期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Spatial analysis and evaluation of a coal deposit by coupling AHP & GIS techniques 被引量:9
1
作者 Nikolaos Paraskevis Christos Roumpos +1 位作者 Nikolaos Stathopoulos Aikaterini Adam 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第6期943-953,共11页
Nowadays,the evaluation of coal deposits becomes crucial,due to many uncontrollable factors,which affect the energy sector.A comparative evaluation of coal deposits is essential for their hierarchical classification r... Nowadays,the evaluation of coal deposits becomes crucial,due to many uncontrollable factors,which affect the energy sector.A comparative evaluation of coal deposits is essential for their hierarchical classification regarding their sustainable exploitation,when compared to other coal deposits or competitive fuels,which may be used as alternative solutions for electricity generation.In this paper,a method for spatial analysis and evaluation of a lignite deposit is proposed,by creating four spatial key indicators via GIS analysis,which are then aggregated by applying a weighted linear combination.The analytical hierarchy process is applied to estimate the relative weights of the indicators,in order to perform a weighted cartographic overlay.Through the synthesis of the indicators,an overall,total spatial quality indicator is calculated.The weighted analysis was shown to be more effective compared to the unweighted one,because it can provide more reliable results regarding the exploitation of the examined lignite deposit.The implementation of GIS-based analytical hierarchy process in spatial analysis and evaluation of lignite deposits,in terms of sustainable exploitation,demonstrates that this method can be extensively applied for evaluating the economic potential of mineral deposits. 展开更多
关键词 Lignite/coal DEPOSIT SPATIAL analysis Evaluation Cartographic overlay Analytical hierarchy process GEOGRAPHIC information systems WEIGHTED linear combination(WLC) WEIGHTED SPATIAL quality indicator(WSQI)
下载PDF
Polycyclic aromatic hydrocarbon formation under simulated coal seam pyrolysis conditions 被引量:5
2
作者 Liu Shuqin Wang Yuanyuan +2 位作者 Wang Caihong Bao Pengcheng Dang Jinli 《Mining Science and Technology》 EI CAS 2011年第4期605-610,共6页
Coal seam pyrolysis occurs during coal seam fires and during underground coal gasification. This is an important source of polycyclic aromatic hydrocarbon (PAH) emission in China. Pyrolysis in a coal seam was simula... Coal seam pyrolysis occurs during coal seam fires and during underground coal gasification. This is an important source of polycyclic aromatic hydrocarbon (PAH) emission in China. Pyrolysis in a coal seam was simulated in a tubular furnace. The 16 US Environmental Protection Agency priority controlled PAHs were analyzed by HPLC. The effects of temperature, heating rate, pyrolysis atmosphere, and coal size were investigated. The results indicate that the 3-ring PAHs AcP and AcPy are the main species in the pyrolysis gas. The 2-ring NaP and the 4-ring Pyr are also of concern. Increasing temperature caused the total PAH yield to go through a minimum. The lowest value was obtained at the temperature of 600℃. Higher heating rates promote PAH formation, especially formation of the lower molecular weight PAHs. The typical heating rate in a coal seam, 5 ℃/min, results in intermediate yields of PAHs. The total PAHs yield in an atmosphere of N2 is about 1.81 times that seen without added N2, which indicates that an air flow through the coal seam accelerates the formation of PAHs. An increase in coal particle size reduces the total PAHs emission but promotes the formation of 5- and f-ring PAHs. 展开更多
关键词 PAHs coal field fires Underground coal gasification Lignite
下载PDF
Evaluating the Technical and Economic Feasibility of Adding a Power Recovery System to the Steam Condenser of a Lignite Coal-Fired Power Plant
3
作者 Joshua Wilmer Wayne Seames +4 位作者 Dimitri Bazile Kay Lee Smith Benjamin Koster Grady Mauch Lucas Weimer 《Journal of Power and Energy Engineering》 2022年第11期16-34,共19页
Steam is the typical working fluid to drive turbo-generators in coal-fired power plants. It is an effective working fluid, but some of its energy is extracted in an unusable form when condensed. A Power Recovery ... Steam is the typical working fluid to drive turbo-generators in coal-fired power plants. It is an effective working fluid, but some of its energy is extracted in an unusable form when condensed. A Power Recovery Cycle (PRC) using a more volatile Secondary Working Fluid (SWF) added to the steam cycle could improve energy efficiency. PRCs have been applied to the flue gas and for combined cycle systems but not to traditional plant steam cycles. This paper details an analysis of adding a steam cycle PRC to a 500 MW lignite coal-fired power plant. A validated model of the plant was developed and PRCs using the three most attractive SWFs, benzene, methanol and hydrazine, were then added to the model. Adding a benzene, methanol, or hydrazine steam cycle PRC will produce an additional 59, 34, and 49 MW, respectively. An AACE Class 4 factored broad capital cost estimate and comparable operating costs and revenue estimates were developed to evaluate PRC feasibility. The benzene, methanol, and hydrazine processes had 2019 Net Present Values (NPVs) @12% of -$32, -$59, and +$35 million ± 40%, respectively. Thus, a PRC may be profitable at current or modest increases to U.S. Upper Midwest electricity prices of around $0.0667/kWh. 展开更多
关键词 Lignite coal Heat Recovery Power Plant Organic Rankine Cycle Bottoming Cycle
下载PDF
Construction of a macromolecular structural model of Chinese lignite and analysis of its low-temperature oxidation behavior 被引量:11
4
作者 Xianliang Meng Mingqiang Gao +6 位作者 Ruizhi Chu Zhenyong Miao Guoguang Wu Lei Bai Peng Liu Yuanfang Yan Pengcheng Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第9期1314-1321,共8页
The aim of this paper is to analyze the change in the active structure of lignite during the process of lowtemperature oxidation by constructing a molecular structure model for lignite. Using quantum computation combi... The aim of this paper is to analyze the change in the active structure of lignite during the process of lowtemperature oxidation by constructing a molecular structure model for lignite. Using quantum computation combined with experimental results of proximate analysis, ultimate analysis, Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectroscopy(XPS), a structural model for the large molecular structure was constructed. By analyzing the bond lengths in the model molecule, the evolution law for the active structure of lignite was predicted for the process of low-temperature oxidation. In low-temperature oxidation,alkanes and hydroxyls are the primary active structures observed in lignite, though ether may also react. These active functional groups react with oxygen to release heat, thereby speeding up the reaction between coal and oxygen. Finally, the content of various functional groups in the process of lignite low-temperature oxidation was analyzed by infrared analysis, and the accuracy of the model was verified. 展开更多
关键词 Chinese lignite coal combustion Molecular simulation Low-temperature oxidation process Environment
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部