sensor based on light-induced thermoelastic spectroscopy(LITES)with a fiber-coupled multipass cell was demonstrated for carbon monoxide(CO)detection.The fiber-coupled structure has the merits of reducing optical inter...sensor based on light-induced thermoelastic spectroscopy(LITES)with a fiber-coupled multipass cell was demonstrated for carbon monoxide(CO)detection.The fiber-coupled structure has the merits of reducing optical interference and difficulty in optical alignment and increasing system robustness.A 1.57 nm continuous wave distributed feedback diode laser was used as the excitation source.A minimum detection limit of 9 ppm was obtained,and the calculated normalized noise equivalent absorption coefficient was 1.15×10^(-7)cm^(-1)•W•Hz^(-1/2).The reported CO-LITES sensor showed excellent linear concentration response and system stability.展开更多
Fabry-Perot(F-P)-based phase demodulation of heterodyne light-induced thermoelastic spectroscopy(H-LITES)was demonstrated for the first time in this study.The vibration of a quartz tuning fork(QTF)was detected using t...Fabry-Perot(F-P)-based phase demodulation of heterodyne light-induced thermoelastic spectroscopy(H-LITES)was demonstrated for the first time in this study.The vibration of a quartz tuning fork(QTF)was detected using the F-P interference principle instead of an electrical signal through the piezoelectric effect of the QTF in traditional LITES to avoid thermal noise.Given that an Fabry-Perot interferometer(FPI)is vulnerable to disturbances,a phase demodulation method that has been demonstrated theoretically and experimentally to be an effective solution for instability was used in H-LITES.The sensitivity of the F-P phase demodulation method based on the H-LITES sensor was not associated with the wavelength or power of the probe laser.Thus,stabilising the quadrature working point(Q-point)was no longer necessary.This new method of phase demodulation is structurally simple and was found to be resistant to interference from light sources and the surroundings using the LITES technique.展开更多
The present paper covers the lipid-free rhodium tetrasulfonato-phthalocyanine (RhTSPc) films prepared on p-Si(111) by using Langmuir-Blodgett technique. Their surface photovoltage spectra were measured. It was found t...The present paper covers the lipid-free rhodium tetrasulfonato-phthalocyanine (RhTSPc) films prepared on p-Si(111) by using Langmuir-Blodgett technique. Their surface photovoltage spectra were measured. It was found that there is a strong interaction at the interface between the RhTSPc film and p-Si (111) and that the surface photovoltaic effect of the film system is maximum when only one monolayer of RhTSPc molecules coats p-Si(111), which is similar to that of CuTSPc films on p-Si(111) reported previously. These results confirm that only the monolayer of dye molecules being adjacent to the semiconductor surface plays a key role in the light-induced interfacial charge transfer process.展开更多
Light-induced infrared emission spectroscopy (LIRES) is a novel technique that permits to receive high-quality spectra in the mid-infrared region. Low-intensity visible light connected to a highly sensitive FTIR spect...Light-induced infrared emission spectroscopy (LIRES) is a novel technique that permits to receive high-quality spectra in the mid-infrared region. Low-intensity visible light connected to a highly sensitive FTIR spectrometer is more advantageous for studying any samples, including biological samples without any damage. This technique permits obtaining unique information on the molecule structure via vibrational excitation fundamental frequencies, overtones, and combination modes. It also enables a direct observation of vibrational radiation transitions in vibrationally excited molecules as well as the channels of vibration energy redistribution, which is not allowed with any other method. In this work, the LIRES is being tested as a technique for studying of vibrationally-excited molecules of carbon tetrachloride and benzene in the liquid phase. On the other hand, using transparent liquids, we had tried to understand some of the physical phenomena that can drive emission in mid-IR. The characteristics of the infrared emission of both liquid species produced by different wavelength radiation from various types of light systems (100 - watt Xe-lamp and Nd:YAG laser;lambda = 1064 nm (8 mW) and lambda = 532 nm (4 mW)) are presented. We demonstrated that the IR-signal, as well as spectral properties of carbon tetrachloride and benzene, was dependent on the wavelength and power of excitation beam. Results obtained with different light sources show that the visible light produces a nonlinear IR-emission signal in transparent liquids. We believe that the visible light is the source of the nonlinear response and is producing the vibration excitation as well as photostimulated transformations of the molecules possessing the high activity for the nonlinear response.展开更多
A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manu...A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF.展开更多
The light-induced frequency shift(LIFS)of ultracold molecular ro-vibrational levels originates from the strong coupling of the atomic-scattering state and the bound-molecular state.In this paper,we present our experim...The light-induced frequency shift(LIFS)of ultracold molecular ro-vibrational levels originates from the strong coupling of the atomic-scattering state and the bound-molecular state.In this paper,we present our experimental determination of the LIFSs of the lowest vibrational levels(v=0,1)in the purely long-range 0^-g state of ultracold cesium molecules.A high-resolution double photoassociation spectroscopy is developed,which serves as frequency ruler to measure the frequency shifts of the lowest molecular levels for Cs2.The experimental results are qualitatively consistent with the theoretical expectations.展开更多
A highly sensitive carbon dioxide(CO_(2))sensor based on light-induced thermoelastic spectroscopy(LITES)utilizing a selfdesigned low-frequency quartz tuning fork(QTF)and a fiber-coupled multipass cell(MPC)is reported ...A highly sensitive carbon dioxide(CO_(2))sensor based on light-induced thermoelastic spectroscopy(LITES)utilizing a selfdesigned low-frequency quartz tuning fork(QTF)and a fiber-coupled multipass cell(MPC)is reported in this paper.The QTF with a low resonant frequency of 8675 Hz and a high Q factor of 11,675.64 was used to improve its energy accumulation time and the sensor’s signal level.The MPC with the fiber-coupled structure and optical length of 40 m was adopted to significantly increase the gas absorbance and reduce the optical alignment difficulty as well as improve the robustness of the sensor system.A distributed feedback(DFB),near-infrared diode laser with an emission wavelength of 1.57μm was used as an excitation source.The experimental results showed that this CO_(2)-LITES sensor had an excellent linear response to CO_(2) concentrations.The minimum detection limitation(MDL)of this CO_(2)-LITES sensor was obtained to be 445.91 ppm,and it could be improved to 47.70 ppm(parts per million)when the integration time of the system reached 500 s.Further improvement methods for the detection performance of such sensors were also discussed.展开更多
The aerosol transmission of coronavirus disease in 2019,along with the spread of other respiratory diseases,caused significant loss of life and property;it impressed upon us the importance of real-time bioaerosol dete...The aerosol transmission of coronavirus disease in 2019,along with the spread of other respiratory diseases,caused significant loss of life and property;it impressed upon us the importance of real-time bioaerosol detection.The complexity,diversity,and large spatiotemporal variability of bioaerosols and their external/internal mixing with abiotic components pose challenges for effective online bioaerosol monitoring.Traditional methods focus on directly capturing bioaerosols before subsequent time-consuming laboratory analysis such as culture-based methods,preventing the high-resolution time-based characteristics necessary for an online approach.Through a comprehensive literature assessment,this review highlights and discusses the most commonly used real-time bioaerosol monitoring techniques and the associated commercially available monitors.Methods applied in online bioaerosol monitoring,including adenosine triphosphate bioluminescence,laser/light-induced fluorescence spectroscopy,Raman spectroscopy,and bioaerosol mass spectrometry are summarized.The working principles,characteristics,sensitivities,and efficiencies of these real-time detection methods are compared to understand their responses to known particle types and to contrast their differences.Approaches developed to analyze the substantial data sets obtained by these instruments and to overcome the limitations of current real-time bioaerosol monitoring technologies are also introduced.Finally,an outlook is proposed for future instrumentation indicating a need for highly revolutionized bioaerosol detection technologies.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.62022032,61875047,and 61505041)Natural Science Foundation of Heilongjiang Province of China(No.YQ2019F006)+1 种基金Fundamental Research Funds for the Central UniversitiesFinancial Grant from the Heilongjiang Province Postdoctoral Foundation(No.LBH-Q18052).
文摘sensor based on light-induced thermoelastic spectroscopy(LITES)with a fiber-coupled multipass cell was demonstrated for carbon monoxide(CO)detection.The fiber-coupled structure has the merits of reducing optical interference and difficulty in optical alignment and increasing system robustness.A 1.57 nm continuous wave distributed feedback diode laser was used as the excitation source.A minimum detection limit of 9 ppm was obtained,and the calculated normalized noise equivalent absorption coefficient was 1.15×10^(-7)cm^(-1)•W•Hz^(-1/2).The reported CO-LITES sensor showed excellent linear concentration response and system stability.
基金support from the National Natural Science Foundation of China(Grant Nos.62022032,62275065,61875047,61505041)the Key Laboratory of Opto-Electronic Information Acquisition and Manipulation(Anhui University)+1 种基金the Ministry of Education(Grant No.OEIAM202202)the Fundamental Research Funds for Central Universities.
文摘Fabry-Perot(F-P)-based phase demodulation of heterodyne light-induced thermoelastic spectroscopy(H-LITES)was demonstrated for the first time in this study.The vibration of a quartz tuning fork(QTF)was detected using the F-P interference principle instead of an electrical signal through the piezoelectric effect of the QTF in traditional LITES to avoid thermal noise.Given that an Fabry-Perot interferometer(FPI)is vulnerable to disturbances,a phase demodulation method that has been demonstrated theoretically and experimentally to be an effective solution for instability was used in H-LITES.The sensitivity of the F-P phase demodulation method based on the H-LITES sensor was not associated with the wavelength or power of the probe laser.Thus,stabilising the quadrature working point(Q-point)was no longer necessary.This new method of phase demodulation is structurally simple and was found to be resistant to interference from light sources and the surroundings using the LITES technique.
基金Supported by the National Natural Science Foundation of China
文摘The present paper covers the lipid-free rhodium tetrasulfonato-phthalocyanine (RhTSPc) films prepared on p-Si(111) by using Langmuir-Blodgett technique. Their surface photovoltage spectra were measured. It was found that there is a strong interaction at the interface between the RhTSPc film and p-Si (111) and that the surface photovoltaic effect of the film system is maximum when only one monolayer of RhTSPc molecules coats p-Si(111), which is similar to that of CuTSPc films on p-Si(111) reported previously. These results confirm that only the monolayer of dye molecules being adjacent to the semiconductor surface plays a key role in the light-induced interfacial charge transfer process.
文摘Light-induced infrared emission spectroscopy (LIRES) is a novel technique that permits to receive high-quality spectra in the mid-infrared region. Low-intensity visible light connected to a highly sensitive FTIR spectrometer is more advantageous for studying any samples, including biological samples without any damage. This technique permits obtaining unique information on the molecule structure via vibrational excitation fundamental frequencies, overtones, and combination modes. It also enables a direct observation of vibrational radiation transitions in vibrationally excited molecules as well as the channels of vibration energy redistribution, which is not allowed with any other method. In this work, the LIRES is being tested as a technique for studying of vibrationally-excited molecules of carbon tetrachloride and benzene in the liquid phase. On the other hand, using transparent liquids, we had tried to understand some of the physical phenomena that can drive emission in mid-IR. The characteristics of the infrared emission of both liquid species produced by different wavelength radiation from various types of light systems (100 - watt Xe-lamp and Nd:YAG laser;lambda = 1064 nm (8 mW) and lambda = 532 nm (4 mW)) are presented. We demonstrated that the IR-signal, as well as spectral properties of carbon tetrachloride and benzene, was dependent on the wavelength and power of excitation beam. Results obtained with different light sources show that the visible light produces a nonlinear IR-emission signal in transparent liquids. We believe that the visible light is the source of the nonlinear response and is producing the vibration excitation as well as photostimulated transformations of the molecules possessing the high activity for the nonlinear response.
基金National Natural Science Foundation of China(Grant Nos.62335006,62022032,62275065,and 61875047)Key Laboratory of Opto-Electronic Information Acquisition and Manipulation(Anhui University),Ministry of Education(Grant No.OEIAM202202)Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2023011).
文摘A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF.
基金the National Key R&D Program of China(Grant No.2017YFA0304203)the Na-tional Natural Science Foundation of China(Grants Nos.61722507,61675121,and 61705123)+2 种基金PCSIRT(No.IRT-17R70),111 Project(Grant No.D18001)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(OIT)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province,and the Applied Basic Research Project of Shanxi Province,China(Grant Nos.201701D221002,201901D211191,and 201901D211188).
文摘The light-induced frequency shift(LIFS)of ultracold molecular ro-vibrational levels originates from the strong coupling of the atomic-scattering state and the bound-molecular state.In this paper,we present our experimental determination of the LIFSs of the lowest vibrational levels(v=0,1)in the purely long-range 0^-g state of ultracold cesium molecules.A high-resolution double photoassociation spectroscopy is developed,which serves as frequency ruler to measure the frequency shifts of the lowest molecular levels for Cs2.The experimental results are qualitatively consistent with the theoretical expectations.
基金supported by the National Natural Science Foundation of China(Nos.62335006,62022032,and 62275065)the Key Laboratory of Opto-Electronic Information Acquisition and Manipulation(Anhui University)+1 种基金Ministry of Education(No.OEIAM202202)the Fundamental Research Funds for the Central Universities(No.HIT.OCEF.2023011).
文摘A highly sensitive carbon dioxide(CO_(2))sensor based on light-induced thermoelastic spectroscopy(LITES)utilizing a selfdesigned low-frequency quartz tuning fork(QTF)and a fiber-coupled multipass cell(MPC)is reported in this paper.The QTF with a low resonant frequency of 8675 Hz and a high Q factor of 11,675.64 was used to improve its energy accumulation time and the sensor’s signal level.The MPC with the fiber-coupled structure and optical length of 40 m was adopted to significantly increase the gas absorbance and reduce the optical alignment difficulty as well as improve the robustness of the sensor system.A distributed feedback(DFB),near-infrared diode laser with an emission wavelength of 1.57μm was used as an excitation source.The experimental results showed that this CO_(2)-LITES sensor had an excellent linear response to CO_(2) concentrations.The minimum detection limitation(MDL)of this CO_(2)-LITES sensor was obtained to be 445.91 ppm,and it could be improved to 47.70 ppm(parts per million)when the integration time of the system reached 500 s.Further improvement methods for the detection performance of such sensors were also discussed.
基金financially supported by National Natural Science Foundation of China(U1901210,42177410 and 42130611)Science and Technology Project of Guangdong Province,China(2021A0505030070)+2 种基金Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01Z032)Science and Technology Program of Guangzhou(202201010684)and Young S&T Talent Training Program of Guangdong Provincial Association for S&T(GDSTA),China(2022QNRC23).
文摘The aerosol transmission of coronavirus disease in 2019,along with the spread of other respiratory diseases,caused significant loss of life and property;it impressed upon us the importance of real-time bioaerosol detection.The complexity,diversity,and large spatiotemporal variability of bioaerosols and their external/internal mixing with abiotic components pose challenges for effective online bioaerosol monitoring.Traditional methods focus on directly capturing bioaerosols before subsequent time-consuming laboratory analysis such as culture-based methods,preventing the high-resolution time-based characteristics necessary for an online approach.Through a comprehensive literature assessment,this review highlights and discusses the most commonly used real-time bioaerosol monitoring techniques and the associated commercially available monitors.Methods applied in online bioaerosol monitoring,including adenosine triphosphate bioluminescence,laser/light-induced fluorescence spectroscopy,Raman spectroscopy,and bioaerosol mass spectrometry are summarized.The working principles,characteristics,sensitivities,and efficiencies of these real-time detection methods are compared to understand their responses to known particle types and to contrast their differences.Approaches developed to analyze the substantial data sets obtained by these instruments and to overcome the limitations of current real-time bioaerosol monitoring technologies are also introduced.Finally,an outlook is proposed for future instrumentation indicating a need for highly revolutionized bioaerosol detection technologies.