期刊文献+
共找到1,179篇文章
< 1 2 59 >
每页显示 20 50 100
A Highly Accurate Dysphonia Detection System Using Linear Discriminant Analysis
1
作者 Anas Basalamah Mahedi Hasan +1 位作者 Shovan Bhowmik Shaikh Akib Shahriyar 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1921-1938,共18页
The recognition of pathological voice is considered a difficult task for speech analysis.Moreover,otolaryngologists needed to rely on oral communication with patients to discover traces of voice pathologies like dysph... The recognition of pathological voice is considered a difficult task for speech analysis.Moreover,otolaryngologists needed to rely on oral communication with patients to discover traces of voice pathologies like dysphonia that are caused by voice alteration of vocal folds and their accuracy is between 60%–70%.To enhance detection accuracy and reduce processing speed of dysphonia detection,a novel approach is proposed in this paper.We have leveraged Linear Discriminant Analysis(LDA)to train multiple Machine Learning(ML)models for dysphonia detection.Several ML models are utilized like Support Vector Machine(SVM),Logistic Regression,and K-nearest neighbor(K-NN)to predict the voice pathologies based on features like Mel-Frequency Cepstral Coefficients(MFCC),Fundamental Frequency(F0),Shimmer(%),Jitter(%),and Harmonic to Noise Ratio(HNR).The experiments were performed using Saarbrucken Voice Data-base(SVD)and a privately collected dataset.The K-fold cross-validation approach was incorporated to increase the robustness and stability of the ML models.According to the experimental results,our proposed approach has a 70%increase in processing speed over Principal Component Analysis(PCA)and performs remarkably well with a recognition accuracy of 95.24%on the SVD dataset surpassing the previous best accuracy of 82.37%.In the case of the private dataset,our proposed method achieved an accuracy rate of 93.37%.It can be an effective non-invasive method to detect dysphonia. 展开更多
关键词 Dimensionality reduction dysphonia detection linear discriminant analysis logistic regression speech feature extraction support vector machine
下载PDF
基于FastICA-LDA的光伏并网逆变器故障诊断
2
作者 张磊 余茂全 夏远洋 《新余学院学报》 2024年第5期40-48,共9页
为了实现逆变器开路故障诊断,提出了一种新的诊断方法。该方法采用快速独立成分分析算法判定逆变器是否发生单管开路故障,如果发生单管开路故障,计算旋转电流Id频域下的特征值,将这些特征值作为线性判别分析模型的输入值,最后由LDA模型... 为了实现逆变器开路故障诊断,提出了一种新的诊断方法。该方法采用快速独立成分分析算法判定逆变器是否发生单管开路故障,如果发生单管开路故障,计算旋转电流Id频域下的特征值,将这些特征值作为线性判别分析模型的输入值,最后由LDA模型输出逆变器工作状态编号,从而实现单管开路定位。经过MATLAB仿真验证表明,所提方法对光伏并网逆变器故障的诊断效果较好。 展开更多
关键词 并网逆变器 开路故障 频域特征 快速独立成分分析 线性判别分析
下载PDF
基于LDA-MURE模型的背景音乐自适应推荐方法
3
作者 杨静 《信息技术》 2024年第6期136-140,146,共6页
用户的情绪状态不同,需要的背景音乐也不同,因此提出基于LDA-MURE模型的背景音乐自适应推荐方法。提取背景音乐的音频特征和社会化标签,通过Fisher线性判别分析方法融合上述数据的特征,结合投影变换方法获得不同类别背景音乐的类内离散... 用户的情绪状态不同,需要的背景音乐也不同,因此提出基于LDA-MURE模型的背景音乐自适应推荐方法。提取背景音乐的音频特征和社会化标签,通过Fisher线性判别分析方法融合上述数据的特征,结合投影变换方法获得不同类别背景音乐的类内离散度和类间离散度。通过现代心理学分析人类情绪的节律周期变化,在此基础上判断用户当前的情绪状态。最后在LDA模型的基础上构建LDA-MURE模型,为用户推荐不同类别的背景音乐。实验结果表明,所提方法的MEA指标值较低、P@N指标值较高、用户满意度较高。 展开更多
关键词 lda-MURE模型 Fisher线性判别分析方法 特征提取 背景音乐推荐 情绪状态
下载PDF
坝肩岩体质量LDA-KNN分类模型 被引量:1
4
作者 荀鹏 李娟 +2 位作者 魏玉峰 李常虎 范文东 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期281-290,302,共11页
工程岩体质量分级评价对工程的安全、设计、经济效益等有重要影响。针对当前岩级划分方法中存在不确定性,人为因素干扰和忽视了传统定性分级中对岩体质量评价的重要性等问题,本文通过在工程实际中搜集样本建立数据库,从工程的实际需求出... 工程岩体质量分级评价对工程的安全、设计、经济效益等有重要影响。针对当前岩级划分方法中存在不确定性,人为因素干扰和忽视了传统定性分级中对岩体质量评价的重要性等问题,本文通过在工程实际中搜集样本建立数据库,从工程的实际需求出发,选择岩体完整性系数(K v)、结构面间距(D)、岩石质量指标(RQD)等合适的评价指标,通过引入LDA(Linear Discriminant Analysis)降维方法和K近邻分析(K-Nearest-Neighbor,KNN)相结合的多分类模型,实现了岩体的非线性分级预测。通过定性定量相结合实现了岩体多因素,多指标的综合分级,并解决了多指标判断时信息冗余,复杂程度高的问题。与其他判别方案相比较,模型得出的结果准确率高,符合工程实际,减少了人为因素的影响,体现出较强的预测判别能力。该研究为水电站大坝坝肩处的平硐岩体质量划分提出了一种可行的预测方案。 展开更多
关键词 岩体结构 岩体质量分级 线性降维 K近邻算法 分类模型
下载PDF
基于改进3E-LDA的织物图像分类算法 被引量:1
5
作者 靳文哲 吕文涛 +2 位作者 郭庆 徐羽贞 余润泽 《现代纺织技术》 北大核心 2024年第6期89-96,共8页
针对训练样本数太少(训练样本数量小于数据维数)导致的模型分辨能力下降问题,提出了一种基于正则化改进3E-LDA的织物图像分类算法(I3E-LDA算法)。首先利用类加权中值代替样本均值计算类内散点矩阵,削弱离群值和噪声的影响,以此作为非参... 针对训练样本数太少(训练样本数量小于数据维数)导致的模型分辨能力下降问题,提出了一种基于正则化改进3E-LDA的织物图像分类算法(I3E-LDA算法)。首先利用类加权中值代替样本均值计算类内散点矩阵,削弱离群值和噪声的影响,以此作为非参数加权特征提取法对类内散点矩阵进行正则化。然后利用目标组合的方法,通过引入平衡参数对目标函数进行正则化,来保留更具判别性的特征数据。通过不同织物图像间更具判别性的特征数据可以更好地对其区分。结合改进的零空间法解决类内散点矩阵奇异性和小样本问题,从而提高分类准确率。在阿里天池织物数据集和花色织物图像上进行训练和测试,将图像按照正常图像和非正常图形(瑕疵图像)进行区分。实验结果表明,I3E-LDA算法有效实现了织物图像分类,且对于较少的训练样本(20%~40%的样本用于训练)提升了分类精度。 展开更多
关键词 线性判别分析 织物 图像分类 正则化 小样本
下载PDF
基于红外光谱PCA-LDA统计分析的麻纤维鉴别研究
6
作者 蒋晶晶 金肖克 +3 位作者 李伟松 庄莉 袁绪政 祝成炎 《丝绸》 CAS CSCD 北大核心 2024年第7期102-108,共7页
亚麻、汉麻与苎麻纤维的成分组成和物化性质高度相似,三者间的分类鉴别是纺织品检验检测领域的难点。本文对不同种类麻纤维的傅里叶变换衰减全反射红外光谱(ATR-FTIR)作主成分分析(PCA)和线性判别分析(LDA),创建麻纤维分类判别模型以鉴... 亚麻、汉麻与苎麻纤维的成分组成和物化性质高度相似,三者间的分类鉴别是纺织品检验检测领域的难点。本文对不同种类麻纤维的傅里叶变换衰减全反射红外光谱(ATR-FTIR)作主成分分析(PCA)和线性判别分析(LDA),创建麻纤维分类判别模型以鉴别三种易混麻纤维。选取亚麻、汉麻和苎麻纤维各60组作为样品集进行脱胶清洗处理并采集ATR-FTIR光谱。光谱归一化后对800~2000 cm-1波长的光谱作主成分分析,分析结果显示:随着主成分个数增加,主成分分数依据麻纤维类别逐渐显现聚类趋势,同时前12个主成分对归一化红外光谱数据的累计贡献率超过99.5%。以训练集前12主成分数为自变量,以麻纤维种类为因变量,通过线性判别分析构建了分类判别模型(典型判别函数和分类函数)。模型验证结果显示:典型判别函数可使前12个主成分分数矩阵根据麻纤维样品类型形成良好的聚类,分类函数对训练集和测试集中所有纤维样品的分类准确率达到100%。此外,PCA-LDA分类判别模型留一交叉验证的分类准确率仍能达到99.6%。结果表明,不同类别麻纤维的ATR-FTIR光谱存在差异,基于麻纤维ATR-FTIR光谱的PCA-LDA统计分析可实现亚麻、汉麻和苎麻三种易混麻纤维的快速无损鉴别。 展开更多
关键词 亚麻 汉麻 苎麻 鉴别 红外光谱 主成分分析 线性判别分析
下载PDF
Direct linear discriminant analysis based on column pivoting QR decomposition and economic SVD
7
作者 胡长晖 路小波 +1 位作者 杜一君 陈伍军 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期395-399,共5页
A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directl... A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices. 展开更多
关键词 direct linear discriminant analysis column pivoting orthogonal triangular decomposition economic singular value decomposition dimension reduction feature extraction
下载PDF
基于PCA-LDA-SVM算法的茶小绿叶蝉识别 被引量:2
8
作者 吴鹏 刘金兰 《中国农机化学报》 北大核心 2024年第1期295-300,共6页
为提高茶小绿叶蝉病虫害的识别效率和精度,提出一种基于PCA-LDA-SVM的茶小绿叶蝉病虫害识别方法。首先,对采集的茶叶图像进行预处理,得到缩放后的图像;然后,利用主成分分析(PCA)对预处理后的图像提取全局特征,降低特征数据的维度,从而... 为提高茶小绿叶蝉病虫害的识别效率和精度,提出一种基于PCA-LDA-SVM的茶小绿叶蝉病虫害识别方法。首先,对采集的茶叶图像进行预处理,得到缩放后的图像;然后,利用主成分分析(PCA)对预处理后的图像提取全局特征,降低特征数据的维度,从而减少后续的计算时间;再利用线性判别分析(LDA)寻找特征数据的最优投影空间,使类内散布距离最小,类间散布距离最大,进一步提高识别的准确率和精确度;最后,利用支持向量机(SVM)分类器进行分类识别。试验结果表明,PCA-LDA-SVM模型识别准确率达96%,精确度达100%,召回率达92%,整体识别性能优于SVM,BP,KNN,PCA-SVM模型,具备一定的理论价值和参考意义。 展开更多
关键词 茶小绿叶蝉 病虫害识别 主成分分析(PCA) 线性判别分析(lda) 支持向量机(SVM)
下载PDF
基于标幺化三阈值事件检测与LDA分类器的工商业负荷辨识方法
9
作者 陈霄 马云龙 +3 位作者 李新家 方磊 严永辉 喻伟 《电力需求侧管理》 2024年第3期112-118,共7页
非侵入式负荷辨识技术能够低成本的获取用户各类设备使用情况,实现电力负荷的在线监测与分析,对支撑负荷预测、需求响应等应用开展有着重要意义。针对一般工商业用户类型多样、负荷种类繁多、设备运行特性复杂的特点,提出了一种基于标... 非侵入式负荷辨识技术能够低成本的获取用户各类设备使用情况,实现电力负荷的在线监测与分析,对支撑负荷预测、需求响应等应用开展有着重要意义。针对一般工商业用户类型多样、负荷种类繁多、设备运行特性复杂的特点,提出了一种基于标幺化三阈值事件检测与LDA分类器的工商业负荷辨识方案。首先针对不同能耗级别、不同启停特性的设备设计了参数可调的统一负荷事件检测框架,提升了缓变型、分段型、震荡型负荷事件的检出准确度。随后提出了基于多元特征与LDA线性判别的设备类型判断算法,在兼顾边缘端计算效率的同时取得了与随机森林等非线性分类器相同的辨识性能。 展开更多
关键词 非侵入式负荷辨识 一般工商业用户 事件检测 改进三阈值算法 lda线性判别
下载PDF
Kernel Model Applied in Kernel Direct Discriminant Analysis for the Recognition of Face with Nonlinear Variations 被引量:1
10
作者 李粉兰 徐可欣 《Transactions of Tianjin University》 EI CAS 2006年第2期147-152,共6页
A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate it... A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate its better robustness to the complex and nonlinear variations of real face images, such as illumination, facial expression, scale and pose variations, experiments are carried out on the Olivetti Research Laboratory, Yale and self-built face databases. The results indicate that in contrast to kernel principal component analysis and kernel linear discriminant analysis, the method can achieve lower (7%) error rate using only a very small set of features. Furthermore, a new corrected kernel model is proposed to improve the recognition performance. Experimental results confirm its superiority (1% in terms of recognition rate) to other polynomial kernel models. 展开更多
关键词 face recognition kernel method: kernel direct discriminant analysis direct linear discriminant analysis
下载PDF
iRSC-PseAAC:基于有效降维算法LDA预测蛋白质中的氧化还原敏感半胱氨酸位点
11
作者 魏欣 刘春生 +3 位作者 吕哲 林刚 胡思亲 贾建华 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2024年第7期1009-1016,共8页
氧化还原敏感半胱氨酸(RSC)硫醇参与了许多生物过程,并发挥着重要作用。因此,有必要对氧化还原敏感半胱氨酸进行准确鉴定。然而,传统的氧化还原敏感半胱氨酸鉴定非常昂贵且耗时。目前,迫切需要一种数学计算方法来识别序列信息,快速准确... 氧化还原敏感半胱氨酸(RSC)硫醇参与了许多生物过程,并发挥着重要作用。因此,有必要对氧化还原敏感半胱氨酸进行准确鉴定。然而,传统的氧化还原敏感半胱氨酸鉴定非常昂贵且耗时。目前,迫切需要一种数学计算方法来识别序列信息,快速准确地鉴定出氧化还原敏感半胱氨酸。在此,我们开发了一种名为iRSC-PseAAC的有效预测器,它采用降维算法LDA结合支持向量机来预测氧化还原敏感半胱氨酸位点。在交叉验证中,特异性(Sp)、灵敏性(Sn)、准确性(Acc)和马修斯相关系数(MCC)的结果分别为0.841、0.868、0.859和0.692。在独立数据集的结果中,特异性(Sp)、灵敏性(Sn)、准确性(Acc)和马修斯相关系数(MCC)分别为0.906、0.882、0.890和0.767。与现有的预测方法相比,iRSC-PseAAC具有明显的改进效果。本研究提出的方法还可用于计算蛋白质组学中的许多问题。 展开更多
关键词 氧化还原敏感半胱氨酸 特征提取 词嵌入 线性判别分析 机器学习
下载PDF
基于LDA-IBES-RELM的光伏阵列故障诊断方法
12
作者 邹凯 曾宪文 +1 位作者 王洋 高桂革(指导) 《上海电机学院学报》 2024年第1期1-6,19,共7页
针对光伏阵列故障诊断准确率偏低的问题,提出了一种基于改进秃鹰搜索算法(IBES)优化正则化极限学习机(RELM)的故障诊断方法。首先在Simulink建立光伏阵列仿真模型,模拟典型故障并提取故障特征数据,同时利用线性判别分析(LDA)对特征量降... 针对光伏阵列故障诊断准确率偏低的问题,提出了一种基于改进秃鹰搜索算法(IBES)优化正则化极限学习机(RELM)的故障诊断方法。首先在Simulink建立光伏阵列仿真模型,模拟典型故障并提取故障特征数据,同时利用线性判别分析(LDA)对特征量降维作为故障诊断模型的输入;其次利用Logistic混沌映射、Levy飞行策略和柯西高斯变异扰动策略对秃鹰算法进行改进;最后将IBES用于对RELM的隐层参数寻优。实验结果表明:LDA-IBES-RELM模型与BES-RELM、IBES-RELM模型对比,得到的故障诊断准确率为97.71%,优于其他两种模型,验证了LDA-IBESRELM模型用于光伏阵列故障诊断的有效性和实用性。 展开更多
关键词 正则化极限学习机 光伏阵列 故障诊断 改进秃鹰搜索算法 线性判别分析
下载PDF
Image Processing System for Air Classification Using Linear Discriminant Analysis 被引量:1
13
作者 Atsunori Tayaoka Eriko Tayaoka +1 位作者 Tsuyoshi Hirajima Keiko Sasaki 《Computational Water, Energy, and Environmental Engineering》 2017年第2期192-204,共13页
An air classifier is used in the recycling process of covered electric wire in the recycling factories, in which the covered electric wires are crushed, sieved, and classified by the air classifier, which generates wa... An air classifier is used in the recycling process of covered electric wire in the recycling factories, in which the covered electric wires are crushed, sieved, and classified by the air classifier, which generates wastes. In these factories, operators manually adjust the air flow rate while checking the wastes discharged from the separator outlet. However, the adjustments are basically done by trial and error, and it is difficult to do them appropriately. In this study, we tried to develop the image processing system that calculates the ratio of copper (Cu) product and polyvinyl chloride (PVC) in the wastes as a substitute for the operator’s eyes. Six colors of PVC (white, gray, green, blue, black, and red) were used in the present work. An image consists of foreground and background. An image’s regions of interest are objects (Cu particles) in its foreground. However, the particles having a color similar to the background color are buried in the background. Using the difference of two color backgrounds, we separated particles and background without dependent of background. The Otsu’ thresholding was employed to choose the threshold to maximize the degree of separation of the particles and background. The ratio of Cu to PVC pixels from mixed image was calculated by linear discriminant analysis. The error of PVC pixels resulted in zero, whereas the error of Cu pixels arose to 4.19%. Comparing the numbers of Cu and PVC pixels within the contour, the minority of the object were corrected to the majority of the object. The error of Cu pixels discriminated as PVC incorrectly became zero percent through this correction. 展开更多
关键词 COVERED ELECTRIC WIRE Air Classification RECYCLING IMAGE Processing linear discriminant analysis
下载PDF
Unsupervised Linear Discriminant Analysis
14
作者 唐宏 方涛 +1 位作者 施鹏飞 唐国安 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第1期40-42,共3页
An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-neares... An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-nearest neighbor samples. The experimental results show our algorithm is effective. 展开更多
关键词 linear discriminant analysis(lda) unsupervised learning neighbor graph
下载PDF
Linear Discriminant Analysis and Kernel Vector Quantization for Mandarin Digits Recognition
15
作者 赵军辉 谢湘 匡镜明 《Journal of Beijing Institute of Technology》 EI CAS 2004年第4期385-388,共4页
Linear discriminant analysis and kernel vector quantization are integrated into vector quantization based speech recognition system for improving the recognition accuracy of Mandarin digits. These techniques increase ... Linear discriminant analysis and kernel vector quantization are integrated into vector quantization based speech recognition system for improving the recognition accuracy of Mandarin digits. These techniques increase the class separability and optimize the clustering procedure. Speaker-dependent (SD) and speaker-independent (SI) experiments are performed to evaluate the performance of the proposed method. The experiment results show that the proposed method is capable of reaching the word error rate of 3.76% in SD case and 6.60 % in SI case. Such a system can be suitable for being embedded in personal digital assistant(PDA), mobile phone and so on to perform voice controlling such as digit dialing, calculating, etc. 展开更多
关键词 linear discriminant analysis kernel vector quantization speech recognition
下载PDF
Balanced multiple weighted linear discriminant analysis and its application to visual process monitoring
16
作者 Weipeng Lu Xuefeng Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第8期128-137,共10页
Visual process monitoring is important in complex chemical processes.To address the high state separation of industrial data,we propose a new criterion for feature extraction called balanced multiple weighted linear d... Visual process monitoring is important in complex chemical processes.To address the high state separation of industrial data,we propose a new criterion for feature extraction called balanced multiple weighted linear discriminant analysis(BMWLDA).Then,we combine BMWLDA with self-organizing map(SOM)for visual monitoring of industrial operation processes.BMWLDA can extract the discriminative feature vectors from the original industrial data and maximally separate industrial operation states in the space spanned by these discriminative feature vectors.When the discriminative feature vectors are used as the input to SOM,the training result of SOM can differentiate industrial operation states clearly.This function improves the performance of visual monitoring.Continuous stirred tank reactor is used to verify that the class separation performance of BMWLDA is more effective than that of traditional linear discriminant analysis,approximate pairwise accuracy criterion,max–min distance analysis,maximum margin criterion,and local Fisher discriminant analysis.In addition,the method that combines BMWLDA with SOM can effectively perform visual process monitoring in real time. 展开更多
关键词 linear discriminant analysis Process monitoring Self-organizing map Feature extraction Continuous stirred tank reactor process
下载PDF
Emotion recognition of Uyghur speech using uncertain linear discriminant analysis
17
作者 Tashpolat Nizamidin Zhao Li +2 位作者 Zhang Mingyang Xu Xinzhou Askar Hamdulla 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期437-443,共7页
To achieve efficient a d compact low-dimensional features for speech emotion recognition,a novel featurereduction method using uncertain linear discriminant analysis is proposed.Using the same principles as for conven... To achieve efficient a d compact low-dimensional features for speech emotion recognition,a novel featurereduction method using uncertain linear discriminant analysis is proposed.Using the same principles as for conventional linear discriminant analysis(LDA),uncertainties of the noisy or distorted input data ae employed in order to estimate maximaiy discriminant directions.The effectiveness of the proposed uncertain LDA(ULDA)is demonstrated in the Uyghur speech emotion recognition task.The emotional features of Uyghur speech,especially,the fundamental fequency and formant,a e analyzed in the collected emotional data.Then,ULDA is employed in dimensionality reduction of emotional features and better performance is achieved compared with other dimensionality reduction techniques.The speech emotion recognition of Uyghur is implemented by feeding the low-dimensional data to support vector machine(SVM)based on the proposed ULDA.The experimental results show that when employing a appropriate uncertainty estimation algorithm,uncertain LDA outperforms the conveetional LDA counterpart on Uyghur speech emotion recognition. 展开更多
关键词 Uyghur language speech emotion corpus PITCH FORMANT uncertain linear discriminant analysis (Ulda)
下载PDF
Incremental Linear Discriminant Analysis Dimensionality Reduction and 3D Dynamic Hierarchical Clustering WSNs
18
作者 G.Divya Mohana Priya M.Karthikeyan K.Murugan 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期471-486,共16页
Optimizing the sensor energy is one of the most important concern in Three-Dimensional(3D)Wireless Sensor Networks(WSNs).An improved dynamic hierarchical clustering has been used in previous works that computes optimu... Optimizing the sensor energy is one of the most important concern in Three-Dimensional(3D)Wireless Sensor Networks(WSNs).An improved dynamic hierarchical clustering has been used in previous works that computes optimum clusters count and thus,the total consumption of energy is optimal.However,the computational complexity will be increased due to data dimension,and this leads to increase in delay in network data transmission and reception.For solving the above-mentioned issues,an efficient dimensionality reduction model based on Incremental Linear Discriminant Analysis(ILDA)is proposed for 3D hierarchical clustering WSNs.The major objective of the proposed work is to design an efficient dimensionality reduction and energy efficient clustering algorithm in 3D hierarchical clustering WSNs.This ILDA approach consists of four major steps such as data dimension reduction,distance similarity index introduction,double cluster head technique and node dormancy approach.This protocol differs from normal hierarchical routing protocols in formulating the Cluster Head(CH)selection technique.According to node’s position and residual energy,optimal cluster-head function is generated,and every CH is elected by this formulation.For a 3D spherical structure,under the same network condition,the performance of the proposed ILDA with Improved Dynamic Hierarchical Clustering(IDHC)is compared with Distributed Energy-Efficient Clustering(DEEC),Hybrid Energy Efficient Distributed(HEED)and Stable Election Protocol(SEP)techniques.It is observed that the proposed ILDA based IDHC approach provides better results with respect to Throughput,network residual energy,network lifetime and first node death round. 展开更多
关键词 LIFETIME energy optimization hierarchical routing protocol data transmission reduction incremental linear discriminant analysis(Ilda) three-dimensional(3D)space wireless sensor network(WSN)
下载PDF
A Comparison of Two Linear Discriminant Analysis Methods That Use Block Monotone Missing Training Data
19
作者 Phil D. Young Dean M. Young Songthip T. Ounpraseuth 《Open Journal of Statistics》 2016年第1期172-185,共14页
We revisit a comparison of two discriminant analysis procedures, namely the linear combination classifier of Chung and Han (2000) and the maximum likelihood estimation substitution classifier for the problem of classi... We revisit a comparison of two discriminant analysis procedures, namely the linear combination classifier of Chung and Han (2000) and the maximum likelihood estimation substitution classifier for the problem of classifying unlabeled multivariate normal observations with equal covariance matrices into one of two classes. Both classes have matching block monotone missing training data. Here, we demonstrate that for intra-class covariance structures with at least small correlation among the variables with missing data and the variables without block missing data, the maximum likelihood estimation substitution classifier outperforms the Chung and Han (2000) classifier regardless of the percent of missing observations. Specifically, we examine the differences in the estimated expected error rates for these classifiers using a Monte Carlo simulation, and we compare the two classifiers using two real data sets with monotone missing data via parametric bootstrap simulations. Our results contradict the conclusions of Chung and Han (2000) that their linear combination classifier is superior to the MLE classifier for block monotone missing multivariate normal data. 展开更多
关键词 linear discriminant analysis Monte Carlo Simulation Maximum Likelihood Estimator Expected Error Rate Conditional Error Rate
下载PDF
LDA和KNN算法在随钻测井火成岩分类的应用
20
作者 方全全 曹军 +2 位作者 张国强 许吉俊 任宏 《石油工业技术监督》 2024年第4期17-20,共4页
渤中34-9油田在开发过程中广泛钻遇古近系火成岩,由于火成岩岩性多样、成分复杂导致常规测井解释图版识别岩性精度较差,而在随钻过程中准确识别火成岩岩性是工程上规避憋、卡、漏等风险的重要前提。通过将机器学习算法线性判别分析(LDA)... 渤中34-9油田在开发过程中广泛钻遇古近系火成岩,由于火成岩岩性多样、成分复杂导致常规测井解释图版识别岩性精度较差,而在随钻过程中准确识别火成岩岩性是工程上规避憋、卡、漏等风险的重要前提。通过将机器学习算法线性判别分析(LDA)与KNN算法运用于油田开发过程中的随钻测井数据处理与分析,实现了随钻过程中准确、高效识别火成岩岩性的目的。进一步将线性判别分析的降维结果代替原始测井曲线作为K最近邻分类器的输入,实现两种算法的有机融合,并对油田5口开发井建立的测井数据集进行机器学习,火成岩岩性分类准确率高于90%,证明了该方法的适用性。通过引入机器学习方法为常规录、测井数据的处理与解释提供了新方法,多方法的结合也为油田勘探作业过程中的分类提供借鉴。 展开更多
关键词 随钻测井 线性判别分析 KNN算法 火成岩分类 渤中油田
下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部