期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
Calculation of the Energy Loss for Tip Leakage Flow in Turbines 被引量:2
1
作者 Mohsen Hassanvand 王松涛 +1 位作者 冯国泰 王仲奇 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2004年第3期142-148,共7页
A commercial N-S solver has been employed for simulation and investigation ofthe unsteady flow field inside the tip clearance of a turbine rotor. The main objective of thispaper is to introduce a new method of energy ... A commercial N-S solver has been employed for simulation and investigation ofthe unsteady flow field inside the tip clearance of a turbine rotor. The main objective of thispaper is to introduce a new method of energy loss calculation for the flow field in tip clearanceregion of a turbine rotor blade. This method can be easily used in all kinds of flow fields. Regionsof high viscous effects have been found to be located near the shroud rather than the blade tip. Itis shown that the time-averaged loss of energy in tip leakage flow is dissimilar for differentrotor blades. This result is a helpful hint that can be taken by blade designers to designnon-uniform rotor blades with different geometric and aerodynamic loads to minimize the energy loss. 展开更多
关键词 tip leakage flow tip clearance unsteady flow energy loss
下载PDF
Experiment on Effect of Tip Clearance Leakage Flow on Heat Transfer of Turbine Outer Ring 被引量:1
2
作者 LIU Tianyi JIN Feng +1 位作者 YANG Jiang WEI Xin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第2期344-352,共9页
The cascade model was tested using transient liquid crystal temperature measurement technology.The effects of main flow Reynolds number,blowing ratio and tip clearance height on the convective heat transfer coefficien... The cascade model was tested using transient liquid crystal temperature measurement technology.The effects of main flow Reynolds number,blowing ratio and tip clearance height on the convective heat transfer coefficient of the turbine outer ring were studied.Two feature lines were marked on the turbine outer ring corresponding to the position of the blade.The conclusions are as follows:The tip clearance leakage flow has a great influence on the convective heat transfer coefficient of the turbine outer ring.When the clearance height and the blowing ratio are kept constant,gradually increasing the main flow Reynolds number will result in an increase in the convective heat transfer coefficient of the turbine outer ring.When the clearance height and the main flow Reynolds number are kept constant and the blowing ratio is gradually increased,the convective heat transfer coefficient of the turbine outer ring is almost constant.The heat transfer coefficient of the turbine outer ring surface is little affected by the blowing ratio;The clearance height has great influence on the heat transfer characteristics of the turbine outer ring.Under the typical working condition in this paper,when the tip clearance height ratio is 1.6%,the convective heat transfer coefficient of the outer surface of the turbine is the highest. 展开更多
关键词 tip leakage flow film cooling liquid crystal temperature measurement heat transfer characteristics
下载PDF
Effects of Geometry on Leakage Flow Characteristics of Brush Seal
3
作者 Yuan Wei Zhaobo Chen Yinghou Jiao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第2期1-7,共7页
In order to better application of brush seal in rotating machinery,the leakage flow characteristics of the brush seal considering geometry effects are numerically analyzed using Reynolds-Averaged Navier-Stokes( RANS) ... In order to better application of brush seal in rotating machinery,the leakage flow characteristics of the brush seal considering geometry effects are numerically analyzed using Reynolds-Averaged Navier-Stokes( RANS) model coupling with a non-Darcian porous medium model. The reliability of the present numerical method is proved,which is in agreement with the experimental and numerical results from literatures. Three different bristle pack thicknesses,fence heights and initial clearances under different pressure ratios,rotational velocities and other operating conditions are utilized to investigate the effects of geometry modification on the brush seal leakage flow behaviors. It discusses the effectiveness of various geometry configurations outlining important flow features. The results indicate that the increase of fence height and clearance would lead to the increase of leakage rate. But the leakage is not linearly with respect to the bristle pack thickness,and the effect of rotational velocity is not obvious. Moreover,the detailed leakage flow fields and pressure distributions along the rotor surface,free bristle height,and fence height of the brush seals are also presented. The static pressure drop amplitude through the bristle pack and the pressure rise amplitude through the cavity would increase while the pressure differential increases. And the axial pressure is the main reason of bristle blow down. The results provide theoretical support for the brush seal structure optimal design. 展开更多
关键词 brush seal GEOMETRY leakage flow characteristics non-Darcian porous medium model CFD
下载PDF
A New Approach to Suppress Tip Leakage Flow Utilizing Induced Shock Wave in Tip Region of a TransonicCompressor Rotor
4
作者 CUI Weiwei YAO Fei +3 位作者 LI Zongming WANG Xiaonan CHANG Guozhang WANG Cuiping 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第6期2059-2074,共16页
Tip leakage flow affects the flow stability of high-loading compressors significantly.Therefore,a novel approach via induced shock wave near suction-side edge of blade tip was proposed to suppress the strength and inf... Tip leakage flow affects the flow stability of high-loading compressors significantly.Therefore,a novel approach via induced shock wave near suction-side edge of blade tip was proposed to suppress the strength and influence range of leakage flow in a transonic rotor.Three new schemes with different circumferentially diverging degrees of clearance were designed to reveal the mechanism of the new approach.Through the action of the circumferentially diverging clearance(from the pressure side to the suction side over blade tip),a much more dramatic acceleration of the supersonic leakage jet flow appeared over blade tip of the new schemes.An induced shock wave was produced near the suction side edge of blade tip due to the pressure difference between the discharging leakage flow and the surrounding high-pressure mainflow in tip channel.As a result,both the mass flow rate and the outlet velocity of leakage flow were reduced significantly via the induced shock wave.Meanwhile,the suppressing effect of the new approach on the tip leakage jet flow was closely related to the strength and circumferential location of the induced shock wave.With the aids of the induced shock wave,the largest improvement of tip flow characteristics with an over 5%increase in stall margin was realized in new transonic rotor when the circumferential divergence angle equals 8°,accompanied with no more than a 0.4%decrease in isentropic efficiency. 展开更多
关键词 circumferentially diverging clearance induced shock wave leakage flow low-velocity region st marginenhancement
原文传递
Role of unsteady tip leakage flow in acoustic resonance inception of a multistage compressor 被引量:1
5
作者 Xiaohua LIU Zihao WU +2 位作者 Changxin SI Jun YANG Xiaofeng SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期165-181,共17页
In previous studies,a theoretical model was developed after Acoustic Resonance(AR)was experimentally detected in a four-stage compressor,and AR inception was proposed to be triggered by an unknown sound source,which i... In previous studies,a theoretical model was developed after Acoustic Resonance(AR)was experimentally detected in a four-stage compressor,and AR inception was proposed to be triggered by an unknown sound source,which is a pressure perturbation of a specific frequency with a suitable circumferential propagation speed.The present paper,which is not dedicated to the simulation of acoustic field,aims to identify the specific sound source generated by the unsteady tip leakage flow using the unsteady Computational Fluid Mechanics(CFD)approach.After a comprehensive analysis of an Unsteady Reynolds Averaged Navier-Stokes(URANS)simulation,a pressure perturbation of non-integer multiple of rotor frequency is found at the blade tip.Since the essence of the tip leakage flow is a jet flow driven by the pressure difference between two sides of blade,a simplified tip leakage flow model is adopted using Large Eddy Simulation(LES)in order to simulate the jet flow through a tip clearance.It is found that the convection velocity of shedding vortices fits the expected propagation speed of the sound source,the frequency is also close to one of the dominating frequencies in the URANS simulation,and the resultant combination frequency coincides with the experimentally measured AR frequency.Since such a simplified model successfully captures the key physical mechanisms,it is concluded that this paper provides a piece of unambiguous evidence on the role of unsteady tip leakage vortex in triggering the AR inception of the multistage compressor. 展开更多
关键词 Acoustic Resonance(AR) Jet flow Multistage compressor Tip leakage flow Unsteady flow
原文传递
Simplified Numerical Models of the Unsteady Tip Leakage Flow in Compressor 被引量:1
6
作者 SI Changxin WU Zihao LIU Xiaohua 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第6期2386-2399,共14页
Tip leakage flow(TLF)in compressors,which can cause flow blockage in blade passage and induce efficiency loss,is also a potential threat to the unsteady flow stability of modern aeroengines.This paper provides an over... Tip leakage flow(TLF)in compressors,which can cause flow blockage in blade passage and induce efficiency loss,is also a potential threat to the unsteady flow stability of modern aeroengines.This paper provides an overview of the significance of tip leakage flow research,and introduces relevant previous studies.After calculating by different methods,large eddy simulation(LES)is demonstrated again as a suitable compromise between accuracy and computational cost for the unsteady flow study.Two types of simplified tip leakage flow models using LES are adopted with a focus on the unsteady characteristics of shedding vortices in a cavity plane.This paper applies these models to study the unsteady tip leakage flow which triggers the onset of acoustic resonance in a multistage axial compressor.Compared with the detected acoustic resonance frequency of 5.22 rotational frequency(RF)in the previous experiment,the computed combination frequency in the 2-D model is equal to 5.232RF,and the simplified 3-D unsteady tip leakage flow model results in a combination frequency of 5.316RF.Therefore,based on the small relative error between model results and experimental results,the simplified numerical models are validated to be sufficiently accurate,and theoretically provide a useful basis for the subsequent research of unsteady tip leakage flow in turbomachinery. 展开更多
关键词 TURBOMACHINERY COMPRESSOR tip leakage flow unsteady flow
原文传递
Influence of Cavity Leakage flow on Corner Separation in a Shrouded Stator Cascade
7
作者 KONG Xiaozhi HUANG Tianshuo +2 位作者 LIU Yuxin LU Huawei WANG Long 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期351-365,共15页
The impacts of the cavity leakage flow on the shrouded stator aerodynamic performance were investigated by modelling the annular cascade mainstream with the seal cavity flow path based on the validated numerical metho... The impacts of the cavity leakage flow on the shrouded stator aerodynamic performance were investigated by modelling the annular cascade mainstream with the seal cavity flow path based on the validated numerical method.Meanwhile,the interactions between the cavity leakage and the mainstream were also determined in the current study.The development of hub corner separation under the action of leakage was discussed and the total pressure loss coefficient as well as the entropy-based loss coefficient was employed to evaluate the performance changes at different seal clearances and cavity rotational speeds.The results show that the cavity leakage flow induces a new vortex near the blade leading edge and plays an important role in the development of passage vortex and the size of concentrated shedding vortex.By increasing the seal clearance with more cavity leakage flow rate,an increase in the pitchwise extent of the separation region under 15%span is significant and the total pressure loss in the separation core increases.In addition,with the increase of cavity rotating speed,the starting point of corner separation moves backward,reducing the size and depth of the hub corner separation.The mainstream loss reduction in combination with the entropy increase in the seal cavity causes the entropy-based loss coefficient to perform a trend of decreasing first and then increasing with the cavity speed. 展开更多
关键词 shrouded stator cavity leakage flow corner separation loss coefficient
原文传递
Heat Transfer and Aerodynamics of Complex Shroud Leakage Flows in a Low-Pressure Turbine 被引量:1
8
作者 Wang Pei Du Qiang +1 位作者 Yang Xiao Jie Zhu Jun Qiang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第5期447-458,共12页
A numerical investigation on over-shroud & inter-shroud leakage flow has been carried out to explore the underneath flow physics at the stage of shrouded Low Pressure(LP) turbine.Compared with the No inter-Shroud ... A numerical investigation on over-shroud & inter-shroud leakage flow has been carried out to explore the underneath flow physics at the stage of shrouded Low Pressure(LP) turbine.Compared with the No inter-Shroud gap's Leakage flow Model(NSLM) and With inter-Shroud gap's Leakage flow Model(WSLM),the aerodynamic characteristics and the heat transfer performance have been studied.Through the aerodynamic point of view,it is concluded that due to the pressure difference between the rotor's passage and the over-shroud cavity,in the stream-wise direction,flow structure has been modified,and the inter-shroud leakage flow may even cause flow separation in the vicinity of the blade passage's throat.In the circumferential direction,separation flows appear over the rotor's shroud surface(upper platform of the shroud).Meanwhile,from the point of view of heat transfer,further provision on contour maps of the non-dimensional Nusselt number reveals that the reattachment of leakage flow would enhance the heat transfer rates and endanger the rotor's labyrinth fins over the shroud.However,due to the limited amount of inter-shroud leakage flow(current computational model),temperature distribution variation along the blade surface(near the rotor's tip section) seems to have only minor insignificant differences.At the end of the paper,the author puts forward some recommendations for the purpose of future successful turbine design. 展开更多
关键词 over-shroud leakage flow inter-shroud leakage flow shrouded LP turbine
原文传递
NUMERICAL ANALYSIS OF LEAKAGE FLOW THROUGH TWO LABYRINTH SEALS 被引量:21
9
作者 WANG Wei-zhe LIU Ying-zheng +1 位作者 JIANG Pu-ning CHEN Han-ping 《Journal of Hydrodynamics》 SCIE EI CSCD 2007年第1期107-112,共6页
The leakage flow through two labyrinth seals, e.g the interlocking seal and the stepped seal, was numerically investigated. Preliminary calculation of the seal-cavity averaged pressure by using the one-dimensional con... The leakage flow through two labyrinth seals, e.g the interlocking seal and the stepped seal, was numerically investigated. Preliminary calculation of the seal-cavity averaged pressure by using the one-dimensional control volume method showed favorable agreement with the experimental measurements. Subsequently, in-depth understanding of the fluid flow through the labyrinth seals was obtained by employing Computational Fluid Dynamics (CFD) and k -ε turbulence model, which resulted in a potential wealth of information like the streamline pattern, velocity vector field, and distribution of turbulent kinetic energy and static pressure. At the clearance of the seal the turbulent kinetic energy reached the peak value, while in the bulk region of the cavities it decayed fast. The static pressure rapidly dropped as the fluid flow went through the clearance; no distinct difference of the static pressure was inspected in the cavities. Also noted from the numerical results was that the stepped seal showed better sealing performance than the interlocking seal. 展开更多
关键词 labyrinth seal leakage flow turbomachinery Computational Fluid Dynamics (CFD)
原文传递
Numerical Investigations on the Steady and Unsteady Leakage Flow and Heat Transfer Characteristics of Rotor Blade Squealer Tip 被引量:9
10
作者 Jun LI Hao SUN Jinshan WANG Zhenping FENG 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第4期304-311,共8页
The steady and unsteady leakage flow and heat transfer characteristics of the rotor blade squealer tip were conducted by solving Reynolds-Averaged Navier-Stokes (RANS) equations with k-co turbulence model. The first... The steady and unsteady leakage flow and heat transfer characteristics of the rotor blade squealer tip were conducted by solving Reynolds-Averaged Navier-Stokes (RANS) equations with k-co turbulence model. The first stage of GE-E3 engine with squealer tip in the rotor was adopted to perform this work. The tip clearance was set to be 1% of the rotor blade height and the groove depth was specified as 2% of the span. The results showed that there were two vortexes in the tip gap which determined the local heat transfer characteristics. In the steady flow field, the high heat transfer coefficient existed at several positions. In the unsteady case, the flow field in the squealer tip was mainly influenced by the upstream wake and the interaction of the blades potential fields. These unsteady effects induced the periodic variation of the leakage flow and the vortexes, which resulted in the fluctuation of the heat transfer coefficient. The largest fluctuation of the heat transfer coefficient on the surface of the groove bottom exceeded 16% of the averaged value on the surface of the squealer tip. 展开更多
关键词 Gas Turbine Blade Squealer Tip leakage flow Heat Transfer Numerical Simulation
原文传递
NUMERICAL SIMULATION OF GAS-WATER LEAKAGE FLOW IN A TWO LAYERED COALBED SYSTEM 被引量:8
11
作者 ZHANG Xian-min TONG Deng-ke XUE Li-li 《Journal of Hydrodynamics》 SCIE EI CSCD 2009年第5期692-698,共7页
For a two layered coalbed system in possession of the slightly permeable interlayer, a mathematical model was established to describe the methane and water flows between coal seams and the internal migration and the d... For a two layered coalbed system in possession of the slightly permeable interlayer, a mathematical model was established to describe the methane and water flows between coal seams and the internal migration and the distribution of fluids in a slightly permeable interlayer. Meanwhile, this model has included the potential effect of matrix shrinkage associated with desorption on the coal permeability. The numerical results were obtained by the finite difference method, and then the production forecasts for the two layered coalbed system were conducted in combination with the geological data of a certain area in the Qinshui Basin. Through analyzing the internal migration and distribution of fluids in the slightly permeable interlayer and its effect on the coalbed methane well production, the results indicate that the prediction of the gas production rate and the cumulative gas production will be higher if the permeability of the interlayer is neglected. Furthermore, it is also found that the matrix shrinkage could produce an effect on the coal permeability, thus affecting the production performance. 展开更多
关键词 coalbed methane leakage flow two layered coalbed system numerical simulation
原文传递
Effect of Tip Flange on Tip Leakage Flow of Small Axial Flow Fans 被引量:5
12
作者 ZHANG Li JIN Yingzi JIN Yuzhen 《Journal of Thermal Science》 SCIE EI CAS CSCD 2014年第1期45-52,共8页
Aerodynamic performance of an axial flow fan is closely related to its tip clearance leakage flow. In this paper, the hot-wire anemometer is used to measure the three dimensional mean velocity near the blade tips. Mor... Aerodynamic performance of an axial flow fan is closely related to its tip clearance leakage flow. In this paper, the hot-wire anemometer is used to measure the three dimensional mean velocity near the blade tips. Moreover, the filtered N-S equations with finite volume method and RNG k-s turbulence model are adopted to carry out the steady simulation calculation of several fans that differ only in tip flange shape and number. The large eddy simulation and the FW-H noise models are adopted to carry out the unsteady numerical calculation and aerodynamic noise prediction. The results of simulation calculation agree roughly with that of tests, which proves the numerical calculation method is feasible.The effects of tip flange shapes and numbers on the blade tip vortex structure and the characteristics are analyzed. The results show that tip flange of the fan has a certain influence on the characteristics of the fan. The maximum efficiencies for the fans with tip flanges are shifted towards partial flow with respect to the design point of the dattun fan. Furthermore, the noise characteristics for the fans with tip flanges have become more deteriorated than that for the datum fan. Tip flange contributes to forming tip vortex shedding and the effect of the half-cylinder tip flange on tip vortex shedding is obvious. There is a distinct rela- tionship between the characteristics of the fan and tip vortex shedding.The research results provide the profitable reference for the internal flow mechanism of the performance optimization of small axial flow fans. 展开更多
关键词 Tip Flange Tip leakage flow Small Axial flow Fan PERFORMANCE
原文传递
Performance Analysis of Inter-Stage Leakage Flows at Rotating Conditions in an Axial Compressor 被引量:3
13
作者 KONG Xiaozhi LIU Yuxin +2 位作者 LU Huawei TIAN Zhitao XIN Jianchi 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第6期1558-1568,共11页
For the compressor with shrouded stator blades,the stator well is a rotor-stator space between the rotating drum and the stationary shroud.Due to the pressure difference,a reverse leakage flow would travel through the... For the compressor with shrouded stator blades,the stator well is a rotor-stator space between the rotating drum and the stationary shroud.Due to the pressure difference,a reverse leakage flow would travel through the stator well and inject into the main flow path.Although,the labyrinth seal is commonly placed under the shroud,the rotation effect and seal clearance variation in actual operation process have great impact on the characteristics of this inter-stage leakage,as well as the compressor performance.In this paper,experiments were conducted at a compressor inter-stage seal test rig.The leakage flow rates,total temperatures and swirl ratios were obtained at different speeds and working clearances.The proportions of rotation effect and the clearance reduction effect were analyzed by data processing.Comparisons indicate that the working clearance and leakage flow reduce about 43%and 50%respectively,when the rotational speedω=8100 r/min.The proportion of reduction caused by the rotation effect is around 15%,while the influence of working clearance variation is much greater,accounting for about 35%.The windage heating coefficient and swirl ratio in the outlet cavity are almost in exponential relationship with the rotor speed.The increases in total temperature and swirl ratio generated by the rotation effect are found to be about 80%.In addition,the swirl and radial velocity profiles in the cavities were discussed by validated numerical simulations to reveal the typical flow characteristics.The data presented can provide guidance for better leakage conditions prediction as well as the inter-stage seal design enhancement. 展开更多
关键词 shrouded stator blade inter-stage seal rotor-stator cavity leakage flow windage heating swirl ratio
原文传递
Experimental and Numerical Investigation of the Unsteady Tip Leakage Flow in Axial Compressor Cascade 被引量:3
14
作者 Chengqing Li Tingfeng Ke +2 位作者 Jingxuan Zhang Hongwu Zhang Weiguang Huang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第2期103-110,共8页
For convenience of both measurement and adjusting the clearance size and incidence, the current research is mainly conducted by experiments on an axial compressor linear cascade. The characteristics and the condition ... For convenience of both measurement and adjusting the clearance size and incidence, the current research is mainly conducted by experiments on an axial compressor linear cascade. The characteristics and the condition under which the unsteadiness of tip leakage flow would occur were investigated by dynamic measuring in different clearances, inlet velocities and incidences. From the experiment it is found that increasing tip clearance size or reducing rotor tip incidence can affect the strength of the tip clearance flow. Then the experimental results also indicate the tip leakage shows instability in certain conditions, and the frequency of unsteadiness is great influenced by inflow angle. The condition of occurrence of tip leakage flow unsteadiness is when the leakage flow is strong enough to reach the pressure side of the adjacent blade. The main cause of tip leakage flow unsteadiness is the tip blade loading. 展开更多
关键词 axial flow compressor linear cascade tip leakage flow UNSTEADY
原文传递
The Self-induced Unsteadiness of Tip Leakage Flow in an Axial Low-Speed Compressor with Single Circumferential Casing Groove 被引量:3
15
作者 DU Juan LI Jichao +2 位作者 WANG Kai LIN Feng NIE Chaoqun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第6期565-572,共8页
Numerical investigation on the self-induced unsteadiness of tip leakage flow(TLF) for an axial low-speed compressor with smooth wall and six single grooved casings are presented. A ten-passage numerical scheme is used... Numerical investigation on the self-induced unsteadiness of tip leakage flow(TLF) for an axial low-speed compressor with smooth wall and six single grooved casings are presented. A ten-passage numerical scheme is used to solve the unsteady Reynolds averaged Navier-Stokes(URANS) equations. It is found that the single grooves at various axial locations could have a large impact on the self-induced unsteadiness and the stall margin improvement(SMI) of compressor. The trend of SMI with groove center location demonstrates that the groove located near the mid of blade tip chord generates the best SMI. The worst groove is located about 20% Cax after the blade leading edge. The root-mean-squre of static pressure(RMSP) contours at 99.5% span and fast Fourier transform for the static pressure traces recorded in the tip clearance region for each casing are analyzed. The results demonstrate that the single groove location not only affects the oscillating strength but also the frequency of the unsteady tip leakage flow. At the near-stall point of smooth casing, the self-induced unsteadiness of TLF is enhanced most by the best grooved casing for SMI. While, the self-induced unsteadiness disappears when the worst groove for SMI is added. The characteristic frequency of TLF is about 0.55 blade passing frequency(BPF) with smooth casing. The frequency components become complicated as the single groove moves from the leading edge to the trailing edge of the blade. 展开更多
关键词 Tip leakage flow UNSTEADINESS circumferential groove stall margin improvement
原文传递
Numerical Investigation on the Self-Induced Unsteadiness in Tip Leakage Flow of a Micro-Axial Fan Rotor 被引量:2
16
作者 CHEN Jinxin LAI Huanxin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2015年第4期334-343,共10页
The self-induced unsteadiness in tip leakage flow(TLF)of a micro-axial fan rotor is numerically studied by solving Reynolds-averaged Navier-Stokes equations.The micro-axial fan,which is widely used in cooling systems ... The self-induced unsteadiness in tip leakage flow(TLF)of a micro-axial fan rotor is numerically studied by solving Reynolds-averaged Navier-Stokes equations.The micro-axial fan,which is widely used in cooling systems of electronic devices,has a tip clearance of 6%of the axial chord length of the blade.At the design rotation speed,four cases near the peak efficiency point(PEP)with self-induced unsteadiness and four steady cases which have much weaker pressure fluctuations are investigated.Using the"interface"separating the incoming main flow and the TLF defined by Duet al.[1],an explanation based on the propagation of the low energy spot and its multi-passing through the high gradient zone of the relative total pressure,is proposed to clarify the originating mechanism of the unsteadiness.At the operating points near the PEP,the main flow is weaker than the TLF and the interface moves upstream.The low energy spot which propagates along in the close behind of the interface has opportunity to circulate in the circumferential direction and passes through the sensitive interfaces several times,a slight perturbation therefore may be magnified significantly and develops into the self-induced unsteadiness.The explanation is demonstrated by numerical results. 展开更多
关键词 micro-axial fan tip leakage flow (TLF) self-induced unsteadiness secondary flow mechanism.
原文传递
Blade Lean and Tip Leakage Flows in Highly Loaded Compressor Cascades 被引量:2
17
作者 CAO Zhiyuan SONG Cheng +2 位作者 ZHANG Xiang GAO Xi LIU Bo 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第4期1388-1405,共18页
Blade lean has been intensively utilized in axial compressors.In this study,three families of highly loaded compressor cascades featuring different aspect ratios(AR)with different levels of blade lean were designed an... Blade lean has been intensively utilized in axial compressors.In this study,three families of highly loaded compressor cascades featuring different aspect ratios(AR)with different levels of blade lean were designed and simulated with and without tip clearance.The influences of blade lean on corner separation and tip leakage flow(TLF)were investigated.Results show that blade lean can exert spanwise pressure gradient confined to the fore part,spanwise mass flow rate re-distribution exhibiting differently at fore and rear part of blade,and stage reaction variations.AR has a significant influence on blade lean.With the increase of AR,corner separation grows significantly and requires a higher lean level to be controlled.TLF eliminates corner separation of linear cascades but also increases the loss of leaned cascades;blade lean introduces 22%higher tip leakage mass flow,but exhibits 43%(blade M)and 38%(blade E)lower tip leakage loss.The flow mechanism can be mainly accounted by the reduction of bulk flow velocity,tip leakage velocity and the velocity difference near leading edge(LE).High AR cascade induces re-distribution of TLF along blade chord and reduces leakage loss compared with low AR counterpart. 展开更多
关键词 axial compressor leaned blade tip leakage flow aspect ratio corner separation
原文传递
Circumferential Propagation of Tip Leakage Flow Unsteadiness for a Low-Speed Axial Compressor 被引量:2
18
作者 Shaojuan Geng Feng Lin +2 位作者 Jingyi Chen Hongwu Zhang Lei He 《Journal of Thermal Science》 SCIE EI CAS CSCD 2009年第3期202-206,共5页
Full-annulus three-dimensional unsteady numerical simulations were conducted for a low-speed isolated axialcompressor rotor, intending to identify the behavior of self-induced unsteady tip leakage flow within multi-bl... Full-annulus three-dimensional unsteady numerical simulations were conducted for a low-speed isolated axialcompressor rotor, intending to identify the behavior of self-induced unsteady tip leakage flow within multi-bladepassages. There is a critical mass flow rate near stall point, below it, the self-induced unsteadiness of tip leakageflow can propagate circumferentially and thus initiates two circumferential waves. Otherwise, the self-inducedunsteady tip leakage flow oscillates synchronously in each single blade passage. The major findings are: 1) whilethe self-induced unsteadiness of tip leakage flow is a single-passage phenomenon, there exist phase shifts amongblade passages in multi-passage environments then evolving into the first short length wave propagating at abouttwo times of rotor rotation speed after the transient period ends; and 2) the time traces of the pseudo sensors locatedon the rotor blade tips reveal another much longer length-scale wave modulated with the first wave due tophase shift propagating at about half of rotor rotation speed. Features of the short and long length-scale circumferentialwaves are similar to those of rotating instability and modal wave, respectively. 展开更多
关键词 unsteady tip leakage flow phase shift circumferential wave axial compressor
原文传递
Tip-leakage flow loss reduction in a two-stage turbine using axisymmetric-casing contouring 被引量:9
19
作者 Wei Zuojun Qiao Weiyang +2 位作者 Shi Peijie Chen Pingping Zhao Lei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1111-1121,共11页
In order to reduce the losses caused by tip-leakage flow, axisymmetric contouring is applied to the casing of a two-stage unshrouded high pressure turbine(HPT) of aero-engine in this paper. This investigation focuse... In order to reduce the losses caused by tip-leakage flow, axisymmetric contouring is applied to the casing of a two-stage unshrouded high pressure turbine(HPT) of aero-engine in this paper. This investigation focuses on the effects of contoured axisymmetric-casing on the blade tipleakage flow. While the size of tip clearance remains the same as the original design, the rotor casing and the blade tip are obtained with the same contoured arc shape. Numerical calculation results show that a promotion of 0.14% to the overall efficiency is achieved. Detailed analysis indicates that it reduces the entropy generation rate caused by the complex vortex structure in the rotor tip region, especially in the tip-leakage vortex. The low velocity region in the leading edge(LE) part of the tip gap is enlarged and the pressure side/tip junction separation bubble extends much further away from the leading edge in the clearance. So the blocking effect of pressure side/tip junction separation bubble on clearance flow prevents more flow on the tip pressure side from leaking to the suction side, which results in weaker leakage vortex and less associated losses. 展开更多
关键词 Axisymmetric-casing contouring leakage leakage flow Loss reduction Tip clearance Turbines
原文传递
NUMERICAL SIMULATION AND EXPERIMENTAL INVESTIGATION OF THE GUIDE-VANE FLOW AND THE INFLUENCE FROM THE LEAKAGE FLOW 被引量:2
20
作者 LiaoWei-li LiJian-zhong 《Journal of Hydrodynamics》 SCIE EI CSCD 2003年第1期103-110,共8页
This paper presents numerical and experimental results of the flow in the tipclearance region of the guide vane row in hydraulic turbine. The 3-D Navier-Stokes equations wereemployed to model the flow in end clearance... This paper presents numerical and experimental results of the flow in the tipclearance region of the guide vane row in hydraulic turbine. The 3-D Navier-Stokes equations wereemployed to model the flow in end clearance region of guide vane cascade, the Reynolds stressdifferential model was used for turbulence closure, and the body-fitted curvilinear coordinates andthe SIMPLE! algorithm were adopted. The governing equations were discretized with the non-staggeredgrids by means of the finite volume method. Detailed comparison of hydrodynamical characteristics ofguide vane in hydraulic turbine with or without tip gap was made. Special attention was paid to theinfluence of leakage flow on the main flow and to the movement of tip leakage flow in the end guidevane. The position and strength of the roll-vortex on the sides of guide vane in were determined.The numerical solutions agree with the experimental results obtained by particle image ve-locimetry.The results help to clarify the loss, wear and cavi-tation erosion between the guide vane andrings, especially for those used in the Yellow River which has a high sediment content. 展开更多
关键词 leakage flow guide vane reynolds stress differential model
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部