Laminated metal composites(LMCs) are a unique composite material and have great application prospects in automobiles, ships, aircraft,and other manufacturing industries. As lightweight materials, the Mg/Al LMCs are ex...Laminated metal composites(LMCs) are a unique composite material and have great application prospects in automobiles, ships, aircraft,and other manufacturing industries. As lightweight materials, the Mg/Al LMCs are expected to combine the advantages of both Mg and Al alloys to broaden their application prospects. Roll-bonding is the most popular process for the fabrication of Mg/Al LMCs due to high production efficiency and good product quality stability. The roll-bonding process involves the deformation of the substrates and the formation of the interfacial diffusion layer. The latter will directly determine the interface bonding strength of Mg/Al LMCs. Bonding strength is very sensitive to the thickness of the reaction layer in the diffusion layer. When the thickness of the reaction layer exceeds 5 μm, the bonding strength decreases sharply. Therefore, controlling the thickness of the reaction layer is very important for the design of rolling parameters.The latest research also showed that the addition of intermediate layer metal and the construction of three-dimensional interfaces can further improve the interface bonding strength. How to apply these methods to roll-bonding is the focus of future research. Recently, a new rolling technique, corrugated roll/plat roll rolling+flat roll/flat roll rolling has been developed to fabricate Mg/Al LMCs. It can effectively promote the deformation of the hard layer and generate a wavy interface, resulting in the enhancement of the bonding quality and rolling quality.In the current review, the effects of rolling parameters and subsequent annealing on the interface structure of Mg/Al LMCs were elaborated in detail. The application of some special rolling techniques in the preparation of Mg/Al LMCs was also summarized. The latest research results on the relationship between interface structure and mechanical properties of Mg/Al LMCs were reviewed. Finally, further research directions in this field were proposed.展开更多
The accumulative roll-bonding(ARB)process was applied on the strips of aluminum alloy 1050 in two processing conditions:cold ARB and warm ARB.The results of tensile tests and microhardness measurement show that the wa...The accumulative roll-bonding(ARB)process was applied on the strips of aluminum alloy 1050 in two processing conditions:cold ARB and warm ARB.The results of tensile tests and microhardness measurement show that the warm ARB process exhibits the lower tensile strength and microhardness,more homogeneous distribution of the microhardness,higher elongation,and especially superior planar isotropy of the tensile properties in comparison to the cold ARB,because of the intermediate heat treatment as well as the elevated temperature rolling in the warm ARB process.Furthermore,with increasing the cycles of both processes,the planar isotropy decreases progressively.展开更多
Taking advantage of the progress of roll-bonding technology, the integrity of the material technology, and the development of the production and examination facilities of all the main carbon steels, stainless steels a...Taking advantage of the progress of roll-bonding technology, the integrity of the material technology, and the development of the production and examination facilities of all the main carbon steels, stainless steels and specialty alloys in Baosteel, the cladded flat new products, which combined both properties of base material and clad material ,have been developed and produced in large quantities. The product categories includes heavy plates with high alloy content and homogeneous distribution in thickness and carbon steel plates cladded with all kinds of stainless steels ,nickel alloys ,and titanium alloys. The double-sided and single-sided cladding hot roiled strips and cold rolled sheets were also commercially produced. Due to the combined properties of both the cladding material and backing material, all products show obvious improvement in properties when compared with solid material. The comparability with the existing production process and equipment laid a very solid foundation for high productivity.展开更多
The microstructures and properties of A1-45%Si alloy prepared by liquid-solid separation (LSS) process and spray deposition (SD) were studied. The results show that the size, shape and distribution of the primary ...The microstructures and properties of A1-45%Si alloy prepared by liquid-solid separation (LSS) process and spray deposition (SD) were studied. The results show that the size, shape and distribution of the primary Si phase have different influence on the properties of alloys. Comparing with the Si particles with irregular shape, fine size and continuous distribution in SD alloy, the primary Si phase in LSS alloy is sphere-like, coarse and surrounded by the continuous AI matrix. The microstructure features of LSS alloy are beneficial to the higher thermal conductivity and lower thermal expansion coefficient at room temperature. The fine Si particle in SD alloy is advantageous to improving the mechanical properties. The increasing rates of thermal expansion coefficient with temperature are influenced by the distribution of the Si particles, where a lower rate is obtained in SD alloy with continuous Si particles. The agreement of thermal expansion coefficient with the model in LSS alloy differs from that in the SD alloy because of the different microstructure characteristics.展开更多
Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. Th...Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. The result shows that the DRZ, the mixture of TiAl3 and Al, grows layer by layer along their chemical equilibrium zone. In the course, the growth interface moves toward the aluminum side. TiAl3 is the only new phase which forms earliest in the course of heat-treatment. The growth mechanism of the DRZ changes after the phase transition of titanium. Before the phase transition of titanium, the growth of the DRZ is controlled by the dissolution speed of the titanium to the molten aluminum, while after the phase transition of titanium, the growth is controlled by the chemical reaction speed of Al and Ti atoms, and consequently, its growth rate is greatly increased.展开更多
The electronic packaging shell of high silicon carbide (54%SiC, volume fraction) aluminum-based composites was produced by liquid-solid separation technique. The characteristics of distribution and morphology of SiC...The electronic packaging shell of high silicon carbide (54%SiC, volume fraction) aluminum-based composites was produced by liquid-solid separation technique. The characteristics of distribution and morphology of SiC as well as the shell’s fracture surface were examined by optical microscopy and scanning electron microscopy, and the thermo-physical and mechanical properties of the shell were also tested. The results show that Al matrix has a net-like structure while SiC is uniformly distributed in the Al matrix. The SiCp/Al composites have a low density of 2.93 g/cm^3, and its relative density is 98.7%. Thermal conductivity of the composites is 175 W/(·K), coefficient of thermal expansion (CTE) is 10.3×10^-6 K-1 (25-400 ℃), compressive strength is 496 MPa, bending strength is 404.5 MPa, and the main fracture mode is brittle fracture of SiC particles accompanied by ductile fracture of Al matrix.Its thermal conductivity is higher than that of Si/Al alloy, and its CTE matches with that of the chip material.展开更多
Perennial forage plants are efficient utilizers of solar radiation and nutrients so that there is a lot of scope to increase the production of green biomass in many areas.Currently,grasses are mainly used as feeds for...Perennial forage plants are efficient utilizers of solar radiation and nutrients so that there is a lot of scope to increase the production of green biomass in many areas.Currently,grasses are mainly used as feeds for ruminants and equines,but there could be higher added value use for several components of the green biomass.Interest in green biorefin-ing has risen recently motivated by the increased sustainability pressures and need to break the reliance on fossil fuels.Novel products derived from grass,such as paper and packaging,nanofibers,animal bedding,novel protein feeds,extracted proteins,biochemicals,nutraceuticals,bioactive compounds,biogas and biochar could create new sustainable business opportunities in rural areas.Most green biorefinery concepts focus on using fresh green biomass as the feedstock,but preservation of it by ensiling would provide several benefits such as all-year-around avail-ability of the feedstock and increased stability of the press juice and press cake.The major difference between fresh and ensiled grass is the conversion of water soluble carbohydrates into fermentation end products,mainly lactic and acetic acids,that lower the pH of the silage so that it becomes stable in anaerobic conditions.This has some important consequences on the processability and quality of products,which are partly positive and partly negative,e.g.,degradation of protein into peptides,amino acids and ammonia.These aspects are discussed in this review.展开更多
Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Z...Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Zr system was determined by thermodynamic calculations.The effect of heat treatment regimes on microstructure,mechanical,and corrosion properties was invest-igated.The fluidity,hot tearing tendency,and ignition temperature of the alloys were determined.The best combination of castability,mechanical,and corrosion properties was found for the Mg-2.4Zn-4Y-0.8Zr alloy.The alloys studied are superior to their industrial counterparts in terms of technological properties,while maintain high corrosion and mechanical properties.The increased level of pro-perties is achieved by a suitable heat treatment regime that provides a complete transformation of the 18R to 14H modification of the LPSO phase.展开更多
This work aims to investigate the erosion-corrosion behavior of Q235B steel in liquid-solid two-phase flows.The weight loss rate,surface morphology and electrochemical parameters of Q235B steel at different temperatur...This work aims to investigate the erosion-corrosion behavior of Q235B steel in liquid-solid two-phase flows.The weight loss rate,surface morphology and electrochemical parameters of Q235B steel at different temperatures(20℃,30℃,40℃)and flow velocities(6 m/s,7 m/s,8 m/s,9 m/s,10 m/s)were studied separately.The results show that the weight loss rate of Q235B steel specimens after erosion-corrosion increases with increasing flow velocity and temperature.For the erosion-corrosion process,the corrosion rates of specimens increase with increasing flow velocity.The results of surface morphology show that the circular pits with clear edges are distributed randomly over specimen surface at low flow velocity,but the pit edge becomes vague at high flow velocity.With temperature increasing,the erosion-corrosion damage became serious as shown by the aggregation of large and small pits on specimen surface.The working mechanism of erosion-corrosion is found to vary with flow velocity and temperature.The relationships among erosion-corrosion components are quantitatively represented and show that synergy dominates the progress of material loss.Corrosion enhances erosion that is a dominant component in the synergy.The inactions of erosion-corrosion can be described by"synergistic"and"additive"behavior.The results show that"additive"effect becomes more significant with increasing flow velocity but decreases with increasing temperature,while"synergistic"effect is not sensitive to flow velocity and temperature.展开更多
Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross-section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main co...Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross-section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Eulerian-Lagrangian approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.展开更多
In the process of deep-sea mining,the liquid-solid flows in the vertical transportation pipeline are very complex.In the present work,an in-house solver MPSDEM-SJTU based on the improved MPS and DEM is developed for t...In the process of deep-sea mining,the liquid-solid flows in the vertical transportation pipeline are very complex.In the present work,an in-house solver MPSDEM-SJTU based on the improved MPS and DEM is developed for the simulation of hydraulic conveying.Firstly,three examples including the multilayer cylinder collapse,the Poiseuille flow and two-phase dam-break are used to validate the precision of the DEM model,the pipe flow model and MPS-DEM coupling model,respectively.Then,the hydraulic conveying with coarse particles in a vertical pipe is simulated.The solid particle distribution is presented and investigated in detail.Finally,the coupling method is successfully applied for the simulation of the liquid-solid flows in a vertical pipe with rotating blades,which shows the stability of the solver under rotating boundary conditions.This fully Lagrangian model is expected to be a new approach for analyzing hydraulic conveying.展开更多
A damage prediction method based on FE simulation was proposed to predict the occurrence of hot shortness crocks and surface cracks in liquid-solid extrusion process. This method integrated the critical temperature cr...A damage prediction method based on FE simulation was proposed to predict the occurrence of hot shortness crocks and surface cracks in liquid-solid extrusion process. This method integrated the critical temperature criterion and Cockcroft & Latham ductile damage model, which were used to predict the initiation of hot shortness cracks and surface cracks of products, respectively. A coupling simulation of deformation with heat transfer as well as ductile damage was carried out to investigate the effect of extrusion temperature and extrusion speed on the damage behavior of Csf/AZ91D composites. It is concluded that the semisolid zone moves gradually toward deformation zone with the punch descending. The amplitude of the temperature rise at the exit of die from the initial billet temperature increases with the increase of extrusion speed during steady-state extrusion at a given punch displacement. In order to prevent the surface temperature of products beyond the incipient melting temperature of composites, the critical extrusion speed is decreased with the increase of extrusion temperature, otherwise the hot shortness cracks will occur. The maximum damage values increase with increasing extrusion speed or extrusion temperature. Theoretical results obtained by the Deform^TM-2D simulation agree well with the experiments.展开更多
The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when t...The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when the nanoparticles reach near each other, the strong interatomic force will make them attach together. This aggrega- tion continues until all nanoparticles make a continuous cluster. The effect of altering the external force magnitude causes changes in the agglomeration rate and system enthalpy. The density and velocity profiles are shown for two systems, i.e., argon (Ar)-copper (Cu) nanofluid and simple Ar fluid between two Cu walls. The results show that using nanopar- ticles changes the base fluid particles ordering along the nanochannel and increases the velocity. Moreover, using nanoparticles in simple fluids can increase the slip length and push the near-wall fluid particles into the main flow in the middle of the nanochannel.展开更多
The liquid-solid compound casting technology was used to produce the AZ91D/0Cr19Ni9 bimetal composite without and with hot dipping aluminium, respectively. The influences of Al coating on microstructures and mechanica...The liquid-solid compound casting technology was used to produce the AZ91D/0Cr19Ni9 bimetal composite without and with hot dipping aluminium, respectively. The influences of Al coating on microstructures and mechanical properties of AZ91D/0Cr19Ni9 interface were investigated. The results showed that the mechanical bonding was obtained between AZ91D and bare steel 0Cr19Ni9 where a gap existed at the interface; the metallurgical bonding was formed between AZ91D and Al-coated 0Cr19Ni9, which could be divided into two different intermetallic layers: layer Ⅰ was mainly composed of α-Mg+β-Mg17Al12 eutectic structure and a small amount of MgAl2O4, and layer Ⅱ mainly comprised of Fe2Al5 intermetallic compound. Furthermore, the hardness value of interface was obviously higher than that of AZ91D matrix, and the average hardness values of layers Ⅰ and Ⅱ were HV 158 and HV 493, respectively. The shear strength of AZ91D/Al-coated 0Cr19Ni9 interface was higher than that of AZ91D/bare 0Cr19Ni9 interface, which confirmed that Al coating could improve the adhesive strength between AZ91D and 0Cr19Ni9 during liquid-solid compound casting process.展开更多
Previous studies have indicated that piping erosion greatly threatens the safe operation of various hydraulic structures. However, few mathematical models are available to perfectly describe the erosion process due to...Previous studies have indicated that piping erosion greatly threatens the safe operation of various hydraulic structures. However, few mathematical models are available to perfectly describe the erosion process due to the complexity of piping. The focus of the present work is to propose a new fluid solid coupling model to eliminate the shortcomings of existing work. A 'pseudo-liquid' assumption is suggested to simulate the particle movement in the erosion process. Then, based on the mass and momentum conservations of the moving particles and flowing water, a new two-flow model is established by using the continuity equations and motion equations. In the model, the erosion rate of soil is determined with a particle erosion law derived from tests results of STERPI. And ERGUN's empirical equation is used to determine the interaction forces between the liquid and the solid. A numerical approach is proposed to solve the model with the finite volume method and SIMPLE algorithm. The new model is validated with the tests results of STERPI. And the soil erosion principles in piping are also explored.展开更多
Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. ...Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. This paper presents a computational method combining these two methods for solid-liquid medium. The two phases are coupled by using an improved model from a reported Lagrangian-Eulerian method. The technique is verified by simulating liquid-solid flows in a two-dimensional lid-driven cavity.展开更多
Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively....Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of liquid velocity, particle size, surface tension of liquid phase and solid circulation rate on the overall heat transfer coefficient were examined. The heat transfer coefficient increased with increasing particle size or solid circulation rate due to the higher potential of particles to contact with the heater surface and promote turbulence near the heater surface. The value of heat transfer coefficient increased gradually with increase in the surface tension of liquid phase, due to the slight increase of solid holdup. The heat transfer coefficient increased with the liquid velocity even in the higher range, due to the solid circulation prevented the decrease in solid holdup, in contrast to that in the conventional liquid-solid fluidized beds. The values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.展开更多
Liquid-solid extrusion directly following vacuum infiltration(LSEVI)is an infiltration-extrusion integrated forming technique,and transverse weld between upper residual magnesium alloy and magnesium matrix composites ...Liquid-solid extrusion directly following vacuum infiltration(LSEVI)is an infiltration-extrusion integrated forming technique,and transverse weld between upper residual magnesium alloy and magnesium matrix composites is a common internal defect,which can severely reduce the yield of composite products.To improve current understanding on the mechanism of transverse welding phenomenon,a thermo-mechanical numerical model of LSEVI for magnesium matrix composites was developed.The formation of transverse weld during extrusion was visualized using finite element simulation method,and the formation mechanism was discussed from the aspect of velocity field using a point tracking technique.The simulation results were verified by the experimental results in term of weld shape.展开更多
In this study, a roll-bonded UNS N088225 alloy clad pipeline steel was investigated and developed in Baosteel. Based on the requirements of a number of potential projects, we performed a series of strict evaluations i...In this study, a roll-bonded UNS N088225 alloy clad pipeline steel was investigated and developed in Baosteel. Based on the requirements of a number of potential projects, we performed a series of strict evaluations including mechanical and corrosion tests. The results show the mechanical properties and corrosion resistance of this clad steel to be excellent and to meet the requirements of all the design parameters.展开更多
Studies were conducted on the interfacial microstructure of a steel/liquid aluminium and its evolution during the bonding rolling process. The effects of wetting time and deformation on the diffusion layer and on the ...Studies were conducted on the interfacial microstructure of a steel/liquid aluminium and its evolution during the bonding rolling process. The effects of wetting time and deformation on the diffusion layer and on the bonding strength were examined. By means of electron microscopy and electron probe analysis, it was found that the diffusion layer is mainly composed of FeAI3. For a steel temperature of 250℃ and an aluminium temperature of 850 ~C, the diffusion layer was formed within 3 s, and the shear strength of the samples increased after 8 to 14 s. Although the interface was not damaged, it was deformed notably. For an aluminium temperature of 750℃ and a wetting time of 11 to 17 s, the shear strength of the interface remained high, but the interface was obviously broken during rolling, leading to reduced bonding strength.展开更多
基金supported by Guangdong Major Project of Basic and Applied Basic Research,No. 2020B0301030006。
文摘Laminated metal composites(LMCs) are a unique composite material and have great application prospects in automobiles, ships, aircraft,and other manufacturing industries. As lightweight materials, the Mg/Al LMCs are expected to combine the advantages of both Mg and Al alloys to broaden their application prospects. Roll-bonding is the most popular process for the fabrication of Mg/Al LMCs due to high production efficiency and good product quality stability. The roll-bonding process involves the deformation of the substrates and the formation of the interfacial diffusion layer. The latter will directly determine the interface bonding strength of Mg/Al LMCs. Bonding strength is very sensitive to the thickness of the reaction layer in the diffusion layer. When the thickness of the reaction layer exceeds 5 μm, the bonding strength decreases sharply. Therefore, controlling the thickness of the reaction layer is very important for the design of rolling parameters.The latest research also showed that the addition of intermediate layer metal and the construction of three-dimensional interfaces can further improve the interface bonding strength. How to apply these methods to roll-bonding is the focus of future research. Recently, a new rolling technique, corrugated roll/plat roll rolling+flat roll/flat roll rolling has been developed to fabricate Mg/Al LMCs. It can effectively promote the deformation of the hard layer and generate a wavy interface, resulting in the enhancement of the bonding quality and rolling quality.In the current review, the effects of rolling parameters and subsequent annealing on the interface structure of Mg/Al LMCs were elaborated in detail. The application of some special rolling techniques in the preparation of Mg/Al LMCs was also summarized. The latest research results on the relationship between interface structure and mechanical properties of Mg/Al LMCs were reviewed. Finally, further research directions in this field were proposed.
文摘The accumulative roll-bonding(ARB)process was applied on the strips of aluminum alloy 1050 in two processing conditions:cold ARB and warm ARB.The results of tensile tests and microhardness measurement show that the warm ARB process exhibits the lower tensile strength and microhardness,more homogeneous distribution of the microhardness,higher elongation,and especially superior planar isotropy of the tensile properties in comparison to the cold ARB,because of the intermediate heat treatment as well as the elevated temperature rolling in the warm ARB process.Furthermore,with increasing the cycles of both processes,the planar isotropy decreases progressively.
文摘Taking advantage of the progress of roll-bonding technology, the integrity of the material technology, and the development of the production and examination facilities of all the main carbon steels, stainless steels and specialty alloys in Baosteel, the cladded flat new products, which combined both properties of base material and clad material ,have been developed and produced in large quantities. The product categories includes heavy plates with high alloy content and homogeneous distribution in thickness and carbon steel plates cladded with all kinds of stainless steels ,nickel alloys ,and titanium alloys. The double-sided and single-sided cladding hot roiled strips and cold rolled sheets were also commercially produced. Due to the combined properties of both the cladding material and backing material, all products show obvious improvement in properties when compared with solid material. The comparability with the existing production process and equipment laid a very solid foundation for high productivity.
文摘The microstructures and properties of A1-45%Si alloy prepared by liquid-solid separation (LSS) process and spray deposition (SD) were studied. The results show that the size, shape and distribution of the primary Si phase have different influence on the properties of alloys. Comparing with the Si particles with irregular shape, fine size and continuous distribution in SD alloy, the primary Si phase in LSS alloy is sphere-like, coarse and surrounded by the continuous AI matrix. The microstructure features of LSS alloy are beneficial to the higher thermal conductivity and lower thermal expansion coefficient at room temperature. The fine Si particle in SD alloy is advantageous to improving the mechanical properties. The increasing rates of thermal expansion coefficient with temperature are influenced by the distribution of the Si particles, where a lower rate is obtained in SD alloy with continuous Si particles. The agreement of thermal expansion coefficient with the model in LSS alloy differs from that in the SD alloy because of the different microstructure characteristics.
基金Project (ZR2011EL023) supported by the Natural Science Foundation of Shandong Province,ChinaProject (12CX04057A) supported by the Fundamental Research Funds for the Central Universities,China
文摘Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. The result shows that the DRZ, the mixture of TiAl3 and Al, grows layer by layer along their chemical equilibrium zone. In the course, the growth interface moves toward the aluminum side. TiAl3 is the only new phase which forms earliest in the course of heat-treatment. The growth mechanism of the DRZ changes after the phase transition of titanium. Before the phase transition of titanium, the growth of the DRZ is controlled by the dissolution speed of the titanium to the molten aluminum, while after the phase transition of titanium, the growth is controlled by the chemical reaction speed of Al and Ti atoms, and consequently, its growth rate is greatly increased.
文摘The electronic packaging shell of high silicon carbide (54%SiC, volume fraction) aluminum-based composites was produced by liquid-solid separation technique. The characteristics of distribution and morphology of SiC as well as the shell’s fracture surface were examined by optical microscopy and scanning electron microscopy, and the thermo-physical and mechanical properties of the shell were also tested. The results show that Al matrix has a net-like structure while SiC is uniformly distributed in the Al matrix. The SiCp/Al composites have a low density of 2.93 g/cm^3, and its relative density is 98.7%. Thermal conductivity of the composites is 175 W/(·K), coefficient of thermal expansion (CTE) is 10.3×10^-6 K-1 (25-400 ℃), compressive strength is 496 MPa, bending strength is 404.5 MPa, and the main fracture mode is brittle fracture of SiC particles accompanied by ductile fracture of Al matrix.Its thermal conductivity is higher than that of Si/Al alloy, and its CTE matches with that of the chip material.
基金the funding from project GrassProtein received from the Ministry of Agriculture and Forestry of Finland/Makera (VN/7679/2021)
文摘Perennial forage plants are efficient utilizers of solar radiation and nutrients so that there is a lot of scope to increase the production of green biomass in many areas.Currently,grasses are mainly used as feeds for ruminants and equines,but there could be higher added value use for several components of the green biomass.Interest in green biorefin-ing has risen recently motivated by the increased sustainability pressures and need to break the reliance on fossil fuels.Novel products derived from grass,such as paper and packaging,nanofibers,animal bedding,novel protein feeds,extracted proteins,biochemicals,nutraceuticals,bioactive compounds,biogas and biochar could create new sustainable business opportunities in rural areas.Most green biorefinery concepts focus on using fresh green biomass as the feedstock,but preservation of it by ensiling would provide several benefits such as all-year-around avail-ability of the feedstock and increased stability of the press juice and press cake.The major difference between fresh and ensiled grass is the conversion of water soluble carbohydrates into fermentation end products,mainly lactic and acetic acids,that lower the pH of the silage so that it becomes stable in anaerobic conditions.This has some important consequences on the processability and quality of products,which are partly positive and partly negative,e.g.,degradation of protein into peptides,amino acids and ammonia.These aspects are discussed in this review.
基金the Ministry of Science and Higher Education of the Russian Federation for financial support under the Megagrant(No.075-15-2022-1133)by the Strategic Academic Leadership Program“Priority 2030”(No.K2-2022-001)For the sample preparation and TEM investigation,the authors thank the Collective Use Equipment Center“Material Science and Metallurgy”for the equipment modernization program represented by the Ministry of Higher Education and Science of Russian Federation(No.075-15-2021-696).
文摘Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Zr system was determined by thermodynamic calculations.The effect of heat treatment regimes on microstructure,mechanical,and corrosion properties was invest-igated.The fluidity,hot tearing tendency,and ignition temperature of the alloys were determined.The best combination of castability,mechanical,and corrosion properties was found for the Mg-2.4Zn-4Y-0.8Zr alloy.The alloys studied are superior to their industrial counterparts in terms of technological properties,while maintain high corrosion and mechanical properties.The increased level of pro-perties is achieved by a suitable heat treatment regime that provides a complete transformation of the 18R to 14H modification of the LPSO phase.
基金supported by National Natural Science Foundation of China(Grant No.51876221No.51776225)+1 种基金High-end Foreign Expert Introduction Project(G20190001270B18054)。
文摘This work aims to investigate the erosion-corrosion behavior of Q235B steel in liquid-solid two-phase flows.The weight loss rate,surface morphology and electrochemical parameters of Q235B steel at different temperatures(20℃,30℃,40℃)and flow velocities(6 m/s,7 m/s,8 m/s,9 m/s,10 m/s)were studied separately.The results show that the weight loss rate of Q235B steel specimens after erosion-corrosion increases with increasing flow velocity and temperature.For the erosion-corrosion process,the corrosion rates of specimens increase with increasing flow velocity.The results of surface morphology show that the circular pits with clear edges are distributed randomly over specimen surface at low flow velocity,but the pit edge becomes vague at high flow velocity.With temperature increasing,the erosion-corrosion damage became serious as shown by the aggregation of large and small pits on specimen surface.The working mechanism of erosion-corrosion is found to vary with flow velocity and temperature.The relationships among erosion-corrosion components are quantitatively represented and show that synergy dominates the progress of material loss.Corrosion enhances erosion that is a dominant component in the synergy.The inactions of erosion-corrosion can be described by"synergistic"and"additive"behavior.The results show that"additive"effect becomes more significant with increasing flow velocity but decreases with increasing temperature,while"synergistic"effect is not sensitive to flow velocity and temperature.
基金Supported by the National Natural Science Foundation of China(N.59831030).
文摘Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross-section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Eulerian-Lagrangian approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51879159 and 52131102)the National Key Research and Development Program of China(Grant No.2019YFB1704200)。
文摘In the process of deep-sea mining,the liquid-solid flows in the vertical transportation pipeline are very complex.In the present work,an in-house solver MPSDEM-SJTU based on the improved MPS and DEM is developed for the simulation of hydraulic conveying.Firstly,three examples including the multilayer cylinder collapse,the Poiseuille flow and two-phase dam-break are used to validate the precision of the DEM model,the pipe flow model and MPS-DEM coupling model,respectively.Then,the hydraulic conveying with coarse particles in a vertical pipe is simulated.The solid particle distribution is presented and investigated in detail.Finally,the coupling method is successfully applied for the simulation of the liquid-solid flows in a vertical pipe with rotating blades,which shows the stability of the solver under rotating boundary conditions.This fully Lagrangian model is expected to be a new approach for analyzing hydraulic conveying.
基金Project(50972121) supported by the National Natural Science Foundation of China
文摘A damage prediction method based on FE simulation was proposed to predict the occurrence of hot shortness crocks and surface cracks in liquid-solid extrusion process. This method integrated the critical temperature criterion and Cockcroft & Latham ductile damage model, which were used to predict the initiation of hot shortness cracks and surface cracks of products, respectively. A coupling simulation of deformation with heat transfer as well as ductile damage was carried out to investigate the effect of extrusion temperature and extrusion speed on the damage behavior of Csf/AZ91D composites. It is concluded that the semisolid zone moves gradually toward deformation zone with the punch descending. The amplitude of the temperature rise at the exit of die from the initial billet temperature increases with the increase of extrusion speed during steady-state extrusion at a given punch displacement. In order to prevent the surface temperature of products beyond the incipient melting temperature of composites, the critical extrusion speed is decreased with the increase of extrusion temperature, otherwise the hot shortness cracks will occur. The maximum damage values increase with increasing extrusion speed or extrusion temperature. Theoretical results obtained by the Deform^TM-2D simulation agree well with the experiments.
文摘The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when the nanoparticles reach near each other, the strong interatomic force will make them attach together. This aggrega- tion continues until all nanoparticles make a continuous cluster. The effect of altering the external force magnitude causes changes in the agglomeration rate and system enthalpy. The density and velocity profiles are shown for two systems, i.e., argon (Ar)-copper (Cu) nanofluid and simple Ar fluid between two Cu walls. The results show that using nanopar- ticles changes the base fluid particles ordering along the nanochannel and increases the velocity. Moreover, using nanoparticles in simple fluids can increase the slip length and push the near-wall fluid particles into the main flow in the middle of the nanochannel.
基金Project(cstc2015yykfC0001)supported by the National Engineering Research Centre for Magnesium Alloys,ChinaProject supported by State Key Laboratory of Mechanical Transmission of Chongqing University,China
文摘The liquid-solid compound casting technology was used to produce the AZ91D/0Cr19Ni9 bimetal composite without and with hot dipping aluminium, respectively. The influences of Al coating on microstructures and mechanical properties of AZ91D/0Cr19Ni9 interface were investigated. The results showed that the mechanical bonding was obtained between AZ91D and bare steel 0Cr19Ni9 where a gap existed at the interface; the metallurgical bonding was formed between AZ91D and Al-coated 0Cr19Ni9, which could be divided into two different intermetallic layers: layer Ⅰ was mainly composed of α-Mg+β-Mg17Al12 eutectic structure and a small amount of MgAl2O4, and layer Ⅱ mainly comprised of Fe2Al5 intermetallic compound. Furthermore, the hardness value of interface was obviously higher than that of AZ91D matrix, and the average hardness values of layers Ⅰ and Ⅱ were HV 158 and HV 493, respectively. The shear strength of AZ91D/Al-coated 0Cr19Ni9 interface was higher than that of AZ91D/bare 0Cr19Ni9 interface, which confirmed that Al coating could improve the adhesive strength between AZ91D and 0Cr19Ni9 during liquid-solid compound casting process.
基金Foundation item: Project(2011BAB09B01) supported by the National Science and Technology Support Program of China Project(cstc2013jcyjA30006) supported by Chongqing Science & Technology Commission, China Project(K J130412) supported by Chongqing Education Commission, China
文摘Previous studies have indicated that piping erosion greatly threatens the safe operation of various hydraulic structures. However, few mathematical models are available to perfectly describe the erosion process due to the complexity of piping. The focus of the present work is to propose a new fluid solid coupling model to eliminate the shortcomings of existing work. A 'pseudo-liquid' assumption is suggested to simulate the particle movement in the erosion process. Then, based on the mass and momentum conservations of the moving particles and flowing water, a new two-flow model is established by using the continuity equations and motion equations. In the model, the erosion rate of soil is determined with a particle erosion law derived from tests results of STERPI. And ERGUN's empirical equation is used to determine the interaction forces between the liquid and the solid. A numerical approach is proposed to solve the model with the finite volume method and SIMPLE algorithm. The new model is validated with the tests results of STERPI. And the soil erosion principles in piping are also explored.
基金supported by Department of Energy and Process Engineering,Norwegian University of Science and TechnologyInstitute for Energy Technology and SINTEF through the FACE(Multiphase Flow Assurance Innovation Center) Project
文摘Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. This paper presents a computational method combining these two methods for solid-liquid medium. The two phases are coupled by using an improved model from a reported Lagrangian-Eulerian method. The technique is verified by simulating liquid-solid flows in a two-dimensional lid-driven cavity.
基金Supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP)GTL Technology Development Consortium (Korean National Oil Corp., Korea Gas Corp., Daelim Industrial Co. and Hyundai Engineering Co.) under "Energy Efficiency & Resources Programs" of the Ministry of Knowledge Economy, Republic of Korea
文摘Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of liquid velocity, particle size, surface tension of liquid phase and solid circulation rate on the overall heat transfer coefficient were examined. The heat transfer coefficient increased with increasing particle size or solid circulation rate due to the higher potential of particles to contact with the heater surface and promote turbulence near the heater surface. The value of heat transfer coefficient increased gradually with increase in the surface tension of liquid phase, due to the slight increase of solid holdup. The heat transfer coefficient increased with the liquid velocity even in the higher range, due to the solid circulation prevented the decrease in solid holdup, in contrast to that in the conventional liquid-solid fluidized beds. The values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.
基金The authors would like to gratefully acknowledge the financial support of National Natural Science Foundation of China(Grant No.51305345)Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2014JQ6228).
文摘Liquid-solid extrusion directly following vacuum infiltration(LSEVI)is an infiltration-extrusion integrated forming technique,and transverse weld between upper residual magnesium alloy and magnesium matrix composites is a common internal defect,which can severely reduce the yield of composite products.To improve current understanding on the mechanism of transverse welding phenomenon,a thermo-mechanical numerical model of LSEVI for magnesium matrix composites was developed.The formation of transverse weld during extrusion was visualized using finite element simulation method,and the formation mechanism was discussed from the aspect of velocity field using a point tracking technique.The simulation results were verified by the experimental results in term of weld shape.
基金partially sponsored by Shanghai Pujiang Program(No.16PJ1430200)
文摘In this study, a roll-bonded UNS N088225 alloy clad pipeline steel was investigated and developed in Baosteel. Based on the requirements of a number of potential projects, we performed a series of strict evaluations including mechanical and corrosion tests. The results show the mechanical properties and corrosion resistance of this clad steel to be excellent and to meet the requirements of all the design parameters.
文摘Studies were conducted on the interfacial microstructure of a steel/liquid aluminium and its evolution during the bonding rolling process. The effects of wetting time and deformation on the diffusion layer and on the bonding strength were examined. By means of electron microscopy and electron probe analysis, it was found that the diffusion layer is mainly composed of FeAI3. For a steel temperature of 250℃ and an aluminium temperature of 850 ~C, the diffusion layer was formed within 3 s, and the shear strength of the samples increased after 8 to 14 s. Although the interface was not damaged, it was deformed notably. For an aluminium temperature of 750℃ and a wetting time of 11 to 17 s, the shear strength of the interface remained high, but the interface was obviously broken during rolling, leading to reduced bonding strength.