To investigate the causes qf cracks in multistory masonry buildings, the effect of vertical load difference on cracking behaviors was investigated experimentally by testing and measuring the displacements at the testi...To investigate the causes qf cracks in multistory masonry buildings, the effect of vertical load difference on cracking behaviors was investigated experimentally by testing and measuring the displacements at the testing points of a large sized real masonry U-shaped model. Additionally, the cracking behaviors in U-shaped model were analyzed with shear stress and numerical simulated with ANSYS software. The experimental results show that the deformation increases with the increase of the vertical load. The vertical load results in different deformation between the bearing wall and non-bearing wall, which leads to cracking on the non-beating wall. The rapid deformation happens at 160 kN and cracks occur firstly at the top section of non-bearing wall near to the bearing wall. New cracks are observed and the previous cracks are enlarged and developed with the increase of vertical load. The maximum crack opening reaches 12 mm, and the non-bearing wall is about to collapse when the vertical load arrives at 380 kN. Theoretical analysis indicates that the shear stress reaches the maximum value at the top section of the non-bearing wall, and thus cracks tend to happen at the top section of the non-bearing wall. Numerical simulation results about the cracking behaviors are in good agreement with experiments results.展开更多
Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been iden...Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been identified as another important factor of land subsidence,but researches in this sector have lagged.The effect of a single building load on land subsidence was neglected in many cases owing to the narrow scope and the limited depth of the additional stress in stratum.However,due to the superposition of stresses between buildings,the additional stress of cluster loads is greater than that of a single building load under the same condition,so that the land subsidence caused by cluster loads cannot be neglected.Taking Shamen village in the north of Zhengzhou,China,as an example,a finite-difference model based on the Biot consolidation theory to calculate the land subsidence caused by cluster loads was established in this paper.Cluster loads present the characteristics of large-area loads,and the land subsidence caused by cluster loads can have multiple primary consolidation processes due to the stress superposition of different buildings was shown by the simulation results.Pore water migration distances are longer when the cluster loads with high plot ratio are imposed,so that consolidation takes longer time.The higher the plot ratio is,the deeper the effective deformation is,and thus the greater the land subsidence is.A higher plot ratio also increases the contribution that the deeper stratigraphic layers make to land subsidence.Contrary to the calculated results of land subsidence caused by cluster loads and groundwater recession,the percentage of settlement caused by cluster loads in the total settlement was 49.43%and 55.06%at two simulated monitoring points,respectively.These data suggest that the cluster loads can be one of the main causes of land subsidence.展开更多
Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadwa...Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadways. The experimental results show that the influence of blast load on adjacent roadway has a good relationship with the cross-section of roadway. The expansion distance of precrack existed in circular, arch-wall, rectangular roadway is respectively 1.76, 1.61 and 0 cm under blast load.At the same time, the direct-blast side of rectangular roadway has more obvious damage compared with circular and arch-wall roadway. It explains that plane reflects more stress wave than arc, so that it exerts more tensile failure in the direct-blast side, which leads to less stress wave diffracting to the precrack in the back-blast side. When the precrack extends, higher value dynamic stress intensity factor in circular roadway works longer than that of arch-wall roadway. Indirectly, it explains that plane's weakening function on stress wave is significantly stronger than arc. Stress wave brings about self-evident influence on the upper and bottom endpoints of the rectangular roadway, and it respectively extends 1.03, 2.06 cm along the line link direction of the center of the blasthole and the upper and bottom endpoints on the right wall.展开更多
Current guidelines recommend using single-degree-of-freedom(SDOF) method for dynamic analysis of reinforced concretec (RC) structures against blast loads, which is not suitable for retrofitted members. Thus, a finite ...Current guidelines recommend using single-degree-of-freedom(SDOF) method for dynamic analysis of reinforced concretec (RC) structures against blast loads, which is not suitable for retrofitted members. Thus, a finite difference procedure developed in another study was used to accurately and efficiently analyze the dynamic response of fibre reinforced polymer (FRP) plated members under blast loads. It can accommodate changes in the mechanical properties of a member's cross section along its length and through its depth in each time step, making it possible to directly incorporate both strain rate effects (which will vary along the length and depth of a member) and non-uniform member loading to solve the partial differential equation of motion. The accuracy of the proposed method was validated in part using data from field blast testing. The finite difference procedure is implemented easily and enables accurate predictions of FRP-plated-member response.展开更多
Although the load applied to pile foundations is usually a combination of vertical and lateral components,there have been few investigations on the behavior of piles subjected to combined loadings.Those few studies le...Although the load applied to pile foundations is usually a combination of vertical and lateral components,there have been few investigations on the behavior of piles subjected to combined loadings.Those few studies led to inconsistent results with regard to the effects of vertical loads on the lateral response of piles.A series of three-dimensional(3D) finite differences analyses is conducted to evaluate the influence of vertical loads on the lateral performance of pile foundations.Three idealized sandy and clayey soil profiles are considered:a homogeneous soil layer,a layer with modulus proportional to depth,and two-layered strata.The pile material is modeled as linearly elastic,while the soil is idealized using the Mohr-Coulomb constitutive model with a non-associated flow rule.In order to confirm the findings of this study,soils in some cases are further modeled using more sophisticated models(i.e.CYsoil model for sandy soils and modified Cam-Clay(MCC) model for clayey soils).Numerical results showed that the lateral resistance of the piles does not appear to vary considerably with the vertical load in sandy soil especially at the loosest state.However,the presence of a vertical load on a pile embedded in homogeneous or inhomogeneous clay is detrimental to its lateral capacity,and it is unconservative to design piles in clays assuming that there is no interaction between vertical and lateral loads.Moreover,the current results indicate that the effect of vertical loads on the lateral response of piles embedded in twolayered strata depends on the characteristics of soil not only surrounding the piles but also located beneath their tips.展开更多
The most significant differences between continuous welded rails (CWRs) and general split-type connectors are axial compression in the longitudinal direction, buckling stability and other issues generated under the ...The most significant differences between continuous welded rails (CWRs) and general split-type connectors are axial compression in the longitudinal direction, buckling stability and other issues generated under the influence of thermal effect. Under thermal effect, a dynamical behavior similar to that of a beam fixed on two sides occurs in the central locked area of the welded rail, as there is axial compression but no possibility of sliding. Continuous welded rails do not contract or expand, and are supported by the dynamical system made up of ballasts and rail clips. The rail-support system mentioned above has the features of non-uniform material distribution and uncertainty of construction quality. Due to these facts, the dynamics method based on the linear elastic hypothesis cannot correctly evaluate the rail's buckling conditions. This study is aimed at applying Finite Difference Method (FDM) and Monte Carlo Random Normal Variables Method to the analysis of welded rail's buckling behavior during the train's acceleration and deceleration, under thermal effect and uncertain factors of ballast and rail clips. The analysis result showed that buckling occurs under the combined effect of thermal effect and the train's deceleration force co-effect and the variance ratio of ballast and rail clips is over 0.85, or under the combined effect of thermal effect and the train's acceleration force when the ariance ratio is over 0.88.展开更多
In order to improve the design level of partially embedded single piles under simultaneous axial and lateral loads, the differential solutions were deduced, in which the soil was treated as an ideal, elastic, homogene...In order to improve the design level of partially embedded single piles under simultaneous axial and lateral loads, the differential solutions were deduced, in which the soil was treated as an ideal, elastic, homogeneous, semi-infinite isotropic medium. A comparison was made between model test results and the obtained solutions to show their validity. The calculation results indicate that the horizontal displacement and bending moment of the pile increase with increases of the axial and lateral loads. The maximum horizontal displacement and bending moment decrease by 37.9% and 13.9%, respectively, when the elastic modulus of soil increases from 4 MPa to 20 MPa. The Poisson ratio of soil plays a marginal role in pile responses. There is a critical pile length under the ground, beyond which the pile behaves as though it was infinitely long. The presented solutions can make allowance for the continuous nature of soil, and if condition permits, they can approach exact ones.展开更多
To address the problem of poor wave resistance of existing offshore floating wind turbines,a new type of semisubmersible platform with truncated-cone-type upper pontoons is proposed by combining the characteristics of...To address the problem of poor wave resistance of existing offshore floating wind turbines,a new type of semisubmersible platform with truncated-cone-type upper pontoons is proposed by combining the characteristics of offshore wind turbine semi-submersible floating platforms.Based on the coupled hydrodynamic,aerodynamic,and mooring force physical fields of FAST,the surge,heave,pitch,and yaw motions responses of the floating wind turbine under different wave heights and periods are obtained,and the mooring line tension responses are also obtained;and compare the dynamic response of the new semi-submersible platform with the OC4-DeepCwind platformat six degrees of freedom.The results show that different wave conditions have obvious effects on the heave and pitch motions of the new floating wind turbine,and fewer effects on the surge and yaw motions;the tensegrity response of the mooring system is more affected by the wave conditions;compared with the OC4-DeepCwind floating wind turbine,the pitch and roll response of the new floating wind turbine has been significantly reduced and has good stability.展开更多
It is important to study the subgrade characteristics of high-speed railways in consideration of the water–soil coupling dynamic problem,especially when high-speed trains operate in rainy regions.This study develops ...It is important to study the subgrade characteristics of high-speed railways in consideration of the water–soil coupling dynamic problem,especially when high-speed trains operate in rainy regions.This study develops a nonlinear water–soil interaction dynamic model of slab track coupling with subgrade under high-speed train loading based on vehicle–track coupling dynamics.By using this model,the basic dynamic characteristics,including water–soil interaction and without water induced by the high-speed train loading,are studied.The main factors-the permeability coefficien and the porosity-influencin the subgrade deformation are investigated.The developed model can characterize the soil dynamic behaviour more realistically,especially when considering the influenc of water-rich soil.展开更多
Advanced design based on the concept of orthotropic structure includes better use of materials, less weight compared to the equivalent isotropic construction and controlled effectively reserve resistance in all its se...Advanced design based on the concept of orthotropic structure includes better use of materials, less weight compared to the equivalent isotropic construction and controlled effectively reserve resistance in all its segments. In this case a calculation of critical load is exposed using the FDM (Finite Difference Method) concept of thin plates subjected to complex loads due to forces in the middle-plane. Results of calculation model, discussed in this paper, are given in graphic form. Presented results should serve as an indicator of the expansion of theoretical base of similar models, which can be reasonably use by researchers and engineers in their practices, and by students for educational purposes.展开更多
Slope stability is one of the most important subjects of geotechnics. The slope top-loading plays a key role in the stability of slopes in hill slope areas. When the building load is too large or the point of action f...Slope stability is one of the most important subjects of geotechnics. The slope top-loading plays a key role in the stability of slopes in hill slope areas. When the building load is too large or the point of action from the shoulder is too close, the shear stress of the slope will be significantly greater than its shear strength, resulting in reduced slope stability. Therefore, it is of great importance to study the relationship between the building load and the stability of the slope. This study aims to analyze the influence of different building loads applied at different distances on the top of the slope and deduces their effects on the slope stability. For this purpose, a three-dimensional slope model under different building loads with different distances to the slope shoulder was established using the finite-difference analysis software Flac3D. The results show that the loads applied at different distances on the top of the slope have different effects on the slope stability. The slope factor of safety (FOS) increases with the increase of the distance between the top-loading and the slope shoulder;it varies from 1.37 to 1.53 for the load P = 120 KPa, 1.27 to 1.53 for the load P = 200 KPa, and from 1.18 to 1.44 for P = 300 KPa, resulting in the decrease of the coincidence area between the load-deformation and the potential sliding surface. The slope is no longer affected by the potential risk of sliding at approximately 20 m away from the slope shoulder.展开更多
Language is the carrier of culture while culture is the connotation of language.English vocabulary contains many cultureloaded words and expressions that carry certain cultural information.These words and expressions ...Language is the carrier of culture while culture is the connotation of language.English vocabulary contains many cultureloaded words and expressions that carry certain cultural information.These words and expressions seem simple literally but the comprehension of this type of vocabulary requires knowledge of relevant cultural background information.This article adopts some cases to make comparative studies of culture-loaded vocabulary between Chinese and English and discuss its classifications and translation strategies.展开更多
基金Project(50778067) supported by the National Natural Science Foundation of China
文摘To investigate the causes qf cracks in multistory masonry buildings, the effect of vertical load difference on cracking behaviors was investigated experimentally by testing and measuring the displacements at the testing points of a large sized real masonry U-shaped model. Additionally, the cracking behaviors in U-shaped model were analyzed with shear stress and numerical simulated with ANSYS software. The experimental results show that the deformation increases with the increase of the vertical load. The vertical load results in different deformation between the bearing wall and non-bearing wall, which leads to cracking on the non-beating wall. The rapid deformation happens at 160 kN and cracks occur firstly at the top section of non-bearing wall near to the bearing wall. New cracks are observed and the previous cracks are enlarged and developed with the increase of vertical load. The maximum crack opening reaches 12 mm, and the non-bearing wall is about to collapse when the vertical load arrives at 380 kN. Theoretical analysis indicates that the shear stress reaches the maximum value at the top section of the non-bearing wall, and thus cracks tend to happen at the top section of the non-bearing wall. Numerical simulation results about the cracking behaviors are in good agreement with experiments results.
基金National Key R&D Program of China:Effectively Utilized and Optimized Surface Water and Groundwater in the Fault Basin(2016YFC0502502)China Geology Survey(DD20190356&DD20189262)+1 种基金Chinese Academy of Geological Sciences(YKWF201628)National Natural Science Foundation of China(No.41272301)
文摘Groundwater exploitation has been regarded as the main reason for land subsidence in China and thus receives considerable attention from the government and the academic community.Recently,building loads have been identified as another important factor of land subsidence,but researches in this sector have lagged.The effect of a single building load on land subsidence was neglected in many cases owing to the narrow scope and the limited depth of the additional stress in stratum.However,due to the superposition of stresses between buildings,the additional stress of cluster loads is greater than that of a single building load under the same condition,so that the land subsidence caused by cluster loads cannot be neglected.Taking Shamen village in the north of Zhengzhou,China,as an example,a finite-difference model based on the Biot consolidation theory to calculate the land subsidence caused by cluster loads was established in this paper.Cluster loads present the characteristics of large-area loads,and the land subsidence caused by cluster loads can have multiple primary consolidation processes due to the stress superposition of different buildings was shown by the simulation results.Pore water migration distances are longer when the cluster loads with high plot ratio are imposed,so that consolidation takes longer time.The higher the plot ratio is,the deeper the effective deformation is,and thus the greater the land subsidence is.A higher plot ratio also increases the contribution that the deeper stratigraphic layers make to land subsidence.Contrary to the calculated results of land subsidence caused by cluster loads and groundwater recession,the percentage of settlement caused by cluster loads in the total settlement was 49.43%and 55.06%at two simulated monitoring points,respectively.These data suggest that the cluster loads can be one of the main causes of land subsidence.
基金provided by the National Natural Science Foundation of China (Nos. 51274204 and 51134025)National Key Basic Research Program (No. 2010CB732002)The Ministry of Education Program for New Century Excellent Talents to Support Project of China (No. NCET-12-0965)
文摘Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadways. The experimental results show that the influence of blast load on adjacent roadway has a good relationship with the cross-section of roadway. The expansion distance of precrack existed in circular, arch-wall, rectangular roadway is respectively 1.76, 1.61 and 0 cm under blast load.At the same time, the direct-blast side of rectangular roadway has more obvious damage compared with circular and arch-wall roadway. It explains that plane reflects more stress wave than arc, so that it exerts more tensile failure in the direct-blast side, which leads to less stress wave diffracting to the precrack in the back-blast side. When the precrack extends, higher value dynamic stress intensity factor in circular roadway works longer than that of arch-wall roadway. Indirectly, it explains that plane's weakening function on stress wave is significantly stronger than arc. Stress wave brings about self-evident influence on the upper and bottom endpoints of the rectangular roadway, and it respectively extends 1.03, 2.06 cm along the line link direction of the center of the blasthole and the upper and bottom endpoints on the right wall.
文摘Current guidelines recommend using single-degree-of-freedom(SDOF) method for dynamic analysis of reinforced concretec (RC) structures against blast loads, which is not suitable for retrofitted members. Thus, a finite difference procedure developed in another study was used to accurately and efficiently analyze the dynamic response of fibre reinforced polymer (FRP) plated members under blast loads. It can accommodate changes in the mechanical properties of a member's cross section along its length and through its depth in each time step, making it possible to directly incorporate both strain rate effects (which will vary along the length and depth of a member) and non-uniform member loading to solve the partial differential equation of motion. The accuracy of the proposed method was validated in part using data from field blast testing. The finite difference procedure is implemented easily and enables accurate predictions of FRP-plated-member response.
文摘Although the load applied to pile foundations is usually a combination of vertical and lateral components,there have been few investigations on the behavior of piles subjected to combined loadings.Those few studies led to inconsistent results with regard to the effects of vertical loads on the lateral response of piles.A series of three-dimensional(3D) finite differences analyses is conducted to evaluate the influence of vertical loads on the lateral performance of pile foundations.Three idealized sandy and clayey soil profiles are considered:a homogeneous soil layer,a layer with modulus proportional to depth,and two-layered strata.The pile material is modeled as linearly elastic,while the soil is idealized using the Mohr-Coulomb constitutive model with a non-associated flow rule.In order to confirm the findings of this study,soils in some cases are further modeled using more sophisticated models(i.e.CYsoil model for sandy soils and modified Cam-Clay(MCC) model for clayey soils).Numerical results showed that the lateral resistance of the piles does not appear to vary considerably with the vertical load in sandy soil especially at the loosest state.However,the presence of a vertical load on a pile embedded in homogeneous or inhomogeneous clay is detrimental to its lateral capacity,and it is unconservative to design piles in clays assuming that there is no interaction between vertical and lateral loads.Moreover,the current results indicate that the effect of vertical loads on the lateral response of piles embedded in twolayered strata depends on the characteristics of soil not only surrounding the piles but also located beneath their tips.
基金Project supported by the National Science Council of Taiwan (No.NSC 93-2211-E-167-002), China
文摘The most significant differences between continuous welded rails (CWRs) and general split-type connectors are axial compression in the longitudinal direction, buckling stability and other issues generated under the influence of thermal effect. Under thermal effect, a dynamical behavior similar to that of a beam fixed on two sides occurs in the central locked area of the welded rail, as there is axial compression but no possibility of sliding. Continuous welded rails do not contract or expand, and are supported by the dynamical system made up of ballasts and rail clips. The rail-support system mentioned above has the features of non-uniform material distribution and uncertainty of construction quality. Due to these facts, the dynamics method based on the linear elastic hypothesis cannot correctly evaluate the rail's buckling conditions. This study is aimed at applying Finite Difference Method (FDM) and Monte Carlo Random Normal Variables Method to the analysis of welded rail's buckling behavior during the train's acceleration and deceleration, under thermal effect and uncertain factors of ballast and rail clips. The analysis result showed that buckling occurs under the combined effect of thermal effect and the train's deceleration force co-effect and the variance ratio of ballast and rail clips is over 0.85, or under the combined effect of thermal effect and the train's acceleration force when the ariance ratio is over 0.88.
基金Projects(50708093,51208409)supported by the National Natural Science Foundation of ChinaProject(DB01129)supported by the Talent Foundation of Xi’an University of Architecture and Technology,China
文摘In order to improve the design level of partially embedded single piles under simultaneous axial and lateral loads, the differential solutions were deduced, in which the soil was treated as an ideal, elastic, homogeneous, semi-infinite isotropic medium. A comparison was made between model test results and the obtained solutions to show their validity. The calculation results indicate that the horizontal displacement and bending moment of the pile increase with increases of the axial and lateral loads. The maximum horizontal displacement and bending moment decrease by 37.9% and 13.9%, respectively, when the elastic modulus of soil increases from 4 MPa to 20 MPa. The Poisson ratio of soil plays a marginal role in pile responses. There is a critical pile length under the ground, beyond which the pile behaves as though it was infinitely long. The presented solutions can make allowance for the continuous nature of soil, and if condition permits, they can approach exact ones.
基金funded by the National Key R&D Program of China(Grant Number 2018YFB1501203)funded by the National Natural Science Foundation of China(Grant Number 52075305).
文摘To address the problem of poor wave resistance of existing offshore floating wind turbines,a new type of semisubmersible platform with truncated-cone-type upper pontoons is proposed by combining the characteristics of offshore wind turbine semi-submersible floating platforms.Based on the coupled hydrodynamic,aerodynamic,and mooring force physical fields of FAST,the surge,heave,pitch,and yaw motions responses of the floating wind turbine under different wave heights and periods are obtained,and the mooring line tension responses are also obtained;and compare the dynamic response of the new semi-submersible platform with the OC4-DeepCwind platformat six degrees of freedom.The results show that different wave conditions have obvious effects on the heave and pitch motions of the new floating wind turbine,and fewer effects on the surge and yaw motions;the tensegrity response of the mooring system is more affected by the wave conditions;compared with the OC4-DeepCwind floating wind turbine,the pitch and roll response of the new floating wind turbine has been significantly reduced and has good stability.
基金supported by the National Natural Science Foundation of China (Grants U1134202,51305360)the National Basic Research Programof China(Grant2011CB711103)the 2015 Doctoral Innovation Funds of Southwest Jiaotong University
文摘It is important to study the subgrade characteristics of high-speed railways in consideration of the water–soil coupling dynamic problem,especially when high-speed trains operate in rainy regions.This study develops a nonlinear water–soil interaction dynamic model of slab track coupling with subgrade under high-speed train loading based on vehicle–track coupling dynamics.By using this model,the basic dynamic characteristics,including water–soil interaction and without water induced by the high-speed train loading,are studied.The main factors-the permeability coefficien and the porosity-influencin the subgrade deformation are investigated.The developed model can characterize the soil dynamic behaviour more realistically,especially when considering the influenc of water-rich soil.
文摘Advanced design based on the concept of orthotropic structure includes better use of materials, less weight compared to the equivalent isotropic construction and controlled effectively reserve resistance in all its segments. In this case a calculation of critical load is exposed using the FDM (Finite Difference Method) concept of thin plates subjected to complex loads due to forces in the middle-plane. Results of calculation model, discussed in this paper, are given in graphic form. Presented results should serve as an indicator of the expansion of theoretical base of similar models, which can be reasonably use by researchers and engineers in their practices, and by students for educational purposes.
文摘Slope stability is one of the most important subjects of geotechnics. The slope top-loading plays a key role in the stability of slopes in hill slope areas. When the building load is too large or the point of action from the shoulder is too close, the shear stress of the slope will be significantly greater than its shear strength, resulting in reduced slope stability. Therefore, it is of great importance to study the relationship between the building load and the stability of the slope. This study aims to analyze the influence of different building loads applied at different distances on the top of the slope and deduces their effects on the slope stability. For this purpose, a three-dimensional slope model under different building loads with different distances to the slope shoulder was established using the finite-difference analysis software Flac3D. The results show that the loads applied at different distances on the top of the slope have different effects on the slope stability. The slope factor of safety (FOS) increases with the increase of the distance between the top-loading and the slope shoulder;it varies from 1.37 to 1.53 for the load P = 120 KPa, 1.27 to 1.53 for the load P = 200 KPa, and from 1.18 to 1.44 for P = 300 KPa, resulting in the decrease of the coincidence area between the load-deformation and the potential sliding surface. The slope is no longer affected by the potential risk of sliding at approximately 20 m away from the slope shoulder.
文摘Language is the carrier of culture while culture is the connotation of language.English vocabulary contains many cultureloaded words and expressions that carry certain cultural information.These words and expressions seem simple literally but the comprehension of this type of vocabulary requires knowledge of relevant cultural background information.This article adopts some cases to make comparative studies of culture-loaded vocabulary between Chinese and English and discuss its classifications and translation strategies.