期刊文献+
共找到51,262篇文章
< 1 2 250 >
每页显示 20 50 100
Fluorine-Modulated MXene-Derived Catalysts for Multiphase Sulfur Conversion in Lithium-Sulfur Battery
1
作者 Qinhua Gu Yiqi Cao +5 位作者 Junnan Chen Yujie Qi Zhaofeng Zhai Ming Lu Nan Huang Bingsen Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期201-216,共16页
Fluorine owing to its inherently high electronegativity exhibits charge delocalization and ion dissociation capabilities;as a result,there has been an influx of research studies focused on the utilization of fluorides... Fluorine owing to its inherently high electronegativity exhibits charge delocalization and ion dissociation capabilities;as a result,there has been an influx of research studies focused on the utilization of fluorides to optimize solid electrolyte interfaces and provide dynamic protection of electrodes to regulate the reaction and function performance of batteries.Nonetheless,the shuttle effect and the sluggish redox reaction kinetics emphasize the potential bottlenecks of lithium-sulfur batteries.Whether fluorine modulation regulate the reaction process of Li-S chemistry?Here,the TiOF/Ti_(3)C_(2)MXene nanoribbons with a tailored F distribution were constructed via an NH4F fluorinated method.Relying on in situ characterizations and electrochemical analysis,the F activates the catalysis function of Ti metal atoms in the consecutive redox reaction.The positive charge of Ti metal sites is increased due to the formation of O-Ti-F bonds based on the Lewis acid-base mechanism,which contributes to the adsorption of polysulfides,provides more nucleation sites and promotes the cleavage of S-S bonds.This facilitates the deposition of Li_(2)S at lower overpotentials.Additionally,fluorine has the capacity to capture electrons originating from Li_(2)S dissolution due to charge compensation mechanisms.The fluorine modulation strategy holds the promise of guiding the construction of fluorine-based catalysts and facilitating the seamless integration of multiple consecutive heterogeneous catalytic processes. 展开更多
关键词 CATALYSIS FLUORINATION MXene lithium-sulfur battery Shuttle effect
下载PDF
Accelerating lithium-sulfur battery reaction kinetics and inducing 3D deposition of Li_(2)S using interactions between Fe_(3)Se_(4)and lithium polysulfides
2
作者 Yihan Lin Liheng Li +5 位作者 Longjie Tan Yongliang Li Xiangzhong Ren Peixin Zhang Chuanxin He Lingna Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期540-553,I0012,共15页
Although lithium-sulfur batteries(LSBs)exhibit high theoretical energy density,their practical application is hindered by poor conductivity of the sulfur cathode,the shuttle effect,and the irreversible deposition of L... Although lithium-sulfur batteries(LSBs)exhibit high theoretical energy density,their practical application is hindered by poor conductivity of the sulfur cathode,the shuttle effect,and the irreversible deposition of Li_(2)S.To address these issues,a novel composite,using electrospinning technology,consisting of Fe_(3)Se_(4)and porous nitrogen-doped carbon nanofibers was designed for the interlayer of LSBs.The porous carbon nanofiber structure facilitates the transport of ions and electrons,while the Fe_(3)Se_(4)material adsorbs lithium polysulfides(LiPSs)and accelerates its catalytic conversion process.Furthermore,the Fe_(3)Se_(4)material interacts with soluble LiPSs to generate a new polysulfide intermediate,Li_(x)FeS_(y)complex,which changes the electrochemical reaction pathway and facilitates the three-dimensional deposition of Li_(2)S,enhancing the reversibility of LSBs.The designed LSB demonstrates a high specific capacity of1529.6 mA h g^(-1)in the first cycle at 0.2 C.The rate performance is also excellent,maintaining an ultra-high specific capacity of 779.7 mA h g^(-1)at a high rate of 8 C.This investigation explores the mechanism of the interaction between the interlayer and LiPSs,and provides a new strategy to regulate the reaction kinetics and Li_(2)S deposition in LSBs. 展开更多
关键词 lithium-sulfur batteries Polysulfide intermediates Li_(2)S electrodeposition INTERLAYERS Electrostatic spinning Adsorption Catalysis
下载PDF
Tuning the solubility of polysulfides for constructing practical lithium-sulfur battery
3
作者 Jiapeng Li Jianlong Cong +3 位作者 Haijin Ji Ting Shi Lixia Yuan Yunhui Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期611-617,I0013,共8页
Li-S batteries are regarded as one of the most promising candidates for next-generation battery systems with high energy density and low cost.However,the dissolution-precipitation reaction mechanism of the sulfur(S)ca... Li-S batteries are regarded as one of the most promising candidates for next-generation battery systems with high energy density and low cost.However,the dissolution-precipitation reaction mechanism of the sulfur(S)cathode enhances the kinetics of the redox processes of the insulating sulfu r,which also arouses the notorious shuttle effect,leading to serious loss of S species and corrosion of Li anode.To get a balance between the shuttle restraining and the kinetic property,a combined strategy of electrolyte regulation and cathode modification is proposed via introducing 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoroprpyl ether(HFE)instead of 1,2-dimethoxyethane(DME),and SeS_(7)instead of S_8.The introduction of HFE tunes the solvation structure of the LiTFSI and the dissolution of intermediate polysulfides with Se doping(LiPSSes),and optimize the interface stability of the Li anode simultaneously.The minor Se substitution compensates the decrease in kinetic due to the decreased solubility of LiPSs.In this way,the Li-SeS_(7)batteries deliver a reversible capacity of 1062 and 1037 mAh g^(-1)with 2.0 and 5.5 mg SeS_(7)cm^(-2)loading condition,respectively.Besides,an electrolyte-electrode loading model is established to explain the relationship between the optimal electrolyte and cathode loading.It makes more sense to guide the electrolyte design for practical Li-S batteries. 展开更多
关键词 Li-S batteries Lithium polysulfides SOLUBILITY Shuttle effect Interface Se doping
下载PDF
In-situ assembly of TiO2 with high exposure of(001)facets on three-dimensional porous graphene aerogel for lithium-sulfur battery 被引量:5
4
作者 Ming Wang Shunyuan Tan +4 位作者 Shuting Kan Yufeng Wu Shangbin Sang Kaiyu Liu Hongtao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期316-322,共7页
Resulting from the development of electric vehicles,high energy-density Li-S batteries have recently attracted ever-increasing attentions worldwide.However,continuous dissolution of cathodic sulfur and followed shuttl... Resulting from the development of electric vehicles,high energy-density Li-S batteries have recently attracted ever-increasing attentions worldwide.However,continuous dissolution of cathodic sulfur and followed shuttle effect of polysulfides lead to very limited service lifetime for currently-applied Li-S batteries.Herein,a 3 D porous graphene aerogel(GA)decorated with high exposure of anatase TiO2(001)nanoplatelets is proposed as robust host to immobilize cathodic sulfur.Compared with commonly used TiO2(101)nanoparticles,the Ti O2(001)nanoplatelets have highly matched lattices with graphene(002)nanosheets,thus facilitating the electronic transfer.The in-site assembled TiO2@GA host exhibits superior sulfur-immobilized capability,which cannot only entrap sulfur by physical confinement,but also capture dissoluble sulfurous species by chemical bonding.The fabricated S@TiO2@GA cathode shows excellent electrochemical performance with high discharge capacity,superior rate capability,and durable cycling stability as well,supposed to be a promising cathode for high-performance Li-S battery applications. 展开更多
关键词 lithium-sulfur battery Porous graphene aerogel Anatase(001) Immobilization of sulfur Electrochemical performance
下载PDF
Vanadium-based compounds and heterostructures as functional sulfur catalysts for lithium-sulfur battery cathodes 被引量:3
5
作者 Xinji Dong Qiao Deng +3 位作者 Fengxing Liang Pei Kang Shen Jinliang Zhu Cheng Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期118-134,I0003,共18页
Lithium-sulfur(Li-S)batteries have attracted wide attention for their high theoretical energy density,low cost,and environmental friendliness.However,the shuttle effect of polysulfides and the insulation of active mat... Lithium-sulfur(Li-S)batteries have attracted wide attention for their high theoretical energy density,low cost,and environmental friendliness.However,the shuttle effect of polysulfides and the insulation of active materials severely restrict the development of Li-S batteries.Constructing conductive sulfur scaffolds with catalytic conversion capability for cathodes is an efficient approach to solving above issues.Vanadium-based compounds and their heterostructures have recently emerged as functional sulfur catalysts supported on conductive scaffolds.These compounds interact with polysulfides via different mechanisms to alleviate the shuttle effect and accelerate the redox kinetics,leading to higher Coulombic efficiency and enhanced sulfur utilization.Reports on vanadium-based nanomaterials in Li-S batteries have been steadily increasing over the past several years.In this review,first,we provide an overview of the synthesis of vanadium-based compounds and heterostructures.Then,we discuss the interactions and constitutive relationships between vanadium-based catalysts and polysulfides formed at sulfur cathodes.We summarize the mechanisms that contribute to the enhancement of electrochemical performance for various types of vanadium-based catalysts,thus providing insights for the rational design of sulfur catalysts.Finally,we offer a perspective on the future directions for the research and development of vanadium-based sulfur catalysts. 展开更多
关键词 Vanadium-based compound Vanadium-based heterostructure lithium-sulfur battery Sulfur catalyst Polysulfide regulation
下载PDF
Nitrogen-rich azoles as trifunctional electrolyte additives for high-performance lithium-sulfur battery 被引量:2
6
作者 Dan-Yang Wang Wenmin Wang +3 位作者 Fengli Li Xin Li Wei Guo Yongzhu Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期572-579,I0015,共9页
Rechargeable lithium-sulfur(Li-S)batteries are considered one of the most promising energy storage techniques owing to the high theoretical energy density.However,challenges still remain such as the shuttle effect of ... Rechargeable lithium-sulfur(Li-S)batteries are considered one of the most promising energy storage techniques owing to the high theoretical energy density.However,challenges still remain such as the shuttle effect of lithium polysulfides(LPSs)and the instability of lithium metal anode.Herein,we propose to use nitrogen-rich azoles,i.e.,triazole(Ta)and tetrazole(Tta),as trifunctional electrolyte additives for Li-S batteries.The azoles afford strong lithiophilicity for the chemisorption of LPSs.The density functional theory and experimental analysis verify the presence of Li bonds between the azoles and LPSs.The azoles can also interact with lithium salt in the electrolyte,leading to increase ionic conductivity and lithiumion transference number.Moreover,the azoles render particle-like lithium deposition on the lithium metal anode,leading to superlong cycling of a Li symmetric cell.The Li-S batteries with Ta and Tta exhibit the initial discharge capacity of 1425.5 and 1322.2 m Ah g^(-1),respectively,at 0.2 C rate,and promising cycling stability.They also enable enhanced cycling performance of a Li-organosulfide battery. 展开更多
关键词 AZOLE Electrolyte additive lithium-sulfur battery CHEMISORPTION Organosulfide
下载PDF
A systematic correlation between morphology of porous carbon cathode and electrolyte in lithium-sulfur battery 被引量:2
7
作者 Jihyeon Park Seoyoung Yoon +8 位作者 Seoyeah Oh Jiyoon Kim Dongjun Kim Geonho Kim Jiyeon Lee Myeong Jun Song Ilto Kim Kwonnam Sohn Jiwon Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期561-573,I0014,共14页
Porous carbon has been applied for lithium-sulfur battery cathodes,and carbonized metal-organic framework(MOF)is advantageous in tuning the morphology.Herein,we have systematically synthesized water-distorted MOF(WDM)... Porous carbon has been applied for lithium-sulfur battery cathodes,and carbonized metal-organic framework(MOF)is advantageous in tuning the morphology.Herein,we have systematically synthesized water-distorted MOF(WDM)derived porous carbon via controlling the proportion of both water in a mixed solvent(dimethylformamide and water)and ligand in MOF-5 precursors(metal and ligand),which is categorized by its morphology(i.e.Cracked stone(closed),Tassel(open)and Intermediate(semi-open)).For example,decrease in water and increase in ligand content induce Cracked stone WDMs which showed the highest specific surface area(2742-2990 m^(2)/g)and pore volume(2.81-3.28 cm^(3)/g)after carbonization.Morphological effect of carbonized WDMs(CWDMs)on battery performance was examined by introducing electrolytes with different sulfur reduction mechanisms(i.e.DOL/DME and ACN_(2) LiTFSITTE):Closed framework effectively confines polysulfide,whereas open framework enhances electrolyte accessibility.The initial capacities of the batteries were in the following order:Cracked stone>Intermediate>Tassel for DOL/DME and Intermediate>Tassel>Cracked stone for ACN_(2) LiTFSI-TTE.To note,Intermediate CWDM exhibited the highest initial capacity and retained capacity after 100 cycles(1398 and 747 mAh/g)in ACN_(2) LiTFSI-TTE electrolyte having advantages from both open and closed frameworks.In sum,we could correlate cathode morphology(openness and pore structure)and electrolyte type(i.e.polysulfide solubility)with lithium-sulfur battery performance. 展开更多
关键词 lithium-sulfur battery Metal-organic framework Hierarchical porous carbon cathode Morphology control ELECTROLYTE Lithium polysulfide solubility
下载PDF
A functional hyperbranched binder enabling ultra-stable sulfur cathode for high-performance lithium-sulfur battery 被引量:2
8
作者 Xiang Luo Xianbo Lu +5 位作者 Xiaodong Chen Ya Chen Chunyang Yu Dawei Su Guoxiu Wang Lifeng Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期63-72,共10页
Binders are of vital importance in stabilizing the cathodes to enhance the cycling stability of lithiumsulfur(Li-S) batteries. However, conventional binders are typically confronted with the drawback of inability for ... Binders are of vital importance in stabilizing the cathodes to enhance the cycling stability of lithiumsulfur(Li-S) batteries. However, conventional binders are typically confronted with the drawback of inability for adsorbing lithium polysulfide(Li PS), thus resulting in severe active material losing and rapid capacity fading. Herein, a novel water-soluble hyperbranched poly(amidoamine)(HPAA) binder with controllable hyperbranched molecular structure and abundant amino end groups for Li-S battery is designed and fabricated, which can improve efficient adsorption for Li PS and stability of the sulfur cathodes. Besides, the strong intermolecular hydrogen bonds in HPAA binder can contribute to the structural stability of S cathode and integration of the conductive paths. Therefore, the Li-S battery with this functional binder exhibits excellent cycle performance with a capacity retention of 91% after 200 cycles at 0.1 C.Even at a high sulfur loading of 5.3 mg cm-2, a specific capacity of 601 mA h g-1 can also be achieved.Density functional theory(DFT) calculation further demonstrates that the enhanced electrochemical stability derives from the high binding energy between amino groups and LiP S and the wide electrochemical window(6.87 e V) of HPAA molecule. Based on the above all, this functional polymer will lighten a new species of binders for eco-friendly sulfur cathodes and significantly promote the practical applications of high-performance Li-S batteries. 展开更多
关键词 Functional binder Hyperbranched polymer Sulfur cathode Polysulfide adsorption lithium-sulfur battery
下载PDF
Characteristics of a gold-doped electrode for application in high-performance lithium-sulfur battery 被引量:1
9
作者 Vittorio Marangon Daniele Di Lecce +2 位作者 Dan J.L.Brett Paul R.Shearing Jusef Hassoun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期116-128,I0004,共14页
Bulk sulfur incorporating 3 wt% gold nano-powder is investigated as possible candidate to maximize the fraction of active material in the Li-S battery cathode.The material is prepared via simple mixing of gold with mo... Bulk sulfur incorporating 3 wt% gold nano-powder is investigated as possible candidate to maximize the fraction of active material in the Li-S battery cathode.The material is prepared via simple mixing of gold with molten sulfur at 120℃,quenching at room temperature,and grinding.Our comprehensive study reports relevant electrochemical data,advanced X-ray computed tomography(CT)imaging of the positive and negative electrodes,and a thorough structural and morphological characterization of the S:Au 97:3 w/w composite.This cathode exhibits high rate capability within the range from C/10 to 1C,a maximum capacity above 1300 mAh gs^(-1),and capacity retention between 85%and 91%after 100 cycles at 1C and C/3 rates.The novel formulation enables a sulfur fraction in the composite cathode film as high as 78 wt%,an active material loading of 5.7 mg cm^(-2),and an electrolyte/sulfur(E/S)ratio of 5μL mg^(-1),which lead to a maximum areal capacity of 5.4 mAh cm^(-2).X-ray CT at the micro-and nanoscale reveals the microstructural features of the positive electrode that favor fast conversion kinetics in the battery.Quantitative analysis of sulfur distribution in the porous cathode displays that electrodeposition during the initial cycle may trigger an activation process in the cell leading to improved performance.Furthermore,the tomography study reveals the characteristics of the lithium anode and the cell separator upon a galvanostatic test prolonged over 300 cycles at a 2C rate. 展开更多
关键词 lithium-sulfur battery Sulfur loading Electrolyte/sulfur ratio Gold nanoparticles X-ray tomography
下载PDF
Regulating adsorption ability toward polysulfides in a porous carbon/Cu_(3)P hybrid for an ultrastable high-temperature lithium-sulfur battery 被引量:1
10
作者 Yichuan Guo Rabia Khatoon +8 位作者 Jianguo Lu Qinggang He Xiang Gao Xiaopeng Yang Xun Hu Yang Wu Jiale Lian Zhoupeng Li Zhizhen Ye 《Carbon Energy》 SCIE CAS 2021年第6期841-855,共15页
Lithium-sulfur batteries(LSBs)can work at high temperatures,but they suffer from poor cycle life stability due to the“shuttle effect”of polysulfides.In this study,pollen-derived porous carbon/cuprous phosphide(PC/Cu... Lithium-sulfur batteries(LSBs)can work at high temperatures,but they suffer from poor cycle life stability due to the“shuttle effect”of polysulfides.In this study,pollen-derived porous carbon/cuprous phosphide(PC/Cu_(3)P)hybrids were rationally synthesized using a one-step carbonization method using pollen as the source material,acting as the sulfur host for LSBs.In the hybrid,polar Cu_(3)P can markedly inhibit the“shuttle effect”by regulating the adsorption ability toward polysulfides,as confirmed by theoretical calculations and experimental tests.As an example,the camellia pollen porous carbon(CPC)/Cu_(3)P/S electrode shows a high capacity of 1205.6 mAh g^(−1) at 0.1 C,an ultralow capacity decay rate of 0.038%per cycle after 1000 cycles at 1 C,and a rather high initial Coulombic efficiency of 98.5%.The CPC/Cu_(3)P LSBs can work well at high temperatures,having a high capacity of 545.9 mAh g^(−1) at 1 C even at 150℃.The strategy of the PC/Cu_(3)P hybrid proposed in this study is expected to be an ideal cathode for ultrastable high-temperature LSBs.We believe that this strategy is universal and worthy of in-depth development for the next generation energy storage devices. 展开更多
关键词 density functional theory calculation high operating temperature lithium-sulfur battery polysulfide adsorption porous carbon/Cu_(3)P hybrid ultrastability
下载PDF
Carbon-containing electrospun nanofibers for lithium-sulfur battery:Current status and future directions 被引量:6
11
作者 Zhaoming Tong Liang Huang +2 位作者 Wen Lei Haijun Zhang Shaowei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期254-273,共20页
Lithium-sulfur batteries(LSBs)have become promising next-generation energy storage technologies for electric vehicles and portable electronics,due to its excellent theoretical specific energy.However,the low conductiv... Lithium-sulfur batteries(LSBs)have become promising next-generation energy storage technologies for electric vehicles and portable electronics,due to its excellent theoretical specific energy.However,the low conductivity of sulfur species,notorious lithium dendrites,the severe"shuttle effect"of polysulfides(LiPSs)and the inferior kinetic reaction for LiPSs/Li_(2)S conversion during discharge-charge have seriously hindered their practical application,and also pose potential safety hazards.Owing to their superior porous architectures,high specific surface areas,excellent structural designability,functional modifiability,abundant active sites and flexibility of carbon-containing electrospun nanofibers(CENFs),they exhibited the superior characteristics that can simultaneously solve the above issues.In this review,we summarize the recent progress and application of CENFs in LSBs.First,we provide a brief introduction to the structure and composition controlled of carbon nanofibers by electrospinning.We then review progress in recent developments of CENFs for LSBs including cathodes,anodes,separators,and interlayers.We focus on how to solve practical issues that arise when the CENFs are applied to various parts of LSBs,and the relevant working mechanisms are described,from high sulfur loading and Li dendrites suppression to LiPSs’confinement and conversion.Finally,we summarize and propose the existing challenges and future prospects of CENFs,for the design and architecture of electrochemical components in Li-S energy storage systems. 展开更多
关键词 lithium-sulfur batteries ELECTROSPINNING Carbon-containing nanofibers Cathodes Anodes Separators and interlayers
下载PDF
High-performance lithium-sulfur battery based on porous N-rich g-C_(3)N_(4) nan-otubes via a self-template method 被引量:6
12
作者 Meng-rong Wu Ming-yue Gao +7 位作者 Shu-ya Zhang Ru Yang Yong-ming Chen Shang-qing Sun Jin-feng Xie Xing-mei Guo Fu Cao Jun-hao Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1656-1665,共10页
The commercial development of lithium-sulfur batteries(Li-S)is severely limited by the shuttle effect of lithium polysulfides(LPSs)and the non-conductivity of sulfur.Herein,porous g-C_(3)N_(4) nanotubes(PCNNTs)are syn... The commercial development of lithium-sulfur batteries(Li-S)is severely limited by the shuttle effect of lithium polysulfides(LPSs)and the non-conductivity of sulfur.Herein,porous g-C_(3)N_(4) nanotubes(PCNNTs)are synthesized via a self-template method and utilized as an efficient sulfur host material.The one-dimensional PCNNTs have a high specific surface area(143.47 m^(2)·g^(-1))and an abundance of macro-/mesopores,which could achieve a high sulfur loading rate of 74.7wt%.A Li-S battery bearing the PCNNTs/S composite as a cathode displays a low capacity decay of 0.021% per cycle over 800 cycles at 0.5 C with an initial capacity of 704.8 mAh·g^(-1).PCNNTs with a tubular structure could alleviate the volume expansion caused by sulfur and lithium sulfide during charge/discharge cycling.High N contents could greatly enhance the adsorption capacity of the carbon nitride for LPSs.These synergistic effects contribute to the excellent cycling stability and rate performance of the PCNNTs/S composite electrode. 展开更多
关键词 self-template method porous g-C_(3)N_(4)nanotubes chemical adsorption synergistic effects lithium-sulfur batteries
下载PDF
Selective sulfur conversion with surface engineering of electrocatalysts in a lithium-sulfur battery 被引量:2
13
作者 Yuejin Zhu Yinze Zuo +4 位作者 Xuechao Jiao Revanasiddappa Manjunatha Ejikeme Raphael Ezeigwe Wei Yan Jiujun Zhang 《Carbon Energy》 SCIE CSCD 2023年第2期72-84,共13页
The sluggish kinetics of multiphase sulfur conversion with homogeneous and heterogeneous electrochemical processes,causing the“shuttle effect”of soluble polysulfide species(PSs),is the challenges in terms of lithium... The sluggish kinetics of multiphase sulfur conversion with homogeneous and heterogeneous electrochemical processes,causing the“shuttle effect”of soluble polysulfide species(PSs),is the challenges in terms of lithium-sulfur batteries(LSBs).In this paper,a Mn_(3)O_(4-x) catalyst,which has much higher activity for heterogeneous reactions than for homogeneous reactions(namely,preferentialactivity catalysts),is designed by surface engineering with rational oxygen vacancies.Due to the rational design of the electronic structure,the Mn_(3)O_(4-x) catalyst prefers to accelerate the conversion of Li2S4 into Li_(2)S_(2)/Li_(2)S and optimize Li_(2)S deposition,reducing the accumulation of PSs and thus suppressing the“shuttle effect.”Both density functional theory calculations and in situ X-ray diffraction measurements are used to probe the catalytic mechanism and identify the reaction intermediates of MnS and Li_(y)Mn_(z)O_(4-x) for fundamental understanding.The cell with Mn_(3)O_(4-x) delivers an ultralow attenuation rate of 0.028% per cycle over 2000 cycles at 2.5 C.Even with sulfur loadings of 4.93 and 7.10mg cm^(-2) in a lean electrolyte(8.4μL mg s^(-1)),the cell still shows an initial areal capacity of 7.3mAh cm^(-2).This study may provide a new way to develop preferential-activity heterogeneous-reaction catalysts to suppress the“shuttle effect”of the soluble PSs generated during the redox process of LSBs. 展开更多
关键词 electrochemical kinetics heterogeneous catalysis lithium-sulfur batteries Mn3O4-x-catalyzed separator surface engineering
下载PDF
A review on electronically conducting polymers for lithium-sulfur battery and lithium-selenium battery:Progress and prospects 被引量:3
14
作者 Hengying Xiang Nanping Deng +5 位作者 Huijuan Zhao Xiaoxiao Wang Liying Wei Meng Wang Bowen Cheng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期523-556,共34页
Lithium-sulfur(Li-S) batteries and lithium-selenium(Li-Se) batteries,as environmental protection energy storage systems with outstanding theoretical specific capacities and high energy densities,have become the hotspo... Lithium-sulfur(Li-S) batteries and lithium-selenium(Li-Se) batteries,as environmental protection energy storage systems with outstanding theoretical specific capacities and high energy densities,have become the hotspots of current researches.Besides,elemental S(Se) raw materials are widely sourced and their production costs are both low,which make them considered one of the new generations of high energy density electrochemical energy storage systems with the most potential for development.However,poor conductivity of elemental S/Se and the notorious "shuttle effect" of lithium polysulfides(polyselenides) severely hinder the commercialization of Li-S/Se batteries.Thanks to the excellent electrical conductivity and strong absorption of lithium polysulfide(polyselenide) about electronically conducting polymer,some of the above thorny problems have been effectively alleviated.The review presents the fundamental studies and current development trends of common electronically conducting polymers in various components of Li-S/Se batteries,which involves polyaniline(PANI) polypyrrole(PPy),and polythiophene(PTh) with its derivatives,e.g.polyethoxythiophene(PEDOT) and poly(3,4-ethylene dioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS).Finally,the review not only summarizes the research directions and challenges facing the application of electronically conducting polymers,but also looks forward to the development prospects of them,which will provide a way for the practical use of electronically conducting polymers in Li-S/Se batteries with outstanding electrochemical properties in the short run. 展开更多
关键词 Li-S/Se batteries Electronically conducting polymer Various battery components Suppressed"shuttle effect" Outstanding electrochemical properties
下载PDF
Boosting Lean Electrolyte Lithium-Sulfur Battery Performance with Transition Metals: A Comprehensive Review 被引量:5
15
作者 Hui Pan Zhibin Cheng +8 位作者 Zhenyu Zhou Sijie Xie Wei Zhang Ning Han Wei Guo Jan Fransaer Jiangshui Luo Andreu Cabot Michael Wübbenhorst 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期53-100,共48页
Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyze... Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur(E/S) ratios on battery energy density and the challenges for sulfur reduction reactions(SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios(< 10 μL mg~(-1)), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li–S battery performance. Finally, an outlook is provided to guide future research on high energy density Li–S batteries. 展开更多
关键词 Transition metals Lean electrolyte Sulfur reduction reactions Li–S batteries
下载PDF
Strong internal electric field enhanced polysulfide trapping and ameliorates redox kinetics for lithium-sulfur battery 被引量:2
16
作者 Bin Yang Jinyi Wang +5 位作者 Yuheng Qi Daying Guo Xueyu Wang Guoyong Fang Xi’an Chen Shun Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期376-383,I0010,共9页
The shuttle effect of polysulfides is a major challenge for the commercialization of lithium-sulfur battery.The systematic modification of separators has the potential to solve these problems by enhancing the adsorpti... The shuttle effect of polysulfides is a major challenge for the commercialization of lithium-sulfur battery.The systematic modification of separators has the potential to solve these problems by enhancing the adsorption and catalytic conversion of polysulfides.Herein,strong internal electric field bismuth oxycarbonate(Bi_(2)O_(2)CO_(3))nanoflowers decorated conductive carbon(DC+BOC)is proposed to be systematically modified on separator.This intermediate layer not only possesses a strong affinity for polysulfides,but also promotes the conversion of polysulfides and induces the formation of a stable solid electrolyte interphase(SEI)layer,thereby improving the rate performance and cycling stability of the battery.As expected,the modified membrane achieved a high specific capacity of 713 mA h g^(-1) at 5 C.At 1 C,high reversibility of 719 mA h g^(-1) was achieved after 550 cycles with only 0.044%decay per cycle.More importantly,under the sulfur loading of 5.1 mg cm^(-2),the area specific capacity remained at4.1 mA h cm^(-2) after 200 cycles,and the attenuation rate per cycle was only 0,056%.This work provides a new strategy to overcome the shuttle effect of polysulfide,and shows great potential in the application of high-performance lithium-sulfur batteries. 展开更多
关键词 INTERLAYER Strong built-in electric field CATALYTIC Shuttle effect Lithiumsulfur battery
下载PDF
Cobalt and Nitrogen Co-Doped Nano-Porous Carbon: Synthesis and Application for Lithium-Sulfur Battery
17
作者 Shiqiang Luo Chunman Zheng +1 位作者 Yujie Li Shuangke Liu 《Journal of Power and Energy Engineering》 2017年第12期16-20,共5页
S@C-Co-N nanoporous carbon co-doped with cobalt and nitrogen as the cathode of lithium-sulfur battery are prepared. The synthetic route is carried out via the carbonization of metal organic frameworks polyhedron ZIF-6... S@C-Co-N nanoporous carbon co-doped with cobalt and nitrogen as the cathode of lithium-sulfur battery are prepared. The synthetic route is carried out via the carbonization of metal organic frameworks polyhedron ZIF-67, followed by the heat treatment with sulfur. The SEM images suggest that C-Co-N composite maintains almost the same size and polyhedron shape of ZIF-67. The XRD pattern confirms the existence of cobalt element. As cathode for lithium-sulfur battery, the S@C-Co-N composite delivers a reversible capacity of 916.6 mAh?g?1 at the initial cycle and 460.5 mAh?g?1 after 500 cycles at 0.5 C, with a capacity fading of 0.09% per cycle. 展开更多
关键词 METAL-ORGANIC Frameworks lithium-sulfur battery CATHODE
下载PDF
Stable immobilization of lithium polysulfides using three-dimensional ordered mesoporous Mn_(2)O_(3) as the host material in lithium-sulfur batteries 被引量:1
18
作者 Sung Joon Park Yun Jeong Choi +6 位作者 Hyun-seung Kim Min Joo Hong Hongjun Chang Janghyuk Moon Young-Jun Kim Junyoung Mun Ki Jae Kim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期99-112,共14页
Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the c... Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs. 展开更多
关键词 host material lithium-sulfur battery ordered mesoporous structure shuttle effect transition-metal oxides
下载PDF
MOF and its derivative materials modified lithium-sulfur battery separator:a new means to improve performance
19
作者 Rong-Wei Huang Yong-Qi Wang +6 位作者 Dan You Wen-Hao Yang Bin-Nan Deng Fei Wang Yue-Jin Zeng Yi-Yong Zhang Xue Li 《Rare Metals》 SCIE EI CAS CSCD 2024年第6期2418-2443,共26页
In recent years,lithium-sulfur batteries(LSBs)are considered as one of the most promising new generation energies with the advantages of high theoretical speeific capacity of sulfur(1675 mAh·g^(-1)),abundant sulf... In recent years,lithium-sulfur batteries(LSBs)are considered as one of the most promising new generation energies with the advantages of high theoretical speeific capacity of sulfur(1675 mAh·g^(-1)),abundant sulfur resources,and environmental friendliness storage technologies,and they are receiving wide attention from the industry.However,the problems of the shuttle effect and lithium dendrite growth in LSBs have limited their practical application,so there is a need to find ways to solve these problems.It is an excellent choice to use novel materials to modify battery materials.Among those novel materials,the metal-organic framework(MOF)has the properties of regular pores and controllable structure.When applied as a positive electrode and diaphragm,it can restrain the shuttle effect and lithium dendrite growth,especially since it shows excellent performance in diaphragm modification.Therefore,various design strategies and synthesis methods of MOF-modified separators are reviewed in this paper,and the applications of MOF in LSBs separators in different forms are introduced,including the composite of MOF and carbon-based materials,the compounding of MOF and polymer,self-carbonization to form MOF-derived materials.At the same time,different characterization techniques are systematically reviewed to obtain the physical and chemical properties of MOF particles and the working mechanism of MOF-modified diaphragm,which provides a basis for further research in this field.Finally,some future research trends and directions are put forward to fully tap the future commercial potential of MOF-modified diaphragm in LSBs. 展开更多
关键词 MOF lithium-sulfur battery Modified diaphragms Design strategies PROSPECT Characterization
原文传递
Effect of the anionic composition of sulfolane based electrolytes on the performances of lithium-sulfur batteries
20
作者 Elena V.Karaseva Elena V.Kuzmina +2 位作者 Bo-Quan Li Qiang Zhang Vladimir S.Kolosnitsyn 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期231-240,I0005,共11页
In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,... In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,DN[ClO_(4)]^(-)=8.4,DN[SO_(3)CF_(3)]^(-)=16.9,and DN[NO_(3)]^(-)=21.1)on the patterns of lithium-sulfur batteries and lithium metal electrode performances with sulfola ne-based electrolytes is investigated.An increase in DN of lithium salt anions leads to an increase in the depth and rate of electrochemical reduction of sulfur and long-chain lithium polysulfides and to a decrease in those for medium-and short-chain lithium polysulfides.DN of lithium salt anions has weak effect on the discharge capacity of lithium-sulfur batteries and the Coulomb efficiency during cycling,with the exception of LiSO_(3)CF_(3)and LiNO_(3).An increase in DN of lithium salt anions leads to an increase in the cycling duration of lithium metal anodes and to a decrease in the presence of lithium polysulfides.In sulfolane solutions of LiNO_(3)and LiSO_(3)CF_(3),lithium polysulfides do not affect the cycling duration of lithium metal anodes. 展开更多
关键词 Donor number Lithium salt SULFOLANE Lithium polysulfide ELECTROLYTE lithium-sulfur battery Lithium metal electrode
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部