In order to meet the high temperature environment requirement of deep and superdeep well exploitation, a technology of large length-to-diameter ratio metal stator screw lining meshing with rotor is presented. Based on...In order to meet the high temperature environment requirement of deep and superdeep well exploitation, a technology of large length-to-diameter ratio metal stator screw lining meshing with rotor is presented. Based on the elastic-plasticity theory, and under the consideration of the effect of tube size, material mechanical parameters, friction coefficient and loading paths, the external pressure plastic forming mechanical model of metal stator screw lining is established, to study the optimal loading path of metal stator lining tube hydroforming process. The results show that wall thickness reduction of the external pressure tube hydroforming(THF) is about 4%, and three evaluation criteria of metal stator screw lining forming quality are presented: fillet stick mold coefficient, thickness relative error and forming quality coefficient. The smaller the three criteria are, the better the forming quality is.Each indicator has a trend of increase with the loading rate reducing, and the adjustment laws of die arc transition zone equidistance profile curve are acquired for improving tube forming quality. Hence, the research results prove the feasibility of external pressure THF used for processing high-accuracy large length-to-diameter ratio metal stator screw lining, and provide theoretical basis for designing new kind of stator structure which has better performance and longer service life.展开更多
The magnetomechanical behavior of single-crystal Galfenol alloy was found to be strongly dependent on the loading paths. An energy-based anisotropic domain rotation model, assuming that the interaction between domains...The magnetomechanical behavior of single-crystal Galfenol alloy was found to be strongly dependent on the loading paths. An energy-based anisotropic domain rotation model, assuming that the interaction between domains can be ignored and the probability of the magnetic moment pointing along a particular direction is related to the free energy along this direction, is used to simulate the magnetostriction versus magnetic field and stress curve and to track the magnetic domain motion trail. The main reason for loading path dependent effect is the rotation/flipping of the magnetic domains under different loading paths. The effect of loading and unloading paths on 90° magnetic domain motion was studied by choosing different loading and unloading state and paths. The results show that prior loading magnetic field can make the 90° magnetic domains flip to the directions of 45°domains because the magnetic field is the driving force to make the domains rotate, and the final loading state and the loading path both have great influence on the motion of 90° magnetic domains.展开更多
Although computer capabilities have been improved significantly, a large-scale virtual reality (VR) system demands much more in terms of memory and computation than the current computer systems can offer. This paper...Although computer capabilities have been improved significantly, a large-scale virtual reality (VR) system demands much more in terms of memory and computation than the current computer systems can offer. This paper discusses two important issues related to VR performance and applications in building navigation. These are dynamic loading of models based on cell segmentation for the optimal VR operation, and the route optimization based on path planning for easy navigation. The VR model of engineering and information technology complex (EITC) building at the University of Manitoba is built as an example to show the feasibility of the proposed methods. The reality, enhanced by three-dimensional (3D) real-time interactivity and visualization, leads navigators into a state of the virtual building immersion.展开更多
The influence of loading path on tube hydroforming process is discussed in this paper with finiteelement simulation. Four different loading paths are utilized in simulating the forming process of square tubular compo...The influence of loading path on tube hydroforming process is discussed in this paper with finiteelement simulation. Four different loading paths are utilized in simulating the forming process of square tubular component with hydroforming and the result of different loading path is presented. Among the result. the thickness distribution of bilinear loading path is the most uniform one. It shows that the increase of punch displacement in the stage of high pressure is beneficial to the forming of component for optimized Stress condition.展开更多
A numerical scheme for the nonlinear behavior of structure under wind excitation is investigated. With the white noise filter of turbulent-wind fluctuations, the nonlinear motion equation of structures subjected to wi...A numerical scheme for the nonlinear behavior of structure under wind excitation is investigated. With the white noise filter of turbulent-wind fluctuations, the nonlinear motion equation of structures subjected to wind load was modeled as the Ito' s stochastic differential equation. The state vector associated with such a model is a diffusion process. A continuous linearization strategy in the time-domain was adopted. Based on the solution series of its stochastic linearization equations, the formal probabilistic density of the structure response was developed by the path integral technique. It is shown by the numerical example of a guyed mast that compared with the frequency-domain method and the time-domain nonlinear analysis, the proposed approach is highlighted by high accuracy and effectiveness. The influence of the structure non-linearity on the dynamic reliability assessment is also analyzed in the example.展开更多
Large-scale and diverse businesses based on the cloud computing platform bring the heavy network traffic to cloud data centers.However,the unbalanced workload of cloud data center network easily leads to the network c...Large-scale and diverse businesses based on the cloud computing platform bring the heavy network traffic to cloud data centers.However,the unbalanced workload of cloud data center network easily leads to the network congestion,the low resource utilization rate,the long delay,the low reliability,and the low throughput.In order to improve the utilization efficiency and the quality of services(QoS)of cloud system,especially to solve the problem of network congestion,we propose MTSS,a multi-path traffic scheduling mechanism based on software defined networking(SDN).MTSS utilizes the data flow scheduling flexibility of SDN and the multi-path feature of the fat-tree structure to improve the traffic balance of the cloud data center network.A heuristic traffic balancing algorithm is presented for MTSS,which periodically monitors the network link and dynamically adjusts the traffic on the heavy link to achieve programmable data forwarding and load balancing.The experimental results show that MTSS outperforms equal-cost multi-path protocol(ECMP),by effectively reducing the packet loss rate and delay.In addition,MTSS improves the utilization efficiency,the reliability and the throughput rate of the cloud data center network.展开更多
This paper analyzes the peculiarities of plastic flow of metals for the case of non-proportional loading when the loading path consists of two portions—uniaxial tension and subsequent infinitesimal pure shear (torsio...This paper analyzes the peculiarities of plastic flow of metals for the case of non-proportional loading when the loading path consists of two portions—uniaxial tension and subsequent infinitesimal pure shear (torsion). The issue is discussed from the point of view of the hardening rules governing the kinetics of loading surface. Three cases are considered, flow plasticity theory with isotropic and kinematic hardening rule, as well as the synthetic theory of plastic deformation. As a result, the synthetic theory leads to the results that correlate with experiments, whereas the former two theories associated with smooth loading surfaces give a principal discrepancy with experimental data.展开更多
Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strip...Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strips and to subsequent forming. The workpieces which first compressed by plane strain compression in thickness direction were then tested in perpendicular direction in order to measure the influence of strain and stress path. The tension workpieces came from flat die compression test at different deformation histories. Two different materials were investigated: 18/8 Ti stainless steel and AW-1050 aluminium. The results show that the plastic flow by tension in lengthwise direction after pre-strain by compression in thickness direction will begin at an appreciably lower stress than that of the workpieces unloaded after pre-compression. Comparing with two materials, it can be seen that both 18/8 Ti stainless steel and AW-1050 aluminium behave similarly. The drop in yield stress is lower for AW-1050 aluminium than that for 18/8 Ti stainless steel. However, reloading in different directions than in the precious step results in significantly higher strain hardening.展开更多
The paper discussed cutter-work engagement situation hidden behind the mechanical and thermal load effect on cutting edges during high speed hard machining process. The engagement situation was investigated in great d...The paper discussed cutter-work engagement situation hidden behind the mechanical and thermal load effect on cutting edges during high speed hard machining process. The engagement situation was investigated in great detail using experimental and geometrical analytic measures. Experiments were conducted using A1TiN-coated micro-grain carbide end mill cutters to cut hardened die steel. On the basis, a general high speed hard machining strategy, which aimed at eliminating excessive engagement situation during high-speed machining (HSM) hard machining, was proposed. The strategy includes the procedures to identify prone-to-overload areas where excessive engagement situation occurs and then to create a reliable tool path, which has the effect of cutting load reduction to remove the prone-to-overload areas.展开更多
A new staggered isolated system developed from the mid-story isolated system is the new staggered story isolated system. There are not many studies on this structure currently. In this study, an 18-story new staggered...A new staggered isolated system developed from the mid-story isolated system is the new staggered story isolated system. There are not many studies on this structure currently. In this study, an 18-story new staggered story isolated system model is established using SAP2000. The dynamic nonlinear dynamic alternate method is used to analyze the structure against progressive collapse. Results show that the structure has good resistance to progressive collapse, and there is no progressive collapse under each working condition. The progressive collapse does not occur for the case of removing only one vertical structural member of the new staggered of isolated system. The side column has big influence on this isolated structures’ progressive collapse;the removal of vertical structural member of the isolation layer has less impact on the structure than the removal of the bottom vertical structural member. After the removing of the member, the internal force of the structure will be redistributed, and the axial force of the adjacent columns will change obviously, showing a trend of “near large and far small”.展开更多
基金Project(51222406)supported by the National Natural Science Foundation of ChinaProject(NCET-12-1061)supported by the Funds for New Century Excellent Talents in University of China+1 种基金Project(12TD007)supported by the Scientific Research Innovation Team Program of Sichuan Colleges and Universities,ChinaProject(2014TD0025)supported by the Youth Scientific Research Innovation Team Program of Sichuan Province,China
文摘In order to meet the high temperature environment requirement of deep and superdeep well exploitation, a technology of large length-to-diameter ratio metal stator screw lining meshing with rotor is presented. Based on the elastic-plasticity theory, and under the consideration of the effect of tube size, material mechanical parameters, friction coefficient and loading paths, the external pressure plastic forming mechanical model of metal stator screw lining is established, to study the optimal loading path of metal stator lining tube hydroforming process. The results show that wall thickness reduction of the external pressure tube hydroforming(THF) is about 4%, and three evaluation criteria of metal stator screw lining forming quality are presented: fillet stick mold coefficient, thickness relative error and forming quality coefficient. The smaller the three criteria are, the better the forming quality is.Each indicator has a trend of increase with the loading rate reducing, and the adjustment laws of die arc transition zone equidistance profile curve are acquired for improving tube forming quality. Hence, the research results prove the feasibility of external pressure THF used for processing high-accuracy large length-to-diameter ratio metal stator screw lining, and provide theoretical basis for designing new kind of stator structure which has better performance and longer service life.
基金Project supported by the General Program of National Natural Science Foundation of China(Grant No.51371028)
文摘The magnetomechanical behavior of single-crystal Galfenol alloy was found to be strongly dependent on the loading paths. An energy-based anisotropic domain rotation model, assuming that the interaction between domains can be ignored and the probability of the magnetic moment pointing along a particular direction is related to the free energy along this direction, is used to simulate the magnetostriction versus magnetic field and stress curve and to track the magnetic domain motion trail. The main reason for loading path dependent effect is the rotation/flipping of the magnetic domains under different loading paths. The effect of loading and unloading paths on 90° magnetic domain motion was studied by choosing different loading and unloading state and paths. The results show that prior loading magnetic field can make the 90° magnetic domains flip to the directions of 45°domains because the magnetic field is the driving force to make the domains rotate, and the final loading state and the loading path both have great influence on the motion of 90° magnetic domains.
基金supported by Discovery Grants of National Science and Engineering Research Council of Canada (NSERC) and Faculty of Engineering at University of Manitoba
文摘Although computer capabilities have been improved significantly, a large-scale virtual reality (VR) system demands much more in terms of memory and computation than the current computer systems can offer. This paper discusses two important issues related to VR performance and applications in building navigation. These are dynamic loading of models based on cell segmentation for the optimal VR operation, and the route optimization based on path planning for easy navigation. The VR model of engineering and information technology complex (EITC) building at the University of Manitoba is built as an example to show the feasibility of the proposed methods. The reality, enhanced by three-dimensional (3D) real-time interactivity and visualization, leads navigators into a state of the virtual building immersion.
基金Tabs paper is financially suPPorted by the NationalNatural Science Foundation of China (No. 59975021).
文摘The influence of loading path on tube hydroforming process is discussed in this paper with finiteelement simulation. Four different loading paths are utilized in simulating the forming process of square tubular component with hydroforming and the result of different loading path is presented. Among the result. the thickness distribution of bilinear loading path is the most uniform one. It shows that the increase of punch displacement in the stage of high pressure is beneficial to the forming of component for optimized Stress condition.
文摘A numerical scheme for the nonlinear behavior of structure under wind excitation is investigated. With the white noise filter of turbulent-wind fluctuations, the nonlinear motion equation of structures subjected to wind load was modeled as the Ito' s stochastic differential equation. The state vector associated with such a model is a diffusion process. A continuous linearization strategy in the time-domain was adopted. Based on the solution series of its stochastic linearization equations, the formal probabilistic density of the structure response was developed by the path integral technique. It is shown by the numerical example of a guyed mast that compared with the frequency-domain method and the time-domain nonlinear analysis, the proposed approach is highlighted by high accuracy and effectiveness. The influence of the structure non-linearity on the dynamic reliability assessment is also analyzed in the example.
基金supported by the National Key Research and Development Program of China(2018YFB1003702)the National Natural Science Foundation of China(61472192)the Scientific and Technological Support Project(Society)of Jiangsu Province(BE2016776)
文摘Large-scale and diverse businesses based on the cloud computing platform bring the heavy network traffic to cloud data centers.However,the unbalanced workload of cloud data center network easily leads to the network congestion,the low resource utilization rate,the long delay,the low reliability,and the low throughput.In order to improve the utilization efficiency and the quality of services(QoS)of cloud system,especially to solve the problem of network congestion,we propose MTSS,a multi-path traffic scheduling mechanism based on software defined networking(SDN).MTSS utilizes the data flow scheduling flexibility of SDN and the multi-path feature of the fat-tree structure to improve the traffic balance of the cloud data center network.A heuristic traffic balancing algorithm is presented for MTSS,which periodically monitors the network link and dynamically adjusts the traffic on the heavy link to achieve programmable data forwarding and load balancing.The experimental results show that MTSS outperforms equal-cost multi-path protocol(ECMP),by effectively reducing the packet loss rate and delay.In addition,MTSS improves the utilization efficiency,the reliability and the throughput rate of the cloud data center network.
文摘This paper analyzes the peculiarities of plastic flow of metals for the case of non-proportional loading when the loading path consists of two portions—uniaxial tension and subsequent infinitesimal pure shear (torsion). The issue is discussed from the point of view of the hardening rules governing the kinetics of loading surface. Three cases are considered, flow plasticity theory with isotropic and kinematic hardening rule, as well as the synthetic theory of plastic deformation. As a result, the synthetic theory leads to the results that correlate with experiments, whereas the former two theories associated with smooth loading surfaces give a principal discrepancy with experimental data.
文摘Flat workpieces have been tested in order to investigate the influence of stress path change (loading mode) while keeping strain path unchanged. These investigations are pertinent to the testing of cold rolled strips and to subsequent forming. The workpieces which first compressed by plane strain compression in thickness direction were then tested in perpendicular direction in order to measure the influence of strain and stress path. The tension workpieces came from flat die compression test at different deformation histories. Two different materials were investigated: 18/8 Ti stainless steel and AW-1050 aluminium. The results show that the plastic flow by tension in lengthwise direction after pre-strain by compression in thickness direction will begin at an appreciably lower stress than that of the workpieces unloaded after pre-compression. Comparing with two materials, it can be seen that both 18/8 Ti stainless steel and AW-1050 aluminium behave similarly. The drop in yield stress is lower for AW-1050 aluminium than that for 18/8 Ti stainless steel. However, reloading in different directions than in the precious step results in significantly higher strain hardening.
文摘The paper discussed cutter-work engagement situation hidden behind the mechanical and thermal load effect on cutting edges during high speed hard machining process. The engagement situation was investigated in great detail using experimental and geometrical analytic measures. Experiments were conducted using A1TiN-coated micro-grain carbide end mill cutters to cut hardened die steel. On the basis, a general high speed hard machining strategy, which aimed at eliminating excessive engagement situation during high-speed machining (HSM) hard machining, was proposed. The strategy includes the procedures to identify prone-to-overload areas where excessive engagement situation occurs and then to create a reliable tool path, which has the effect of cutting load reduction to remove the prone-to-overload areas.
文摘A new staggered isolated system developed from the mid-story isolated system is the new staggered story isolated system. There are not many studies on this structure currently. In this study, an 18-story new staggered story isolated system model is established using SAP2000. The dynamic nonlinear dynamic alternate method is used to analyze the structure against progressive collapse. Results show that the structure has good resistance to progressive collapse, and there is no progressive collapse under each working condition. The progressive collapse does not occur for the case of removing only one vertical structural member of the new staggered of isolated system. The side column has big influence on this isolated structures’ progressive collapse;the removal of vertical structural member of the isolation layer has less impact on the structure than the removal of the bottom vertical structural member. After the removing of the member, the internal force of the structure will be redistributed, and the axial force of the adjacent columns will change obviously, showing a trend of “near large and far small”.