期刊文献+
共找到79篇文章
< 1 2 4 >
每页显示 20 50 100
Elucidating the suppression of lithium dendrite growth with a void-reduced anti-perovskite solid-state electrolyte pellet for stable lithium metal anodes
1
作者 Yu YeXinyan Ye Haoxian Zhu +3 位作者 Juncao Bian Haibin Lin Jinlong Zhu Yusheng Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期62-69,I0003,共9页
Solid-state lithium-metal batteries,with their high theoretical energy density and safety,are highly promising as a next-generation battery contender.Among the alternatives proposed as solid-state electrolyte,lithium-... Solid-state lithium-metal batteries,with their high theoretical energy density and safety,are highly promising as a next-generation battery contender.Among the alternatives proposed as solid-state electrolyte,lithium-rich anti-perovskite(Li RAP)materials have drawn the most interest because of high theoretical Li^(+)conductivity,low cost and easy processing.Although solid-state electrolytes are believed to have the potential to physically inhibit the lithium dendrite growth,lithium-metal batteries still suffer from the lithium dendrite growth and thereafter the short circuiting.The voids in practical Li RAP pellets are considered as the root cause.Herein,we show that reducing the voids can effectively suppress the lithium dendrite growth.The voids in the pellet resulted in an irregular Li^(+)flux distribution and a poor interfacial contact with lithium metal anode;and hence the ununiform lithium dendrites.Consequently,the lithium-metal symmetric cell with void-reduced Li_(2)OHCl-HT pellet was able to display excellent cycling performance(750 h at 0.4 m A cm^(-2))and stability at high current density(0.8 m A cm^(-2)for 120 h).This study provides not only experimental evidence for the impact of the voids in Li RAP pellets on the lithium dendrite growth,but also a rational pellet fabrication approach to suppress the lithium dendrite growth. 展开更多
关键词 Llithium-rich anti-perovskite Solid-state electrolytes Void-reduced pellets lithium dendrites lithium metal anodes
下载PDF
Recent progresses in the suppression method based on the growth mechanism of lithium dendrite 被引量:9
2
作者 Xiaolong Xu Suijun Wang +4 位作者 Hao Wang Chen Hu Yi Jin Jingbing Liu Hui Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期513-527,共15页
Lithium secondary batteries(LSBs) with high energy densities need to be further developed for future applications in portable electronic devices, electric vehicles, hybrid electric vehicles and smart grids. Lithium ... Lithium secondary batteries(LSBs) with high energy densities need to be further developed for future applications in portable electronic devices, electric vehicles, hybrid electric vehicles and smart grids. Lithium metal is the most promising electrode for next-generation rechargeable batteries. However, the formation of lithium dendrite on the anode surface leads to serious safety concerns and low coulombic efficiency.Recently, researchers have made great efforts and significant progresses to solve these problems. Here we review the growth mechanism and suppression method of lithium dendrite for LSBs’ anode protection. We also establish the relationship between the growth mechanism and suppression method. The research direction for building better LSBs is given by comparing the advantages and disadvantages of these methods based on the growth mechanism. 展开更多
关键词 lithium dendrite Growth mechanism Suppression method lithium secondary battery
下载PDF
Lithium film with abundant stepped structures: A promising route for homogeneous Li ion deposition to conquer lithium dendrite issue and its action mechanism
3
作者 Yong Zhang Shu-Qin Song +2 位作者 Yong Gao Tian-Fu Liu Hong Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期166-175,I0006,共11页
Lithium is considered to be the ‘‘holy grail” for the application of energy storage due to its highest theoretical capacity and lowest anode potential. However, one of the grand difficulties in the development of l... Lithium is considered to be the ‘‘holy grail” for the application of energy storage due to its highest theoretical capacity and lowest anode potential. However, one of the grand difficulties in the development of lithium-based batteries is the lithium dendrite growth that leads to capacity fading and electrode degradation over long-term cycling. Compared with conventional electrolyte modifications, artificial solid electrolyte interfaces(SEI) synthesis and framework designing approaches, tuning surface morphology of lithium anode is the direct route to induce homogeneous Li ion deposition. Due to the high chemical activity of lithium metal, however, controllable growth of lithium micro/nanostructures by traditionally chemical approaches is still a big challenge. Herein, we have developed a facile compression route to fabricate lithium anode with abundant stepped lithium structures. The electrochemical results demonstrate that the dendritic growth issue is effectively suppressed by orderly arranged stepped lithium structures. After 90 cycles, a high discharge capacity of 954 mAh g^(-1) is achieved, which is 2.7times that of the uncompressed lithium anode(342 mAh g). First-principles calculations reveal that the orderly arranged stepped lithium structures are lithiophilic active sites to adsorb Li ion, which contributes to homogeneous deposition of Li ion on lithium anode, eventually solving the lithium dendrite issue. This work paves a new road to suppress dendritic growth, which will provide some new ideas to design long recycling sodium, potassium and zinc, and other metal anode batteries. 展开更多
关键词 lithium dendrite Steps/edges Active sites Compression
下载PDF
Constructing electron-blocking grain boundaries in garnet to suppress lithium dendrite growth
4
作者 Xing Xiang Zecheng Fang +7 位作者 Congkun Du Zhenzhen Zhao Jiajia Chen Yanhua Zhang Huihu Wang Chenhuinan Wei Fei Chen Qiang Shen 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第2期166-175,共10页
Li_(7)La_(3)Zr_(2)O_(12)(LLZO)is considered as a promising solid-state electrolyte due to its high ionic conductivity,wide electrochemical window,and excellent electrochemical stability.However,its application in soli... Li_(7)La_(3)Zr_(2)O_(12)(LLZO)is considered as a promising solid-state electrolyte due to its high ionic conductivity,wide electrochemical window,and excellent electrochemical stability.However,its application in solid-state lithium metal batteries(SSLMBs)is impeded by the growth of lithium dendrites in LLZO due to some reasons such as its high electronic conductivity.In this study,lithium fluoride(LiF)was introduced into Ta-doped LLZO(LLZTO)to modify its grain boundaries to enhance the performance of SSLMBs.A nanoscale LiF layer was uniformly coated on the LLZTO grains,creating a threedimensional continuous electron-blocking network at the grain boundaries.Benefiting from the electronic insulator LiF and the special structure of the modified LLZTO,the symmetric cells based on LLZO achieved a high critical current density(CCD)of 1.1 mA·cm^(-2)(in capacity-constant mode)and maintained stability over 2000 h at 0.3 mA·cm^(-2).Moreover,the full cells combined with a LiFePO_(4)(LFP)cathode,demonstrated excellent cycling performance,retaining 97.1% of capacity retention after 500 cycles at 0.5 C.Therefore,this work provides a facile and effective approach for preparing a modified electrolyte suitable for high-performance SSLMBs. 展开更多
关键词 solid electrolyte GARNET lithium dendrite microstructure solid-state batteries
原文传递
Novel single-ion conducting polymer electrolytes with high toughness and high resistance against lithium dendrites 被引量:3
5
作者 David Fraile-Insagurbe Nicola Boaretto +4 位作者 Itziar Aldalur Iñigo Raposo Francisco Javier Bonilla Michel Armand María Martínez-Ibañez 《Nano Research》 SCIE EI CSCD 2023年第6期8457-8468,共12页
Solid-state polymer electrolytes are considered as an alternative to classic liquid electrolytes,particularly for application in highenergy lithium metal batteries.With respect to common dual-ion conductors,single-ion... Solid-state polymer electrolytes are considered as an alternative to classic liquid electrolytes,particularly for application in highenergy lithium metal batteries.With respect to common dual-ion conductors,single-ion conducting polymer electrolytes(SICPEs)are less affected by lithium dendrites growth and thus are particularly interesting for application in lithium metal batteries.In this work,novel SIC-PEs are developed,based on an ionomer having poly(ethylene-alt-maleimide)backbone and lithium phenylsulfonyl(trifluoromethanesulfonyl)imide pendant moieties,further blended with poly(ethylene oxide)(PEO)and poly(ethylene glycol)dimethyl ether(PEGDME).These SIC-PEs exhibit ionic conductivity around~7×10^(−6)S·cm^(−1) at 70℃,lithium transference number close to unity,and excellent mechanical properties,with fracture toughness over 30 J·cm^(−3).Additionally,the electrolytes show very high resistance against lithium dendrites growth,by cycling for more than 1200 h in Li°symmetric cells at a current density of 0.1 mA·cm^(−2).LiFePO4||Li°cells with these SIC-PEs were cycled at 70℃ and C/10,showing initial capacity of almost 160 mAh·g^(−1)and residual capacity of 45%after 100 cycles.This work shows that single-ion conducting polymer electrolytes based on poly(ethylene-alt-maleimide)backbone are promising materials for application as electrolytes or catholytes in lithium metal polymer batteries. 展开更多
关键词 single-ion conductors solid-state Li metal batteries polymer electrolytes lithium dendrites transference number mechanical properties
原文传递
Bifunctional separator with high thermal stability and lithium dendrite inhibition toward high safety lithium-ion batteries 被引量:2
6
作者 Miaomiao Su Yifu Chen +1 位作者 Suqing Wang Haihui Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第5期553-556,共4页
Coating inorganic ceramic particles on commercial polyolefin separators has been considered as an effective strategy to improve thermostability of separator.However,the introduction of the coating layer could induce p... Coating inorganic ceramic particles on commercial polyolefin separators has been considered as an effective strategy to improve thermostability of separator.However,the introduction of the coating layer could induce pore blockage on the surface of the polyolefin separator.Herein,a ceramic composite layer that consists of alumina nanoparticles(n-Al_(2)O_(3))and halloysite nanotubes(HNTs)is designed to modify the polyethylene(PE)separator(the modified separator is denoted as AH-PE).The HNTs with hollow nanotubular structure construct a light skeleton and provide fast ion transport channels while Al_(2)O_(3)particles function as heat-resistant fillers to inhibit the shrinkage of the separator at elevated temperatures.The total thickness of AH-PE separator is only 14μm.Consequently,the mass increment of AH-PE separator decreases from 5 g/m^(2)to 3.5 g/m^(2),and the Gurley value reduces by 23%,compared with Al_(2)O_(3)coated PE separator(A-PE).Due to the synergistic effects of Al_(2)O_(3)and HNTs,AH-PE separator exhibits highly improved thermal stability(almost no shrinkage at 170℃for 30 min),high Li^(+)transference number(up to 0.47),and long cycle life of 450 h for Li|Li cells.Moreover,the Li Fe PO_(4)/Li cells assembled with AH-PE separators demonstrate improved rate capability and safety performance. 展开更多
关键词 SEPARATOR lithium dendrite Thermal stability Halloysite nanotubes lithium-ion batteries
原文传递
Multifunctional SnO_(2) QDs/MXene Heterostructures as Laminar Interlayers for Improved Polysulfide Conversion and Lithium Plating Behavior
7
作者 Shungui Deng Weiwei Sun +4 位作者 Jiawei Tang Mohammad Jafarpour Frank Nüesch Jakob Heier Chuanfang Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期156-169,共14页
Poor cycling stability in lithium–sulfur(Li–S)batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures.Heterogeneous catalysis has emerged as a promising approach,leveragi... Poor cycling stability in lithium–sulfur(Li–S)batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures.Heterogeneous catalysis has emerged as a promising approach,leveraging the adsorption and catalytic performance on lithium polysulfides(LiPSs)to inhibit LiPSs shuttling and improve redox kinetics.In this study,we report an ultrathin and laminar SnO_(2)@MXene heterostructure interlayer(SnO_(2)@MX),where SnO_(2) quantum dots(QDs)are uniformly distributed across the MXene layer.The combined structure of SnO_(2) QDs and MXene,along with the creation of numerous active boundary sites with coordination electron environments,plays a critical role in manipulating the catalytic kinetics of sulfur species.The Li–S cell with the SnO_(2)@MX-modified separator not only demonstrates superior electrochemical performance compared to cells with a bare separator but also induces homogeneous Li deposition during cycling.As a result,an areal capacity of 7.6 mAh cm^(-2) under a sulfur loading of 7.5 mg cm^(-2) and a high stability over 500 cycles are achieved.Our work demonstrates a feasible strategy of utilizing a laminar separator interlayer for advanced Li–S batteries awaiting commercialization and may shed light on the understanding of heterostructure catalysis with enhanced reaction kinetics. 展开更多
关键词 lithium-sulfur battery Heterogeneous catalysis Heterostructure Redox kinetics lithium dendrites
下载PDF
Interpenetrating network-reinforced gel polymer electrolyte for ultra-stable lithium−iodine batteries
8
作者 Ying Jiang Peng Huang +5 位作者 Minman Tong Bingxin Qi Tao Sun Zhongyun Xian Wen Yan Chao Lai 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期234-247,共14页
Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-... Li-I_(2) batteries have attracted much interest due to their high capacity,exceptional rate performance,and low cost.Even so,the problems of unstable Li anode/electrolyte interface and severe polyiodide shuttle in Li-I_(2) batteries need to be tackled.Herein,the interfacial reactions on the Li anode and I_(2) cathode have been effectively optimized by employing a well-designed gel polymer electrolyte strengthened by cross-linked Ti-O/Si-O(GPETS).The interpenetrating network-reinforced GPETS with high ionic conductivity(1.88×10^(-3)S cm^(-1)at 25℃)and high mechanical strength endows uniform Li deposition/stripping over 1800 h(at 1.0mA cm^(-2),with a plating capacity of 3.0mAh cm^(-2)).Moreover,the GPETS abundant in surface hydroxyls is capable of capturing soluble polyiodides at the interface and accelerating their conversion kinetics,thus synergistically mitigating the shuttle effect.Benefiting from these properties,the use of GPETS results in a high capacity of 207 mAh g^(-1)(1 C)and an ultra-low fading rate of 0.013%per cycle over 2000 cycles(5 C).The current study provides new insights into advanced electrolytes for Li-I_(2) batteries. 展开更多
关键词 electrode/electrolyte interface gel polymer electrolytes lithium dendrites lithium−iodine batteries polyiodide shuttle
下载PDF
Surface Coating Enabling Sulfide Solid Electrolytes with Excellent Air Stability and Lithium Compatibility
9
作者 Min Luo Changhong Wang +3 位作者 Yi Duan Xuyang Zhao Jiantao Wang Xueliang Sun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期41-49,共9页
All-solid-state lithium metal batteries(ASSLMBs)featuring sulfide solid electrolytes(SEs)are recognized as the most promising next-generation energy storage technology because of their exceptional safety and much-impr... All-solid-state lithium metal batteries(ASSLMBs)featuring sulfide solid electrolytes(SEs)are recognized as the most promising next-generation energy storage technology because of their exceptional safety and much-improved energy density.However,lithium dendrite growth in sulfide SEs and their poor air stability have posed significant obstacles to the advancement of sulfide-based ASSLMBs.Here,a thin layer(approximately 5 nm)of g-C_(3)N_(4)is coated on the surface of a sulfide SE(Li_(6)PS_(5)Cl),which not only lowers the electronic conductivity of Li_(6)PS_(5)Cl but also achieves remarkable interface stability by facilitating the in situ formation of ion-conductive Li3N at the Li/Li_(6)PS_(5)Cl interface.Additionally,the g-C_(3)N_(4)coating on the surface can substantially reduce the formation of H_(2)S when Li_(6)PS_(5)Cl is exposed to humid air.As a result,Li-Li symmetrical cells using g-C_(3)N_(4)-coated Li_(6)PS_(5)Cl stably cycle for 1000 h with a current density of 0.2 mA cm^(-2).ASSLMBs paired with LiNbO_(3)-coated LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2)exhibit a capacity of 132.8 mAh g^(-1)at 0.1 C and a high-capacity retention of 99.1%after 200 cycles.Furthermore,g-C_(3)N_(4)-coated Li_(6)PS_(5)Cl effectively mitigates the self-discharge behavior observed in ASSLMBs.This surface-coating approach for sulfide solid electrolytes opens the door to the practical implementation of sulfide-based ASSLMBs. 展开更多
关键词 anode interface g-C_(3)N_(4) coating Li_(6)PS_(5)Cl lithium dendrite inhibition solidstate lithium metal batteries
下载PDF
Freestanding polypyrrole nanotube/reduced graphene oxide hybrid film as flexible scaffold for dendrite-free lithium metal anodes 被引量:3
10
作者 Gan Luo Xiaolin Hu +8 位作者 Wei Liu Guanjie Lu Qiannan Zhao Jie Wen Jian Liang Guangsheng Huang Bin Jiang Chaohe Xu Fusheng Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期285-291,共7页
Lithium metal anode is the most potential anode material for the next generation high-energy rechargeable batteries owing to its highest specific capacity and lowest redox potential.Unfortunately,the uneven deposition... Lithium metal anode is the most potential anode material for the next generation high-energy rechargeable batteries owing to its highest specific capacity and lowest redox potential.Unfortunately,the uneven deposition of Li during plating/stripping and the formation of uncontrolled Li dendrites,which might cause poor battery performance and serious safety problems,are demonstrating to be a huge challenge for its practical application.Here,we show that a flexible and free-standing film hybriding with polypyrrole(PPy) nanotubes and reduced graphene oxide(rGO) can significantly regulate the Li nucleation and deposition,and further prohibit the formation of Li dendrites,owing to the large specific surface area,rich of nitrogen functional groups and porous structures.Finally,the high Coulombic efficiency and stable Li plating/stripping cycling performance with 98% for 230 cycles at 0.5 mA cm^(-2) and more than 900 hours stable lifespan are achieved.No Li dendrites form even at a Li deposition capacity as high as4.0 mA h cm^(-2).Besides,the designed PPy/rGO hybrid anode scaffold can also drive a superior battery performance in the lithium-metal full cell applications. 展开更多
关键词 lithium metal anode Polypyrrole nanotube Coulombic efficiency lithium dendrites Uniform lithium deposition
下载PDF
Inhibition of lithium dendrites and dead lithium by an ionic liquid additive toward safe and stable lithium metal anodes 被引量:2
11
作者 Shengjie Zhang Bin Cheng +6 位作者 Yanxiong Fang Dai Dang Xin Shen Zhiqiang Li Ming Wu Yun Hong Quanbing Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期3951-3954,共4页
The uncontrolled growth of lithium dendrites and accumulation of"dead lithium"upon cycling are among the main obstacles that hinder the widespread application of lithium metal anodes.Herein,an ionic liquid(I... The uncontrolled growth of lithium dendrites and accumulation of"dead lithium"upon cycling are among the main obstacles that hinder the widespread application of lithium metal anodes.Herein,an ionic liquid(IL)consisting of 1-methyl-1-propylpiperidinium cation(Pp_(13)^+) and bis(fluorosulfonyl)imide anion(FSI^(-)),was chosen as the additive in propylene carbonate(PC)-based liquid electrolytes to circumvent the shortcoming of lithium metal anodes.The optimal 1%Pp_(13) FSI acts as the role of electrostatic shielding,lithiophobic effect and participating in the formation of solid electrolyte interface(SEI)layer with enhanced properties.The in-situ optical microscopy records that the addition of IL can effectively inhibit the growth of lithium dendrites and the corrosion of lithium anode.This study delivers an effective modification to optimize electrolytes for stable lithium metal batteries. 展开更多
关键词 Ionic liquid Piperidinium lithium metal anode Solid electrolyte interface lithium dendrites Dead lithium
原文传递
A composite PEO electrolyte with amide-based polymer matrix for suppressing lithium dendrite growth in all-solid-state lithium battery 被引量:1
12
作者 Menghan Ge Xiaoyu Zhou +4 位作者 Yinping Qin Yang Liu Jingjing Zhou Xiaolei Wang Bingkun Guo 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期3894-3898,共5页
The lithium dendrite growth is still a serious challenge and impeding the realistic applications of all-solid-state lithium batteries.In view of the amide containing sediment layer can be stable on lithium/cathodes,a ... The lithium dendrite growth is still a serious challenge and impeding the realistic applications of all-solid-state lithium batteries.In view of the amide containing sediment layer can be stable on lithium/cathodes,a composite polymer electrolyte with amide-based matrix is in-situ built on porous electrodes.With the introduction of amide,the polymer electrolyte presents excellent ability to inhibit lithium dendrite growth and makes the Li/Li symmetric battery stably work for 500 h with a good ionic conductivity of 4.25×10^(-5)S/cm at 40℃.The solid electrolyte also shows a wide electrochemical stable window and good interface contact with the porous cathode.Utilizing this composite polymer electrolyte,the all-solid-state Li/LiFePO_(4) battery shows an initial discharge capacity of 146.5 mA h/g at 0.1 C under 40℃ and remains 81.4%in 100 cycles.The polymer electrolyte also can present better properties after modification.These results demonstrate that the presented PA-based composite polymer electrolyte could be served as a good electrolyte candidate for all-solid-state lithium-ion batteries. 展开更多
关键词 COMPOSITE AMIDE lithium dendrite Solid state electrolyte Li metal battery
原文传递
Touch Ablation of Lithium Dendrites via Liquid Metal for High-Rate and Long-Lived Batteries 被引量:2
13
作者 Wenjie Wang Xiaohui Zhu Lei Fu 《CCS Chemistry》 CAS 2021年第1期686-695,共10页
High energy density lithium(Li)metal batteries have attracted great attention,but they are faced with challenges of cycling instability and safety hazards.Due to high activity and drastic volume changes of metallic Li... High energy density lithium(Li)metal batteries have attracted great attention,but they are faced with challenges of cycling instability and safety hazards.Due to high activity and drastic volume changes of metallic Li,potential dendritic risks cannot be fully eliminated.Therefore,suppressing already existing Li dendrites must be evaluated.In addition,Li-active solids alloying with Li always face mechanical instability and fractures with cycling.Herein,we present touch ablation of dendrites by liquid metal,namely forming a defense layer on the electrode to directly react with the dendrites.Embrittlement,supercooling,and other liquid characteristics make the liquid gallium(Ga)exhibit continuous and reversible reactions with Li.The unique layout with a hierarchical porous structure inhibits upward growth of the dendrites.The protected Li||Li cells achieve stable cyclic performance even at 10 mA cm^(–2)and a large capacity of 5 mA h cm^(-2). 展开更多
关键词 lithium metal batteries lithium dendrites liquid metal long-lived batteries protective layer
原文传递
Integrated interface configuration by in-situ interface chemistry enabling uniform lithium deposition in all-solid-state lithium metal batteries 被引量:6
14
作者 Yu-Long Liao Jiang-Kui Hu +9 位作者 Zhong-Heng Fu Chen-Zi Zhao Yang Lu Shuai Li Shi-Jie Yang Shuo Sun Xi-Long Wang Jia Liu Jia-Qi Huang Hong Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期458-465,I0011,共9页
All-solid-state lithium metal batteries(ASSLMBs)are considered as one of the ultimate goals for the development of energy storage systems due to their high energy density and high safety.However,the mismatching of int... All-solid-state lithium metal batteries(ASSLMBs)are considered as one of the ultimate goals for the development of energy storage systems due to their high energy density and high safety.However,the mismatching of interface transport kinetics as well as interfacial instability induces the growth of lithium dendrite and thus,leads to severe degradation of battery electrochemical performances.Herein,an integrated interface configuration(IIC)consisting of in-situ generated Li I interphase and Li-Ag alloy anode is proposed through in-situ interface chemistry.The IIC is capable of not only regulating charge transport kinetics but also synchronously stabilizing the lithium/electrolyte interface,thereby achieving uniform lithium platting.Therefore,Li||Li symmetric cells with IIC achieve a critical current density of up to 1.6 mA cm^(-2)and achieve stable cycling over 1600 hours at a high current density of 0.5 mA cm^(-2).Moreover,a high discharge capacity of 140.1 mA h g-1at 0.1 C is also obtained for the Li(Ni_(0.6)Co_(0.2)Mn_(0.2))O_(2)(NCM622)full battery with a capacity retention of 65.6%after 300 cycles.This work provides an effective method to synergistically regulate the interface transport kinetics and inhibit lithium dendrite growth for high-performance ASSLMBs. 展开更多
关键词 All-solid-state lithium battery Sulfide solid electrolyte Interface chemistry lithium dendrite
下载PDF
A homogeneous and mechanically stable artificial diffusion layer using rigid-flexible hybrid polymer for high-performance lithium metal batteries 被引量:2
15
作者 Zhenkang Lin Yuyan Ma +5 位作者 Wei Wang Yu He Menghao Wang Jun Tang Cheng Fan Kening Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期631-638,I0015,共9页
Artificial solid electrolyte interphase(SEI) is promising to inhibit uncontrollable lithium dendrites and enable long cycling stability for lithium metal batteries. However, the essential mechanical stability is limit... Artificial solid electrolyte interphase(SEI) is promising to inhibit uncontrollable lithium dendrites and enable long cycling stability for lithium metal batteries. However, the essential mechanical stability is limited since organic layers generally have low modulus whereas intrinsic brittleness for inorganic ones remains a great concern. Polymer-based SEIs with rigid and flexible chains in adequate mechanical properties are supposed to address this issue. Herein, a homogeneous and mechanically stable diffusion layer is achieved by blending rigid chains of polyphenylene sulfone(PPSU) with flexible chains of poly(vinylidene fluoride)(PVDF) in a hybrid membrane, enabling uniform diffusion and stabilizing the lithium metal anode. The Li||Cu cell with the protected electrode exhibits a long lifetime more than 450 cycles(0.5 m A cm^(-2), 1.0 m A h cm^(-2))(fourfold longer than the control group) with higher average Coulombic efficiency of 98.7%. Enhanced performances are also observed at Li||Li and full cell configurations. The improved performances are attributed to the controlled morphology and stable interphase, according to scanning electron microscopy(SEM) and electrochemical impedance. This research advances the idea of uniform lithium plating and provides a new insight on how to create a homogeneous and mechanically stable diffusion layer using rigid-flexible polymers. 展开更多
关键词 lithium metal battery lithium dendrite Uniform diffusion Rigid-flexible artificial layer Electrochemical impedance
下载PDF
Full-chain enhanced ion transport toward stable lithium metal anodes
16
作者 Yuliang Gao Fahong Qiao +7 位作者 Nan Li Jingyuan You Yong Yang Jun Wang Chao Shen Ting Jin Xi Li Keyu Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期390-397,共8页
The dendrite growth that results from the slow electrode process kinetics prevents the lithium(Li) metal anode from being used in practical applications. Here, full-chain enhanced ion transport for stabilizing Li meta... The dendrite growth that results from the slow electrode process kinetics prevents the lithium(Li) metal anode from being used in practical applications. Here, full-chain enhanced ion transport for stabilizing Li metal anodes is proposed. Experimental and theoretical studies confirm that full-chain enhanced ion transport(electrocrystallization, mass transport in the electrolyte and diffusion in solid electrolyte interphase) under magnetoelectrochemistry contributes to a homogeneous, dense, and dendrite-free morphology. Specifically, the enhanced electrocrystallization behavior promotes the Li nucleation;the enhanced mass transport in the electrolyte alleviates the ion concentration gradient at the electrode surface, which helps to inhibit dendrite growth;and the enhanced diffusion in the solid electrolyte interphase further homogenizes the Li deposition behavior, obtaining regular and uniform Li particles.Consequently, the Li metal anode has exceptional cycling stability in both symmetric and full cells,and the pouch cell performs long cycles(170 cycles) in practice evaluation. This work advances fundamental knowledge of the magneto-dendrite effect and offers a new perspective on stabilizing metal anodes. 展开更多
关键词 lithium metal anodes Ion transport Pouch cell lithium dendrites Magnetic field
下载PDF
Dependence of lithium metal battery performances on inherent separator porous structure regulation
17
作者 Lei Ding Dandan Li +7 位作者 Lingyang Liu Pengfang Zhang Fanghui Du Chao Wang Daoxin Zhang Shuo Zhang Sihang Zhang Feng Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期436-447,共12页
Boosting of rechargeable lithium metal batteries(LMBs) holds challenges because of lithium dendrites germination and high-reactive surface feature.Separators may experience structure-determined chemical deterioration ... Boosting of rechargeable lithium metal batteries(LMBs) holds challenges because of lithium dendrites germination and high-reactive surface feature.Separators may experience structure-determined chemical deterioration and worsen Li plating-stripping behaviors when smoothly shifting from lithium-ion batteries(LIBs) to LMBs.This study precisely regulations the crystal structure of β-polypropylene and separator porous construction to investigate the intrinsic porous structure and mechanical properties determined electrochemical performances and cycling durability of LMBs.Crystal structure characterizations,porous structure analyses,and electrochemical cycling tests uncover appropriate annealing thermal stimulation concentrates β-lamellae thickness and enhances lamellae thermal stability by rearranging molecular chain in inferior β-lamellae,maximally homogenizing biaxial tensile deformation and resultant porous constructions.These even pores with high connectivity lower ion migration barriers,alleviate heterogeneous Li^(+) flux dispersion,stabilize reversible Li plating-stripping behaviors,and hinder coursing and branching of Li dendrites,endowing steady cell cycling durability,especially at higher currents due to the highlighted uncontrollable cumulation of dead Li,which offers new insights for the current pursuit of high-power density battery and fast charging technology.The suggested separator structure-chemical nature functions in ensuring cyclic cell stability and builds reliable relationships between separator structure design and practical LMBs applications. 展开更多
关键词 lithium metal battery Polyolefin separator Porous structure design lithium dendrite regulation Cycling stability
下载PDF
Intrinsic lithiophilic carbon host derived from bacterial cellulose nanofiber for dendrite-free and long-life lithium metal anode
18
作者 Gangyi Xiong Jiayu Yu +2 位作者 Yalan Xing Puheng Yang Shichao Zhang 《Nano Research》 SCIE EI CSCD 2024年第5期4203-4210,共8页
Although lithium metal is considered a promising anode for advanced Li-S and Li-air batteries,the uncontrolled dendrite growth and infinite volume change impede its practical application.Herein,we report an ideal fram... Although lithium metal is considered a promising anode for advanced Li-S and Li-air batteries,the uncontrolled dendrite growth and infinite volume change impede its practical application.Herein,we report an ideal framework composed of carbonized bacterial cellulose(CBC)nanofibers,which shows intrinsic lithiophilicity to molten lithium without any lithiophilic surface modification.The wetting behavior of molten lithium can be significantly improved because its surface functional groups provide thermodynamical driving force,and the high surface roughness derived from nanocracks leads to rapid infusion in kinetics.The hybrid anode exhibits long cycle life up to 2000 h and excellent deep stripping-platting capacity up to 20 mAh·cm^(-2).When the anode is assembled with LiFePO_(4) cathode,the full cell delivers a good cycling stability up to 700 cycles.This is attributed to the intrinsic lithiophilic scaffold,which can not only lower the nucleation barrier of Li and provide uniform nucleation sites for stable Li stripping/plating,but also offer interspace to accommodate volume fluctuation of lithium during long cycling.This work provides a new manner to achieve a series of intrinsic lithiophilic carbon skeletons based on the large family of biomass materials and organic materials. 展开更多
关键词 intrinsic lithiophilicity lithium metal anode bacterial cellulose lithium dendrite long cycling life
原文传递
A functional gel polymer electrolyte based on PVDF-HFP/gelatin toward dendrite-free lithium metal batteries
19
作者 Xiaoyi Hu Kangli Liu +3 位作者 Shijie Zhang Guosheng Shao S.Ravi P.Silva Peng Zhang 《Nano Research》 SCIE EI CSCD 2024年第4期2790-2799,共10页
The leakage of liquid electrolyte and the formation of lithium dendrites pose challenges to safety and stability of lithium metal batteries(LMBs).The appearance of gel polymer electrolyte(GPE)has obviously improved th... The leakage of liquid electrolyte and the formation of lithium dendrites pose challenges to safety and stability of lithium metal batteries(LMBs).The appearance of gel polymer electrolyte(GPE)has obviously improved the safety of traditional LMBs.However,the limited inhibition of GPE on lithium dendrites is detrimental to the safety of LMBs.Herein,a kind of poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)/gelatin(GN)GPE with high ionic conductivity,high-temperature resistance,and flame-retardancy,was prepared by electrospinning and soaking method.Utilizing the electrospinning network of PVDF-HFP,its affinity to liquid electrolytes,makes this GPE more beneficial to ions transport and the formation of gel.And,the GN with sol–gel properties,enhances the mechanical property(13.5 MPa)of HFP-GN GPE.Meanwhile,X-ray photoelectron spectroscopy(XPS)and density functional theory(DFT)suggest that the attraction of polar groups of GN to Li+can regulate the distribution of Li+and protect Li anodes.Consequently,the application of HFP-GN GPEs to LMBs with cathodes of LiFePO_(4) and LiCoO_(2) deliver excellent electrochemical performances:after 300 cycles,the LiFePO_(4)/HFP-GN GPE/Li battery keeps a low capacity decay rate of 0.09%at 5 C;after 400 cycles at 2 C,the LiCoO_(2)/HFP-GN GPE/Li cell retains a high capacity retention of 74%.This GPE is demonstrated for the application prospect of safe LMBs. 展开更多
关键词 poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP) GELATIN polar groups lithium metal battery lithium dendrite
原文传递
Low-Enthalpy and High-Entropy Polymer Electrolytes for Li-Metal Battery
20
作者 Haitao Zhang Yuchen Wang +6 位作者 Junfeng Huang Wen Li Xiankan Zeng Aili Jia Hongzhi Peng Xiong Zhang Weiqing Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期91-99,共9页
lonic-conductive solid-state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion-transfer mechanism is needed to improve performance.... lonic-conductive solid-state polymer electrolytes are promising for the development of advanced lithium batteries yet a deeper understanding of their underlying ion-transfer mechanism is needed to improve performance.Here we demonstrate the low-enthalpy and high-entropy(LEHE)electrolytes can intrinsically generate remarkably free ions and high mobility,enabling them to efficiently drive lithium-ion storage.The LEHE electrolytes are constructed on the basis of introducing CsPbl_(3)perovskite quantum dots(PQDs)to strengthen PEO@LiTFSI complexes.An extremely stable cycling>1000 h at 0.3 mA cm^(-2)can be delivered by LEHE electrolytes.Also,the as-developed Li|LEHE|LiFePO_(4)cell retains 92.3%of the initial capacity(160.7 mAh g^(-1))after 200 cycles.This cycling stability is ascribed to the suppressed charge concentration gradient leading to free lithium dendrites.It is realized by a dramatic increment in lithium-ion transference number(0.57 vs 0.19)and a significant decline in ion-transfer activation energy(0.14 eV vs 0.22 eV)for LEHE electrolytes comparing with PEO@LiTFSI counterpart.The CsPbl_(3)PQDs promote highly structural disorder by inhibiting crystallization and hence endow polymer electrolytes with low melting enthalpy and high structural entropy,which in turn facilitate long-term cycling stability and excellent rate-capability of lithium-metal batteries. 展开更多
关键词 charge concentration gradient lithium dendrites lithium-metal battery low-enthalpy and high-entropy polymer electrolyte
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部