Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the pres...Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.展开更多
Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamp...Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage.展开更多
The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical pro...The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed.展开更多
Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS reco...Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.展开更多
Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-bas...Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-based QDs.However,enormous attention has been paid to how to narrow their broadband spectra,ignoring the application advantages of the broadband emission.In this work,the AIGS QDs with controllable broad green-red dual-emission are first reported,which is achieved through adjusting the size distribution of QDs by controlling the nucleation and growth of AIGS crystals.Resultantly,the AIGS QDs exhibit broad dual-emission at green-and red-band evidenced by photoluminescence(PL)spectra,and the PL relative intensity and peak position can be finely adjusted.Furthermore,the dual-emission is the intrinsic characteristics from the difference in confinement effect of large particles and tiny particles confirmed by temperature-dependent PL spectra.Accordingly,the AIGS QDs(the size consists of 17 nm and 3.7 nm)with 530 nm and 630 nm emission could successfully be synthesized at 220°C.By combining the blue light-emitting diode(LED)chips and dual-emission AIGS QDs,the constructed white light-emitting devices(WLEDs)exhibit a continuous and broad spectrum like natural sunlight with the Commission Internationale de l’Eclairage(CIE)chromaticity coordinates of(0.33,0.31),a correlated color temperature(CCT)of 5425 K,color rendering index(CRI)of 90,and luminous efficacy of radiation(LER)of 129 lm/W,which indicates that the AIGS QDs have huge potential for lighting applications.展开更多
A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and c...A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and carrier mobility of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure anode/HTL/EML/cathode are numerically investigated.It is found that,for given values of the total thickness of organic layers,reduced depth of trap,total density of trap,and carrier mobility of HTL as well as EML,there exists an optimal thickness ratio of HTL to EML,by which a maximal quantum efficiency can be achieved.Through optimization of the thickness ratio,an enhancement of current density and quantum efficiency of as much as two orders of magnitude can be obtained.The dependences of the optimal thickness ratio to the characteristic trap energy,total density of trap and carrier mobility are numerically analyzed.展开更多
The well crystalline YAG:Ce^3+ phosphor was synthesized by sold-state method, and the temperature dependence of excitation and emission spectra of YAG:Ce^3+ phosphor were investigated in the temperature range from...The well crystalline YAG:Ce^3+ phosphor was synthesized by sold-state method, and the temperature dependence of excitation and emission spectra of YAG:Ce^3+ phosphor were investigated in the temperature range from room temperature to 573 K. With temperature increasing, it was noted that the emission intensity of as-repared phosphors decreased considerably more rapidly when pumped by 460 nm than by 340 nm. The temperature-intensity curves under different excitation wavelengths were obtained using an Arrhenius function, and the corresponding activation energies were also obtained respectively. Thus, the experimental phenomenon was discussed in terms of nonradiative decay rate. The effects of as-prepared phosphors on the performance of the white LED with changing temperature were also studied.展开更多
All-inorganic CsPbBr_(3) perovskite quantum dots(QDs)have received great attention in white light emission because of their outstanding properties.However,their practical application is hindered by poor stability.Here...All-inorganic CsPbBr_(3) perovskite quantum dots(QDs)have received great attention in white light emission because of their outstanding properties.However,their practical application is hindered by poor stability.Herein,we propose a simple strategy to synthesize excellent stability and efficient emission of CsPbBr_(3) QDs by using 2-hexyldecanoic acid(DA)as a ligand to replace the regular oleic acid(OA)ligand.Thanks to the strong binding energy between DA ligand and QDs,the modified QDs not only show a high photoluminescence quantum yield(PLQY)of 96%but also exhibit high stability against ethanol and water.Thereby warm white light-emitting diodes(WLEDs)are constructed by combining lig-and modified CsPbBr_(3) QDs with red AgInZnS QDs on blue emitting InGaN chips,exhibiting a color rendering index of 93,a power efficiency of 64.8 lm/W,a CIE coordinate of(0.44,0.42)and correlated color temperature value of 3018 K.In ad-dition,WLEDs based on ligand modified CsPbBr_(3) QDs also exhibit better thermal performance than that of WLEDs based on the regular CsPbBr_(3) QDs.The combination of improved efficiency and better thermal stability with high color quality indicates that the modified CsPbBr_(3) QDs are ideal for WLEDs application.展开更多
A very-high color rendering index white organic light-emitting diode(WOLED) based on a simple structure was successfully fabricated. The optimized device exhibits a maximum total efficiency of 13.1 and 5.4 lm/W at 1,0...A very-high color rendering index white organic light-emitting diode(WOLED) based on a simple structure was successfully fabricated. The optimized device exhibits a maximum total efficiency of 13.1 and 5.4 lm/W at 1,000 cd/m2. A peak color rendering index of 90 and a relatively stable color during a wide range of luminance were obtained. In addition, it was demonstrated that the 4,40,400-tri(9-carbazoyl) triphenylamine host influenced strongly the performance of this WOLED.These results may be beneficial to the design of both material and device architecture for high-performance WOLED.展开更多
The AlGaN-based deep ultraviolet light-emitting diodes(LED) with double electron blocking layers(d-EBLs) on both sides of the active region are investigated theoretically. They possess many excellent performances ...The AlGaN-based deep ultraviolet light-emitting diodes(LED) with double electron blocking layers(d-EBLs) on both sides of the active region are investigated theoretically. They possess many excellent performances compared with the conventional structure with only a single electron blocking layer, such as a higher recombination rate, improved light output power and internal quantum efficiency(IQE). The reasons can be concluded as follows. On the one hand, the weakened electrostatic field within the quantum wells(QWs) enhances the electron–hole spatial overlap in QWs, and therefore increases the probability of radioactive recombination. On the other hand, the added n-AlGaN layer can not only prevent holes from overflowing into the n-side region but also act as another electron source, providing more electrons.展开更多
Remarkable progress was made in the development of white-light-emitting diodes (LEDs). White LEDs provided a light element having a semiconductor InGaN light-emitting chip (blue or UV LEDs) and luminescent phospho...Remarkable progress was made in the development of white-light-emitting diodes (LEDs). White LEDs provided a light element having a semiconductor InGaN light-emitting chip (blue or UV LEDs) and luminescent phosphors. Here we reported the sialon s-phase of (Sr,Eu)2A12Si10N14O4. Eu^2+ activator ions that were substituted for the strontium site represented a new type of yeUow-green phosphor that could be excited by blue LEDs used for application in the fabrication of white LEDs.展开更多
GaN-based light-emitting diodes (LEDs) with surface-textured indium tin oxide (ITO) as a transparent current spreading layer were fabricated. The ITO surface was textured by inductively coupled plasma (ICP) etch...GaN-based light-emitting diodes (LEDs) with surface-textured indium tin oxide (ITO) as a transparent current spreading layer were fabricated. The ITO surface was textured by inductively coupled plasma (ICP) etching technology using a monolayer of nickel (Ni) nanoparticles as the etching mask. The luminance intensity of ITO surface-textured GaN-based LEDs was enhanced by about 34% compared to that of conventional LED without textured ITO layer. In addition, the fabricated ITO surface-textured GaN-based LEDs would present a quite good performance in electrical characteristics. The results indicate that the scattering of photons emitted in the active layer was greatly enhanced via the textured ITO surface, and the ITO surface-textured technique could have a potential application in improving photoelectric characteristics for manufacturing GaN-based LEDs of higher brightness.展开更多
InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole ...InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole injection layers show superior optical and electrical performance, such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-A1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency.展开更多
InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investi- gated using the APSYS simulation software. It is found that the structure with a p-AlInN electron block...InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investi- gated using the APSYS simulation software. It is found that the structure with a p-AlInN electron blocking layer showes improved light output power, lower current leakage, and smaller efficiency droop. Based on numerical simulation and analysis, these improvements of the electrical and optical characteristics are mainly attributed to the efficient electron blocking in the InGaN/GaN multiple quantum wells (MQWs).展开更多
The remarkable evolution of metal halide perovskites in the past decade makes them promise for next-generation optoelectronic material.In particular,nanocrystals(NCs)of inorganic perovskites have demonstrated excellen...The remarkable evolution of metal halide perovskites in the past decade makes them promise for next-generation optoelectronic material.In particular,nanocrystals(NCs)of inorganic perovskites have demonstrated excellent performance for light-emitting and display applications.However,the presence of surface defects on the NCs negatively impacts their performance in devices.Herein,we report a compatible facial post-treatment of CsPbI_(3) nanocrystals using guanidinium iodide(GuI).It is found that the GuI treatment effectively passivated the halide vacancy defects on the surface of the NCs while offering effective surface protection and exciton confinement thanks to the beneficial contribution of iodide and guanidinium cation.As a consequence,the film of treated CsPbI_(3) nanocrystals exhibited significantly enhanced luminescence and charge transport properties,leading to high-performance light-emitting diode with maximum external quantum efficiency of 13.8%with high brightness(peak luminance of 7039 cd m^(−2) and a peak current density of 10.8 cd A^(−1)).The EQE is over threefold higher than performance of untreated device(EQE:3.8%).The operational half-lifetime of the treated devices also was significantly improved with T50 of 20 min(at current density of 25 mA cm^(−2)),outperforming the untreated devices(T50~6 min).展开更多
InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum ~lls are numerically investigated by using the APSYS simulation software. It is found that the structure wi...InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum ~lls are numerically investigated by using the APSYS simulation software. It is found that the structure with dip- aped quantum wells shows improved light output power, lower current leakage and less efficiency droop. Based on Lmerical simulation and analysis, these improvements on the electrical and the optical characteristics are attributed ainly to the alleviation of the electrostatic field in dip-shaped InGaN/GaN multiple quantum wells (MQWs).展开更多
A cyclometalated greenish-yellow emitter 2,3-diphenylimidazo[1,2-a]pyridine iridium(Ill) complex is successfully synthesized and used to fabricate phosphorescent organic light-emitting diodes. The optimized device e...A cyclometalated greenish-yellow emitter 2,3-diphenylimidazo[1,2-a]pyridine iridium(Ill) complex is successfully synthesized and used to fabricate phosphorescent organic light-emitting diodes. The optimized device exhibits a greenish-yellow emission with the peak at 523nm and a strong shoulder at 557nm, corresponding to Commission Internationale de l'Eclairage coordinates of (0.38, 0.68). The full width at half maximum of the device is 93 nm, which is broader than the fac-tris(2-phenylpyridine)iridium [Ir(ppy)3] based reference device of 78 nm. Meanwhile, a maximum current efficiency of 62.6 cd/A (47.51m/W) is obtained. This result is higher than a maximum current efficiency of 54.8 cd/A (431m/W) of the Ir(ppy)a based device. The results indicate that this new iridium complex may have potential applications in fabricating high color rendering index white organic light emitting diodes.展开更多
Indium tin oxide (ITO) ultrathin films were prepared on glass substrate by DC (direct current) magnetron sputtering technique with the assistance of H2O vapor to avoid potential surface damage. The film properties...Indium tin oxide (ITO) ultrathin films were prepared on glass substrate by DC (direct current) magnetron sputtering technique with the assistance of H2O vapor to avoid potential surface damage. The film properties were characterized by X-ray diffraction (XRD) technique, four-point probe method and spectrophotometer. The results show that the deposited ITO film with introduced H2O during sputtering process was almost amorphous. The average visible light transmission of 100 nm ITO film was around 85% and square resistivity was below 80 Ω/square. The film was used as the transparent anode to fabricate an inverted top-emitting organic light-emitting diodes (IT-OLEDs) with the structure of glass substrate/Alq3 (40 nm)/NPB (15 nm)/CuPc (x nm)/ITO anode (100 nm), where the film thickness of CuPc was optimized. It was found that the luminance of this IT-OLEDs was improved from 25 cd/m^2 to more than 527 cd/m^2 by increasing the thickness of CuPc, and luminance efficiency of 0.24 lm/W at 100 cd/m^2 was obtained, which indicated that the optimized thickness of CuPc layer was around 15 nm.展开更多
In order to reduce the Schottky barrier height and sheet resistance between graphene(Gr)and the p-GaN layers in GaN-based light-emitting diodes(LEDs),conductive transparent thin films with large work function are requ...In order to reduce the Schottky barrier height and sheet resistance between graphene(Gr)and the p-GaN layers in GaN-based light-emitting diodes(LEDs),conductive transparent thin films with large work function are required to be inserted between Gr and p-GaN layers.In the present work,three kinds of transparent conductive oxide(TCO)zinc oxide(ZnO)films,Al-,Ga-,and In-doped ZnO(AZO,GZO,and IZO),are introduced as a bridge layer between Gr and p-GaN,respectively.The influence of different combinations of Gr/ZnO hybrid transparent conducting layers(TCLs)on the optical and thermal characteristics of the GaN-LED was investigated by the finite element method through COMSOL software.It is found that both the TCL transmittance and the surface temperature of the LED chip reduce with the increase in Gr and ZnO thickness.In order to get the transmittance of the Gr/ZnO hybrid TCL higher than 80%,the appropriate combination of Gr/ZnO compound electrode should be a single layer of Gr with ZnO no thicker than 400 nm(1 L Gr/400-nm ZnO),2 L Gr/300-nm ZnO,3 L Gr/200-nm ZnO,or 4 L Gr/100-nm ZnO.The LEDs with hybrid TCLs consisting of 1 L Gr/300-nm AZO,2 L Gr/300-nm GZO,and 2 L Gr/300-nm IZO have good performance,among which the one with 1 L Gr/300-nm GZO has the best thermal property.Typically,the temperature of LEDs with 1 L Gr/300-nm GZO hybrid TCLs will drop by about 7 K compared with that of the LEDs with a TCL without ZnO film.展开更多
The interlayer(IL) plays a vital role in hybrid white organic light-emitting diodes(WOLEDs); however,only a negligible amount of attention has been given to n-type ILs. Herein, the n-type IL, for the first time,has be...The interlayer(IL) plays a vital role in hybrid white organic light-emitting diodes(WOLEDs); however,only a negligible amount of attention has been given to n-type ILs. Herein, the n-type IL, for the first time,has been demonstrated to achieve a high efficiency, high color rendering index(CRI), and low voltage trade-off.The device exhibits a maximum total efficiency of 41.5 lm W^(-1), the highest among hybrid WOLEDs with n-type ILs. In addition, high CRIs(80–88) at practical luminances(C1000 cd m^(-2)) have been obtained, satisfying the demand for indoor lighting. Remarkably, a CRI of 88 is the highest among hybrid WOLEDs. Moreover, the device exhibits low voltages, with a turn-on voltage of only 2.5 V([1 cd m^(-2)), which is the lowest among hybrid WOLEDs. The intrinsic working mechanism of the device has also been explored; in particular, the role of n-type ILs in regulating the distribution of charges and excitons has been unveiled. The findings demonstrate that the introduction of n-type ILs is effective in developing high-performance hybrid WOLEDs.展开更多
基金supported by the Science and Technology Development Fund,Macao SAR(File no.FDCT-0082/2021/A2,0010/2022/AMJ,006/2022/ALC)UM's research fund(File no.MYRG2022-00241-IAPME,MYRGCRG2022-00009-FHS)+2 种基金the research fund from Wuyi University(EF38/IAPME-XGC/2022/WYU)the Natural Science Foundation of China(61935017,62175268)Science,Technology and Innovation Commission of Shenzhen Municipality(Project Nos.JCYJ20220530113015035,JCYJ20210324120204011,and KQTD2015071710313656).
文摘Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.
基金funded by the China Agriculture Research System(CARS-15-16).
文摘Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage.
基金supported by the Science and Technology Program of Shenzhen(Grant Nos.SGDX20201103095607022 and JCYJ20210324095003011)supported by the Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province.
文摘The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed.
基金conducted within the state assignment of the Ministry of Science and Higher Education for universities(Project No.FZRR-2023-0009).
文摘Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.
基金supported by National Natural Science Foundation of China(Grant Nos.52272166,22205214,and 12204427).
文摘Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-based QDs.However,enormous attention has been paid to how to narrow their broadband spectra,ignoring the application advantages of the broadband emission.In this work,the AIGS QDs with controllable broad green-red dual-emission are first reported,which is achieved through adjusting the size distribution of QDs by controlling the nucleation and growth of AIGS crystals.Resultantly,the AIGS QDs exhibit broad dual-emission at green-and red-band evidenced by photoluminescence(PL)spectra,and the PL relative intensity and peak position can be finely adjusted.Furthermore,the dual-emission is the intrinsic characteristics from the difference in confinement effect of large particles and tiny particles confirmed by temperature-dependent PL spectra.Accordingly,the AIGS QDs(the size consists of 17 nm and 3.7 nm)with 530 nm and 630 nm emission could successfully be synthesized at 220°C.By combining the blue light-emitting diode(LED)chips and dual-emission AIGS QDs,the constructed white light-emitting devices(WLEDs)exhibit a continuous and broad spectrum like natural sunlight with the Commission Internationale de l’Eclairage(CIE)chromaticity coordinates of(0.33,0.31),a correlated color temperature(CCT)of 5425 K,color rendering index(CRI)of 90,and luminous efficacy of radiation(LER)of 129 lm/W,which indicates that the AIGS QDs have huge potential for lighting applications.
文摘A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and carrier mobility of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure anode/HTL/EML/cathode are numerically investigated.It is found that,for given values of the total thickness of organic layers,reduced depth of trap,total density of trap,and carrier mobility of HTL as well as EML,there exists an optimal thickness ratio of HTL to EML,by which a maximal quantum efficiency can be achieved.Through optimization of the thickness ratio,an enhancement of current density and quantum efficiency of as much as two orders of magnitude can be obtained.The dependences of the optimal thickness ratio to the characteristic trap energy,total density of trap and carrier mobility are numerically analyzed.
基金the Key Technologies R&D Program of Shandong Province (2006gg2201014)Tianjin Natural Science Foundation (07JCYBJC06400)Tianjin Education Committee Science and Technology Development Foundation
文摘The well crystalline YAG:Ce^3+ phosphor was synthesized by sold-state method, and the temperature dependence of excitation and emission spectra of YAG:Ce^3+ phosphor were investigated in the temperature range from room temperature to 573 K. With temperature increasing, it was noted that the emission intensity of as-repared phosphors decreased considerably more rapidly when pumped by 460 nm than by 340 nm. The temperature-intensity curves under different excitation wavelengths were obtained using an Arrhenius function, and the corresponding activation energies were also obtained respectively. Thus, the experimental phenomenon was discussed in terms of nonradiative decay rate. The effects of as-prepared phosphors on the performance of the white LED with changing temperature were also studied.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.11974063,11904156)Postdoctoral Science Foundation of China(No.2019M653336).The calcu-lations were done at the Center for Computational Science and Engineering of Southern University of Science and Technology(SUSTech).
文摘All-inorganic CsPbBr_(3) perovskite quantum dots(QDs)have received great attention in white light emission because of their outstanding properties.However,their practical application is hindered by poor stability.Herein,we propose a simple strategy to synthesize excellent stability and efficient emission of CsPbBr_(3) QDs by using 2-hexyldecanoic acid(DA)as a ligand to replace the regular oleic acid(OA)ligand.Thanks to the strong binding energy between DA ligand and QDs,the modified QDs not only show a high photoluminescence quantum yield(PLQY)of 96%but also exhibit high stability against ethanol and water.Thereby warm white light-emitting diodes(WLEDs)are constructed by combining lig-and modified CsPbBr_(3) QDs with red AgInZnS QDs on blue emitting InGaN chips,exhibiting a color rendering index of 93,a power efficiency of 64.8 lm/W,a CIE coordinate of(0.44,0.42)and correlated color temperature value of 3018 K.In ad-dition,WLEDs based on ligand modified CsPbBr_(3) QDs also exhibit better thermal performance than that of WLEDs based on the regular CsPbBr_(3) QDs.The combination of improved efficiency and better thermal stability with high color quality indicates that the modified CsPbBr_(3) QDs are ideal for WLEDs application.
基金the National Natural Science Foundation of China (Grant Nos.61204087, 61306099)the Guangdong Natural Science Foundation (Grant No. S2012040007003)+2 种基金China Postdoctoral Science Foundation (2013M531841)the Fundamental Research Funds for the Central Universities (2014ZM0003, 2014ZM0034, 2014ZM0037, 2014ZZ0028)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20120172120008)
文摘A very-high color rendering index white organic light-emitting diode(WOLED) based on a simple structure was successfully fabricated. The optimized device exhibits a maximum total efficiency of 13.1 and 5.4 lm/W at 1,000 cd/m2. A peak color rendering index of 90 and a relatively stable color during a wide range of luminance were obtained. In addition, it was demonstrated that the 4,40,400-tri(9-carbazoyl) triphenylamine host influenced strongly the performance of this WOLED.These results may be beneficial to the design of both material and device architecture for high-performance WOLED.
基金Project supported by the Special Strategic Emerging Industries of Guangdong Province,China(Grant No.2012A080304006)the Major Scientific and Technological Projects of Zhongshan City,Guangdong Province,China(Grant No.2014A2FC204)the Forefront of Technology Innovation and Key Technology Projects of Guangdong Province,China(Grant Nos.2014B010121001 and 2014B010119004)
文摘The AlGaN-based deep ultraviolet light-emitting diodes(LED) with double electron blocking layers(d-EBLs) on both sides of the active region are investigated theoretically. They possess many excellent performances compared with the conventional structure with only a single electron blocking layer, such as a higher recombination rate, improved light output power and internal quantum efficiency(IQE). The reasons can be concluded as follows. On the one hand, the weakened electrostatic field within the quantum wells(QWs) enhances the electron–hole spatial overlap in QWs, and therefore increases the probability of radioactive recombination. On the other hand, the added n-AlGaN layer can not only prevent holes from overflowing into the n-side region but also act as another electron source, providing more electrons.
基金Project supported by the Economic Affair (95-EC-17-A-07-S1-043)the National Science Council (94-2113-M-002-030)
文摘Remarkable progress was made in the development of white-light-emitting diodes (LEDs). White LEDs provided a light element having a semiconductor InGaN light-emitting chip (blue or UV LEDs) and luminescent phosphors. Here we reported the sialon s-phase of (Sr,Eu)2A12Si10N14O4. Eu^2+ activator ions that were substituted for the strontium site represented a new type of yeUow-green phosphor that could be excited by blue LEDs used for application in the fabrication of white LEDs.
基金Project supported by the Production and Research Program of Guangdong Province and Ministry of Education (Grant No.2009B090300338)Guangdong Natural Science Foundation of China (Grant No.8251063101000007)+1 种基金Guangdong Science and Technology Plan of China (Grant No.2008B010200004)the Student Research Project of South China Normal University (Grant No.09XXKC03)
文摘GaN-based light-emitting diodes (LEDs) with surface-textured indium tin oxide (ITO) as a transparent current spreading layer were fabricated. The ITO surface was textured by inductively coupled plasma (ICP) etching technology using a monolayer of nickel (Ni) nanoparticles as the etching mask. The luminance intensity of ITO surface-textured GaN-based LEDs was enhanced by about 34% compared to that of conventional LED without textured ITO layer. In addition, the fabricated ITO surface-textured GaN-based LEDs would present a quite good performance in electrical characteristics. The results indicate that the scattering of photons emitted in the active layer was greatly enhanced via the textured ITO surface, and the ITO surface-textured technique could have a potential application in improving photoelectric characteristics for manufacturing GaN-based LEDs of higher brightness.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50602018)the Science and Technology Program of Guangdong Province,China (Grant Nos. 2010B090400456,2009B011100003,and 2010A081002002)the Science and Technology Program of Guangzhou City,China (Grant No. 2010U1-D00191)
文摘InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole injection layers show superior optical and electrical performance, such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-A1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency.
基金Project supported by the National Natural Science Foundation of China (Grant No.50602018)the Science and Technology Program of Guangdong Province,China (Grant Nos.2010B090400456,2009B011100003,and 2010A081002002)the Science and Technology Program of Guangzhou City,China (Grant No.2010U1-D00191)
文摘InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investi- gated using the APSYS simulation software. It is found that the structure with a p-AlInN electron blocking layer showes improved light output power, lower current leakage, and smaller efficiency droop. Based on numerical simulation and analysis, these improvements of the electrical and optical characteristics are mainly attributed to the efficient electron blocking in the InGaN/GaN multiple quantum wells (MQWs).
基金supported by Australian Research Council Discovery Project(DP190102252).
文摘The remarkable evolution of metal halide perovskites in the past decade makes them promise for next-generation optoelectronic material.In particular,nanocrystals(NCs)of inorganic perovskites have demonstrated excellent performance for light-emitting and display applications.However,the presence of surface defects on the NCs negatively impacts their performance in devices.Herein,we report a compatible facial post-treatment of CsPbI_(3) nanocrystals using guanidinium iodide(GuI).It is found that the GuI treatment effectively passivated the halide vacancy defects on the surface of the NCs while offering effective surface protection and exciton confinement thanks to the beneficial contribution of iodide and guanidinium cation.As a consequence,the film of treated CsPbI_(3) nanocrystals exhibited significantly enhanced luminescence and charge transport properties,leading to high-performance light-emitting diode with maximum external quantum efficiency of 13.8%with high brightness(peak luminance of 7039 cd m^(−2) and a peak current density of 10.8 cd A^(−1)).The EQE is over threefold higher than performance of untreated device(EQE:3.8%).The operational half-lifetime of the treated devices also was significantly improved with T50 of 20 min(at current density of 25 mA cm^(−2)),outperforming the untreated devices(T50~6 min).
基金supported by the National Natural Science Foundation of China (Grant No. 50602018)the Science and Technology Program of Guangdong Province of China (Grant Nos. 2010B090400456, 2009B011100003, and 2010A081002002)the Scienceand Technology Program of Guangzhou City, China (Grant No. 2010U1-D00191)
文摘InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum ~lls are numerically investigated by using the APSYS simulation software. It is found that the structure with dip- aped quantum wells shows improved light output power, lower current leakage and less efficiency droop. Based on Lmerical simulation and analysis, these improvements on the electrical and the optical characteristics are attributed ainly to the alleviation of the electrostatic field in dip-shaped InGaN/GaN multiple quantum wells (MQWs).
文摘A cyclometalated greenish-yellow emitter 2,3-diphenylimidazo[1,2-a]pyridine iridium(Ill) complex is successfully synthesized and used to fabricate phosphorescent organic light-emitting diodes. The optimized device exhibits a greenish-yellow emission with the peak at 523nm and a strong shoulder at 557nm, corresponding to Commission Internationale de l'Eclairage coordinates of (0.38, 0.68). The full width at half maximum of the device is 93 nm, which is broader than the fac-tris(2-phenylpyridine)iridium [Ir(ppy)3] based reference device of 78 nm. Meanwhile, a maximum current efficiency of 62.6 cd/A (47.51m/W) is obtained. This result is higher than a maximum current efficiency of 54.8 cd/A (431m/W) of the Ir(ppy)a based device. The results indicate that this new iridium complex may have potential applications in fabricating high color rendering index white organic light emitting diodes.
基金supported by the National Natural Science Foundation of China under Grants No.60425101Young Excellence Project of University of Electronic Science and Technology of China(UESTC-060206)project.
文摘Indium tin oxide (ITO) ultrathin films were prepared on glass substrate by DC (direct current) magnetron sputtering technique with the assistance of H2O vapor to avoid potential surface damage. The film properties were characterized by X-ray diffraction (XRD) technique, four-point probe method and spectrophotometer. The results show that the deposited ITO film with introduced H2O during sputtering process was almost amorphous. The average visible light transmission of 100 nm ITO film was around 85% and square resistivity was below 80 Ω/square. The film was used as the transparent anode to fabricate an inverted top-emitting organic light-emitting diodes (IT-OLEDs) with the structure of glass substrate/Alq3 (40 nm)/NPB (15 nm)/CuPc (x nm)/ITO anode (100 nm), where the film thickness of CuPc was optimized. It was found that the luminance of this IT-OLEDs was improved from 25 cd/m^2 to more than 527 cd/m^2 by increasing the thickness of CuPc, and luminance efficiency of 0.24 lm/W at 100 cd/m^2 was obtained, which indicated that the optimized thickness of CuPc layer was around 15 nm.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA034801)the Foundation of the State Key Laboratory of Mechanical Transmission of Chongqing University,China(Grant Nos.SKLMT-ZZKT-2017M15 and SKLM-ZZKT-2015Z16)+3 种基金the National Natural Science Foundation of China(Grant Nos.11544010,11374359,11304405,and 1155305)the Natural Science Foundation of Chongqing,China(Grant Nos.cstc2015jcyjA50035 and cstc2015jcyjA1660)the Fundamental Research Funds for the Central Universities,China(Grant Nos.2018CDJDWL0011,106112017CDJQJ328839,106112016CDJZR288805,and 106112015CDJXY300002)the Sharing Fund of Large-Scale Equipment of Chongqing University,China(Grant Nos.201612150094,201712150005,201712150006,and 201712150010)
文摘In order to reduce the Schottky barrier height and sheet resistance between graphene(Gr)and the p-GaN layers in GaN-based light-emitting diodes(LEDs),conductive transparent thin films with large work function are required to be inserted between Gr and p-GaN layers.In the present work,three kinds of transparent conductive oxide(TCO)zinc oxide(ZnO)films,Al-,Ga-,and In-doped ZnO(AZO,GZO,and IZO),are introduced as a bridge layer between Gr and p-GaN,respectively.The influence of different combinations of Gr/ZnO hybrid transparent conducting layers(TCLs)on the optical and thermal characteristics of the GaN-LED was investigated by the finite element method through COMSOL software.It is found that both the TCL transmittance and the surface temperature of the LED chip reduce with the increase in Gr and ZnO thickness.In order to get the transmittance of the Gr/ZnO hybrid TCL higher than 80%,the appropriate combination of Gr/ZnO compound electrode should be a single layer of Gr with ZnO no thicker than 400 nm(1 L Gr/400-nm ZnO),2 L Gr/300-nm ZnO,3 L Gr/200-nm ZnO,or 4 L Gr/100-nm ZnO.The LEDs with hybrid TCLs consisting of 1 L Gr/300-nm AZO,2 L Gr/300-nm GZO,and 2 L Gr/300-nm IZO have good performance,among which the one with 1 L Gr/300-nm GZO has the best thermal property.Typically,the temperature of LEDs with 1 L Gr/300-nm GZO hybrid TCLs will drop by about 7 K compared with that of the LEDs with a TCL without ZnO film.
基金the National Key Research and Development Program of China (Grant No. 2016YFF02033604)the Guangdong Natural Science Foundation (Grant Nos. 2014A030310253, 2016A030310360)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No. 2015ZM070)the National Natural Science Foundation of China (Grant No. 51602065)the Guangdong Science and Technology Plan (Grant Nos. 2016A040403037, 2016A010101026)
文摘The interlayer(IL) plays a vital role in hybrid white organic light-emitting diodes(WOLEDs); however,only a negligible amount of attention has been given to n-type ILs. Herein, the n-type IL, for the first time,has been demonstrated to achieve a high efficiency, high color rendering index(CRI), and low voltage trade-off.The device exhibits a maximum total efficiency of 41.5 lm W^(-1), the highest among hybrid WOLEDs with n-type ILs. In addition, high CRIs(80–88) at practical luminances(C1000 cd m^(-2)) have been obtained, satisfying the demand for indoor lighting. Remarkably, a CRI of 88 is the highest among hybrid WOLEDs. Moreover, the device exhibits low voltages, with a turn-on voltage of only 2.5 V([1 cd m^(-2)), which is the lowest among hybrid WOLEDs. The intrinsic working mechanism of the device has also been explored; in particular, the role of n-type ILs in regulating the distribution of charges and excitons has been unveiled. The findings demonstrate that the introduction of n-type ILs is effective in developing high-performance hybrid WOLEDs.