Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the proto...Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the protocol without considering the communication time-delay is presented,and by using Lyapunov stability theory,the sufficient condition of stability for this multi-agent system is presented.Further,considering the communication time-delay,the effectiveness of the protocol based on Lyapunov-Krasovskii function is demonstrated.The main contribution of the proposed protocols is that,as well as the velocity consensus is considered,the formation control is concerned for multi-agent systems described as the second-order equations.Finally,numerical examples are presented to illustrate the effectiveness of the proposed protocols.展开更多
In this paper, the robust analysis and design of leader-following output regulation for multi-agent systems described by general linear models is given in presence of timevarying delay and model uncertainty. To this a...In this paper, the robust analysis and design of leader-following output regulation for multi-agent systems described by general linear models is given in presence of timevarying delay and model uncertainty. To this aim, a new regulation protocol for the closed-loop multi-agent system under a directed graph is proposed. An important specification of the proposed protocol is to guarantee the leader-following output regulation for uncertain multi-agent systems with both stable and unstable agents. Since many signals can be approximated by a combination of the stationary and ramp signals, the presented results work for adequate variety of the leaders. The analysis and design conditions are presented in terms of certain matrix inequalities. The method proposed can be used for both stationary and ramp leaders. Simulation results are presented to show the effectiveness of the proposed method.展开更多
Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle's...Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle's invariance principle, the control protocol of each agent using local information is designed, and the detailed analysis of the leader- following finite-time consensus is provided. Some examples and simulation results are given to illustrate the effectiveness of the obtained theoretical results.展开更多
The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow t...The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow the trajectories of a virtual leader despite communication faults considered as smooth time-varying delays dependent on the distance between the agents.Linear matrix inequalities(LMIs)-based conditions are obtained to synthesize a controller gain that guarantees stability of the synchronization error.Based on the closed-loop system,an event-triggered mechanism is designed to reduce the control law update and information exchange in order to reduce energy consumption.The proposed approach is implemented in a real platform of a fleet of unmanned aerial vehicles(UAVs)under communication faults.A comparison between a state-of-the-art technique and the proposed technique has been provided,demonstrating the performance improvement brought by the proposed approach.展开更多
Based on the strategy of information feedback from followers to the leader, flocking control of a group of agents with a leader is studied. The leader tracks a pre-defined trajectory and at the same time the leader us...Based on the strategy of information feedback from followers to the leader, flocking control of a group of agents with a leader is studied. The leader tracks a pre-defined trajectory and at the same time the leader uses the feedback information from followers to the leader to modify its motion. The advantage of this control scheme is that it reduces the tracking errors and improves the robustness of the team cohesion to followers' faults. The results of simulation are provided to illustrate that information feedback can improve the performance of the system.展开更多
Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assu...Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree. By utilizing the relative outputs of neighboring agents, a reduced-order observer is designed for each following agent. A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation. A sufficient condition is given to ensure that the discrete-time linear multi-agent system can achieve the expected leader-following formation.Finally, numerical examples are provided so as to demonstrate the effectiveness of the obtained results.展开更多
Leader-following consensus of fractional order multi-agent systems is investigated. The agents are considered as discrete-time fractional order integrators or fractional order double-integrators. Moreover, the interac...Leader-following consensus of fractional order multi-agent systems is investigated. The agents are considered as discrete-time fractional order integrators or fractional order double-integrators. Moreover, the interaction between the agents is described with an undirected communication graph with a fixed topology. It is shown that the leader-following consensus problem for the considered agents could be converted to the asymptotic stability analysis of a discrete-time fractional order system. Based on this idea, sufficient conditions to reach the leader-following consensus in terms of the controller parameters are extracted. This leads to an appropriate region in the controller parameters space. Numerical simulations are provided to show the performance of the proposed leader-following consensus approach.展开更多
The distributed leader-following consensus for nonlinear multi-agent systems in strict-feedback forms is investigated under directed topology. Firstly, each follower node is modeled by an integrator incorporating with...The distributed leader-following consensus for nonlinear multi-agent systems in strict-feedback forms is investigated under directed topology. Firstly, each follower node is modeled by an integrator incorporating with nonlinear dynamics. The leader node is modeled as an autonomous nonlinear system which sends its information to one or more followers. Then, a simple and novel distributed protocol is proposed based only on the state feedback, under which the states of the followers ultimately synchronize to the leader. By using Lyapunov stability theorem and matrix theory, it is proved that the distributed leader-following consensus of nonlinear multi-agent systems with strict-feedback form is guaranteed by Lipschitz continuous control laws. Finally, some numerical simulations are provided to show the effectiveness of the developed method.展开更多
This paper concerns minimum-energy leader-following formation design and analysis problems of distributed multiagent systems(DMASs)subjected to randomly switching topologies and aperiodic communication pauses.The crit...This paper concerns minimum-energy leader-following formation design and analysis problems of distributed multiagent systems(DMASs)subjected to randomly switching topologies and aperiodic communication pauses.The critical feature of this paper is that the energy consumption during the formation control process is restricted by the minimum-energy constraint in the sense of the linear matrix inequality.Firstly,the leader-following formation control protocol is proposed based on the relative state information of neighboring agents,where the total energy consumption is considered.Then,minimum-energy leader-following formation design and analysis criteria are presented in the form of the linear matrix inequality,which can be checked by the generalized eigenvalue method.Especially,the value of the minimum-energy constraint is determined.An illustrative simulation is provided to show the effectiveness of the main results.展开更多
This paper considers a leader-following consensus problem for first-order linear multi-agent systems with constant input and communication time-delays. Based on the idea of cyber physical systems, the use of control s...This paper considers a leader-following consensus problem for first-order linear multi-agent systems with constant input and communication time-delays. Based on the idea of cyber physical systems, the use of control states of neighboring agents, a new distributed control protocol is presented. Furthermore, in terms of linear matrix inequalities, sufficient conditions of leader-following consensus for multi-agent systems with constant input, communication and input time-delays are presented respectively. Numerical simulations on multi-agent systems are presented to demonstrate the efficiency of the proposed criteria.展开更多
This work is concerned with consensus control for a class of leader-following multi-agentsystems (MASs).The information that each agent received is corrupted by measurement noises.Toreduce the impact of noises on cons...This work is concerned with consensus control for a class of leader-following multi-agentsystems (MASs).The information that each agent received is corrupted by measurement noises.Toreduce the impact of noises on consensus,time-varying consensus gains are adopted,based on whichconsensus protocols are designed.By using the tools of stochastic analysis and algebraic graph theory,asufficient condition is obtained for the protocol to ensure strong mean square consensus under the fixedtopologies.This condition is shown to be necessary and sufficient in the noise-free case.Furthermore,by using a common Lyapunov function,the result is extended to the switching topology case.展开更多
This paper studies the leader-following attitude coordination problems of multiple spacecraft in the presence of inertia parameter uncertainties. To achieve attitude coordination in the situation that even the leader&...This paper studies the leader-following attitude coordination problems of multiple spacecraft in the presence of inertia parameter uncertainties. To achieve attitude coordination in the situation that even the leader's attitude is only applicable to a part of the following spacecraft, a nonlinear attitude observer is proposed to obtain an accurate estimation of the leader's attitude and angular velocity for all the followers. In addition, a distributed control scheme based on noncertainty equivalence principle is presented for multiple spacecraft' attitude synchronization. With a dynamic scaling, attitude consensus can be achieved asymptotically without any information of the bounds of the uncertain inertia parameters. Furthermore, once the estimations of inertia parameters reach their ideal values, the estimation process will stop and the ideal value of inertia parameter will be held. This is a special advantage of parameter estimation method based on non-certainty equivalence. Numerical simulations are presented to demonstrate that the proposed non-certainty equivalence-based method requires smaller control toque and converges faster compared with the certainty equivalence-based method.展开更多
In this paper, the adaptive event-based control approach is applied to study leader-following consensus of multi-agent systems with linear dynamic models. Adaptive event-based controller and triggering function for ea...In this paper, the adaptive event-based control approach is applied to study leader-following consensus of multi-agent systems with linear dynamic models. Adaptive event-based controller and triggering function for each agent are designed, where the adaptive function is only dependent on its own event time instants. A sufficient condition on consensus is proposed, which shows that the adaptive event-based method presented in this paper not only can reduce the communication among neighboring agents, but also can determine the event time instants for each agent without using the global information. Furthermore, the Zeno-behavior for the concerned closed-loop system is excluded. Finally, an example is presented to ilhistratc the effectiveness of the obtained theoretical results.展开更多
In this paper, the leader-following consensus for discrete-time nmlti-agent systems with parameter uncertainties is investigated based on the event-triggered strategy. And the parameter un- certainty is assmned to be ...In this paper, the leader-following consensus for discrete-time nmlti-agent systems with parameter uncertainties is investigated based on the event-triggered strategy. And the parameter un- certainty is assmned to be norm-bounded. A consensus protocol is designed based on the event-triggered strategy to make the multi-agent systems achieve consensus without continuous communication among agents. Each agent only needs to observe its own state to determine its own triggering instants under the triggering function in this paper. In addition, a sufficient condition for the existence of the event- triggered consensus protocol is derived and presented in terms of the linear matrix inequality. Finally, a numerical example is given to illustrate to efficiency of the event-triggered consensus protocol proposed in this paper.展开更多
The problem of guidance law is investigated for multiple interceptors to attack a target cooperatively.A leader-following cooperative guidance strategy is presented to render the leader and the followers reach the tar...The problem of guidance law is investigated for multiple interceptors to attack a target cooperatively.A leader-following cooperative guidance strategy is presented to render the leader and the followers reach the target at specified impact time.The guidance law of leader is given to meet the demand of specified impact time.The arrival time is synchronized by enforcing the ranges-to-go of followers keep consensus with that of leader.The convergence time bound is estimated without dependence on the initial states,since the proposed leader-following cooperative guidance law is fixed-time convergent.The simulation is developed to validate the availability of proposed cooperative guidance law.展开更多
In this study, we investigate the leader-following consensus problem of a class of heterogeneous secondorder nonlinear multi-agent systems subject to disturbances. In particular, the nonlinear systems contain uncertai...In this study, we investigate the leader-following consensus problem of a class of heterogeneous secondorder nonlinear multi-agent systems subject to disturbances. In particular, the nonlinear systems contain uncertainties that can be linearly parameterized. We propose a class of novel distributed control laws, which depends on the relative state of the system and thus can be implemented even when no communication among agents exists. By Barbalat's lemma, we demonstrate that consensus of the second-order nonlinear multi-agent system can be achieved by the proposed distributed control law. The effectiveness of the main result is verified by its application to consensus control of a group of Van der Pol oscillators.展开更多
基金supported by the National Natural Science Foundation of China (6093400361074065)+1 种基金the National Basic Research Program of China (973 Program) (2010CB731800)the Key Project for Natural Science Research of Hebei Education Department (ZD200908)
文摘Two protocols are presented,which can make agents reach consensus while achieving and preserving the desired formation in fixed topology with and without communication timedelay for multi-agent network.First,the protocol without considering the communication time-delay is presented,and by using Lyapunov stability theory,the sufficient condition of stability for this multi-agent system is presented.Further,considering the communication time-delay,the effectiveness of the protocol based on Lyapunov-Krasovskii function is demonstrated.The main contribution of the proposed protocols is that,as well as the velocity consensus is considered,the formation control is concerned for multi-agent systems described as the second-order equations.Finally,numerical examples are presented to illustrate the effectiveness of the proposed protocols.
基金supported by the Natural Science and Engineering Research Council(NSERC)of Canada(RES0001828)
文摘In this paper, the robust analysis and design of leader-following output regulation for multi-agent systems described by general linear models is given in presence of timevarying delay and model uncertainty. To this aim, a new regulation protocol for the closed-loop multi-agent system under a directed graph is proposed. An important specification of the proposed protocol is to guarantee the leader-following output regulation for uncertain multi-agent systems with both stable and unstable agents. Since many signals can be approximated by a combination of the stationary and ramp signals, the presented results work for adequate variety of the leaders. The analysis and design conditions are presented in terms of certain matrix inequalities. The method proposed can be used for both stationary and ramp leaders. Simulation results are presented to show the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60834002,60873021,and 61004042)the Youth Science Research Project of Chongqing University of Posts and Telecommunications,China(Grant No.A2012-82)the Doctor Start-up Foundation of Chongqing University of Posts and Telecommunications,China(Grant No.A2012-23)
文摘Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle's invariance principle, the control protocol of each agent using local information is designed, and the detailed analysis of the leader- following finite-time consensus is provided. Some examples and simulation results are given to illustrate the effectiveness of the obtained theoretical results.
文摘The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow the trajectories of a virtual leader despite communication faults considered as smooth time-varying delays dependent on the distance between the agents.Linear matrix inequalities(LMIs)-based conditions are obtained to synthesize a controller gain that guarantees stability of the synchronization error.Based on the closed-loop system,an event-triggered mechanism is designed to reduce the control law update and information exchange in order to reduce energy consumption.The proposed approach is implemented in a real platform of a fleet of unmanned aerial vehicles(UAVs)under communication faults.A comparison between a state-of-the-art technique and the proposed technique has been provided,demonstrating the performance improvement brought by the proposed approach.
基金supported by the National Natural Science Foundation of China(60574088).
文摘Based on the strategy of information feedback from followers to the leader, flocking control of a group of agents with a leader is studied. The leader tracks a pre-defined trajectory and at the same time the leader uses the feedback information from followers to the leader to modify its motion. The advantage of this control scheme is that it reduces the tracking errors and improves the robustness of the team cohesion to followers' faults. The results of simulation are provided to illustrate that information feedback can improve the performance of the system.
基金supported by National Natural Science Foundation of China(61573200,61973175)the Fundamental Research Funds for the Central Universities,Nankai University(63201196)。
文摘Formation control of discrete-time linear multi-agent systems using directed switching topology is considered in this work via a reduced-order observer, in which a formation control protocol is proposed under the assumption that each directed communication topology has a directed spanning tree. By utilizing the relative outputs of neighboring agents, a reduced-order observer is designed for each following agent. A multi-step control algorithm is established based on the Lyapunov method and the modified discrete-time algebraic Riccati equation. A sufficient condition is given to ensure that the discrete-time linear multi-agent system can achieve the expected leader-following formation.Finally, numerical examples are provided so as to demonstrate the effectiveness of the obtained results.
文摘Leader-following consensus of fractional order multi-agent systems is investigated. The agents are considered as discrete-time fractional order integrators or fractional order double-integrators. Moreover, the interaction between the agents is described with an undirected communication graph with a fixed topology. It is shown that the leader-following consensus problem for the considered agents could be converted to the asymptotic stability analysis of a discrete-time fractional order system. Based on this idea, sufficient conditions to reach the leader-following consensus in terms of the controller parameters are extracted. This leads to an appropriate region in the controller parameters space. Numerical simulations are provided to show the performance of the proposed leader-following consensus approach.
基金National Natural Science Foundation of China(No.61374024)
文摘The distributed leader-following consensus for nonlinear multi-agent systems in strict-feedback forms is investigated under directed topology. Firstly, each follower node is modeled by an integrator incorporating with nonlinear dynamics. The leader node is modeled as an autonomous nonlinear system which sends its information to one or more followers. Then, a simple and novel distributed protocol is proposed based only on the state feedback, under which the states of the followers ultimately synchronize to the leader. By using Lyapunov stability theorem and matrix theory, it is proved that the distributed leader-following consensus of nonlinear multi-agent systems with strict-feedback form is guaranteed by Lipschitz continuous control laws. Finally, some numerical simulations are provided to show the effectiveness of the developed method.
基金the National Natural Science Foundation of China(62176263,62103434,62003363)the Science Foundation for Distinguished Youth of Shaanxi Province(2021JC-35)+2 种基金the Youth Talent Promotion Program of Shaanxi Provincial Association for Science and Technology(20220123)the Natural Science Basic Research Program of Shaanxi Province(2022KJXX-99)the National Defense Basic Research Program of Technology and Industry for National Defense(JCKY2021912B001).
文摘This paper concerns minimum-energy leader-following formation design and analysis problems of distributed multiagent systems(DMASs)subjected to randomly switching topologies and aperiodic communication pauses.The critical feature of this paper is that the energy consumption during the formation control process is restricted by the minimum-energy constraint in the sense of the linear matrix inequality.Firstly,the leader-following formation control protocol is proposed based on the relative state information of neighboring agents,where the total energy consumption is considered.Then,minimum-energy leader-following formation design and analysis criteria are presented in the form of the linear matrix inequality,which can be checked by the generalized eigenvalue method.Especially,the value of the minimum-energy constraint is determined.An illustrative simulation is provided to show the effectiveness of the main results.
基金Supported by the National Key R&D Program of China(No.2016YFC0801700,2017YFC0805200)
文摘This paper considers a leader-following consensus problem for first-order linear multi-agent systems with constant input and communication time-delays. Based on the idea of cyber physical systems, the use of control states of neighboring agents, a new distributed control protocol is presented. Furthermore, in terms of linear matrix inequalities, sufficient conditions of leader-following consensus for multi-agent systems with constant input, communication and input time-delays are presented respectively. Numerical simulations on multi-agent systems are presented to demonstrate the efficiency of the proposed criteria.
基金supported by the National Natural Science Foundation of China under Grant Nos. 60821091 and 60934006Part of this work was presented at the 17th IFAC World Congress, Seoul, Korea, July 2008
文摘This work is concerned with consensus control for a class of leader-following multi-agentsystems (MASs).The information that each agent received is corrupted by measurement noises.Toreduce the impact of noises on consensus,time-varying consensus gains are adopted,based on whichconsensus protocols are designed.By using the tools of stochastic analysis and algebraic graph theory,asufficient condition is obtained for the protocol to ensure strong mean square consensus under the fixedtopologies.This condition is shown to be necessary and sufficient in the noise-free case.Furthermore,by using a common Lyapunov function,the result is extended to the switching topology case.
基金supported by the National Natural Science Foundation of China(Nos.11402200,11502203)
文摘This paper studies the leader-following attitude coordination problems of multiple spacecraft in the presence of inertia parameter uncertainties. To achieve attitude coordination in the situation that even the leader's attitude is only applicable to a part of the following spacecraft, a nonlinear attitude observer is proposed to obtain an accurate estimation of the leader's attitude and angular velocity for all the followers. In addition, a distributed control scheme based on noncertainty equivalence principle is presented for multiple spacecraft' attitude synchronization. With a dynamic scaling, attitude consensus can be achieved asymptotically without any information of the bounds of the uncertain inertia parameters. Furthermore, once the estimations of inertia parameters reach their ideal values, the estimation process will stop and the ideal value of inertia parameter will be held. This is a special advantage of parameter estimation method based on non-certainty equivalence. Numerical simulations are presented to demonstrate that the proposed non-certainty equivalence-based method requires smaller control toque and converges faster compared with the certainty equivalence-based method.
基金supported partly by the National Natural Science Foundation of China under Grant Nos.61673080 and 61403314partly by Training Programme Foundation for the Talents of Higher Education by Chongqing Education Commissionpartly by Innovation Team Project of Chongqing Education Committee under Grant No.CXTDX201601019
文摘In this paper, the adaptive event-based control approach is applied to study leader-following consensus of multi-agent systems with linear dynamic models. Adaptive event-based controller and triggering function for each agent are designed, where the adaptive function is only dependent on its own event time instants. A sufficient condition on consensus is proposed, which shows that the adaptive event-based method presented in this paper not only can reduce the communication among neighboring agents, but also can determine the event time instants for each agent without using the global information. Furthermore, the Zeno-behavior for the concerned closed-loop system is excluded. Finally, an example is presented to ilhistratc the effectiveness of the obtained theoretical results.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61104097,61321002,61120106010,61522303,U1509215Program for Changjiang Scholars and Innovative Research Team in University(IRT1208)+2 种基金ChangJiang Scholars Program,Beijing Outstanding Ph.D.Program Mentor Grant(20131000704)Program for New Century Excellent Talents in University(NCET-13-0045)Beijing Higher Education Young Elite Teacher Project
文摘In this paper, the leader-following consensus for discrete-time nmlti-agent systems with parameter uncertainties is investigated based on the event-triggered strategy. And the parameter un- certainty is assmned to be norm-bounded. A consensus protocol is designed based on the event-triggered strategy to make the multi-agent systems achieve consensus without continuous communication among agents. Each agent only needs to observe its own state to determine its own triggering instants under the triggering function in this paper. In addition, a sufficient condition for the existence of the event- triggered consensus protocol is derived and presented in terms of the linear matrix inequality. Finally, a numerical example is given to illustrate to efficiency of the event-triggered consensus protocol proposed in this paper.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2017YFB1400702)and the National Natural Science Foundation of China(Grant Nos.61932014,61972018 and 61803357).
文摘The problem of guidance law is investigated for multiple interceptors to attack a target cooperatively.A leader-following cooperative guidance strategy is presented to render the leader and the followers reach the target at specified impact time.The guidance law of leader is given to meet the demand of specified impact time.The arrival time is synchronized by enforcing the ranges-to-go of followers keep consensus with that of leader.The convergence time bound is estimated without dependence on the initial states,since the proposed leader-following cooperative guidance law is fixed-time convergent.The simulation is developed to validate the availability of proposed cooperative guidance law.
基金Project supported by the National Natural Science Foundation of China(No.61773327)the Research Grants Council of the Hong Kong Special Administrative Region of China under Project CityU/11274916Projects of Major International(Regional)Joint Research Program of the National Natural Science Foundation of China(No.61720106011)
文摘In this study, we investigate the leader-following consensus problem of a class of heterogeneous secondorder nonlinear multi-agent systems subject to disturbances. In particular, the nonlinear systems contain uncertainties that can be linearly parameterized. We propose a class of novel distributed control laws, which depends on the relative state of the system and thus can be implemented even when no communication among agents exists. By Barbalat's lemma, we demonstrate that consensus of the second-order nonlinear multi-agent system can be achieved by the proposed distributed control law. The effectiveness of the main result is verified by its application to consensus control of a group of Van der Pol oscillators.