine is rich mainly in marine organism and sediment, and marine sediment has the largest storage of iodine. The analysis results of sediment samples obtained by the First Chinese National Arctic Research Expedition indicate that iodine contents in sediments in the Chukchi Sea and the Bering Sea are 98.1x10-6 and 73.8x10-6, respec-tively, which are higher than those in sediments of Chinese marginal seas and the southern Pacific Ocean, and show the trend of increase from low latitude to high latitude. This paper proposes a pattern of iodine latitudinal distribution on the basis of the distribution characteristic of iodine and its enrichment mechanism in sediments of the Chukchi Sea and the Bering Sea.
文摘The acoustic Echo Intensity (EI) was recorded with 38k shipborne AcousticDoppler Current Profiler (AD-CP) in the Western Pacific in four cruises between Sept. 2001 and Oct.2002. The main Deep Scattering Layer (DSL) was observed at 400m-600 m depth in the four cruises. Thelatitudinal variation of the main DSL, which has high level of back-scatter strength (BS) at highlatitude, is prominent during both nighttime and daytime. The influences of environmental conditionson the DSL are discussed. Since high-oxygen water in the north is a friendly environment of marineanimals which form the main DSL, more animals are expected to aggregate in the 400dbars-600dbarslayer in the north. Dissolved Oxygen (DO) is the principal factor that causes the main DSL to varywith latitude, and its spatial distributions result from formation and transport of North PacificIntermediate Water (NPIW).