To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross ...To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross domestic product(GDP),consumer price index(CPI),total import and export volume,port's cargo throughput,total retail sales of consumer goods,total fixed asset investment,highway mileage,and resident population,to form the foundation for the model calculation.Based on the least square method(LSM)to fit the parameters,the study obtains an accurate mathematical model and predicts the changes of each index in the next five years.Using artificial intelligence software,the research establishes the logistics demand model of multi-layer perceptron(MLP)neural network,makes an empirical analysis on the logistics demand of Quanzhou City,and predicts its logistics demand in the next five years,which provides some references for formulating logistics planning and development strategy.展开更多
针对多数研究中车道线检测的准确性和实时性难以有效平衡的问题,提出了一种应用区域划分的车道线识别方法。首先通过改进的大津(OTSU)算法提取边缘图像,再在所得边缘图像的基础上,利用改进的概率霍夫变换(PPHT)提取车道标识线上的特征点...针对多数研究中车道线检测的准确性和实时性难以有效平衡的问题,提出了一种应用区域划分的车道线识别方法。首先通过改进的大津(OTSU)算法提取边缘图像,再在所得边缘图像的基础上,利用改进的概率霍夫变换(PPHT)提取车道标识线上的特征点,并采用最小二乘法(LSM)对特征点点集进行直线拟合,最后通过提出的路面干扰线规避算法检测所有拟合得到的直线段并筛选可能的车道线。在实验方面,引入三种算法作为对比,并利用提出的准确性评价模型对500幅典型道路场景图中的车道线识别结果进行评估,同时统计在处理一段长为1 min 26 s的道路视频时每帧图像序列的平均耗时。实验结果表明所提算法的查准率、查全率、F量测值均优于对比算法,且达到实时处理的要求。展开更多
基金Educational Research Project of Social Science for Young and Middle Aged Teachers in Fujian Province,China(No.JAS19371)Social Science Research Project of Education Department of Fujian Province,China(No.JAS160571)Key Project of Education and Teaching Reform of Undergraduate Universities in Fujian Province,China(No.FBJG20190130)。
文摘To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross domestic product(GDP),consumer price index(CPI),total import and export volume,port's cargo throughput,total retail sales of consumer goods,total fixed asset investment,highway mileage,and resident population,to form the foundation for the model calculation.Based on the least square method(LSM)to fit the parameters,the study obtains an accurate mathematical model and predicts the changes of each index in the next five years.Using artificial intelligence software,the research establishes the logistics demand model of multi-layer perceptron(MLP)neural network,makes an empirical analysis on the logistics demand of Quanzhou City,and predicts its logistics demand in the next five years,which provides some references for formulating logistics planning and development strategy.
文摘针对多数研究中车道线检测的准确性和实时性难以有效平衡的问题,提出了一种应用区域划分的车道线识别方法。首先通过改进的大津(OTSU)算法提取边缘图像,再在所得边缘图像的基础上,利用改进的概率霍夫变换(PPHT)提取车道标识线上的特征点,并采用最小二乘法(LSM)对特征点点集进行直线拟合,最后通过提出的路面干扰线规避算法检测所有拟合得到的直线段并筛选可能的车道线。在实验方面,引入三种算法作为对比,并利用提出的准确性评价模型对500幅典型道路场景图中的车道线识别结果进行评估,同时统计在处理一段长为1 min 26 s的道路视频时每帧图像序列的平均耗时。实验结果表明所提算法的查准率、查全率、F量测值均优于对比算法,且达到实时处理的要求。