Theoretical derivation of local resistance coefficient of sudden expansion tube is presented. Several assumptions are analyzed in the theoretical derivation. That the head loss shall be neglected is affirmed. Experime...Theoretical derivation of local resistance coefficient of sudden expansion tube is presented. Several assumptions are analyzed in the theoretical derivation. That the head loss shall be neglected is affirmed. Experimental data proves that the pressure before and after sudden expansion section is basically the same. That the friction force on the side face of control body is neglected is denied and it is pointed out that such neglect is the main cause for error between theoretical calculation and actual measurement. Experimental device for measuring local resistance coefficient is designed in combination with theoretical derivation process. Optimal gradually varied flow section is selected after sudden expansion pipe in Bernoulli equation based on variation of piezometer tube head. It is pointed out in accordance with experimental data analysis that the value of local resistance coefficient of sudden expansion tube determined through experimental data is closer to the actual situation during pipeline design.展开更多
We present the electronic structure and electron energy loss spectroscopy (EELS) for uranium, niobium and U3Nb in which uranium is substituted by niobium. Comparing the electronic structures and optical properties for...We present the electronic structure and electron energy loss spectroscopy (EELS) for uranium, niobium and U3Nb in which uranium is substituted by niobium. Comparing the electronic structures and optical properties for uranium, niobium and U3Nb, we found that when niobium atom replaces uranium atom in the center lattice, density of state (DOS) of U3Nb shifts downward to low energy. Niobium affects DOS for f and d electrons more than that for p and s electrons. U3Nb is similar to uranium for the electronic energy loss spectra.展开更多
In order to analyze the leakage magnetic field and stray loss in power transformer, leakage magnetic field and stray loss in structure parts of a power transformer are calculated by three-dimensional (3-D) non-linear ...In order to analyze the leakage magnetic field and stray loss in power transformer, leakage magnetic field and stray loss in structure parts of a power transformer are calculated by three-dimensional (3-D) non-linear time harmonic finite element method (FEM). The results show that stray loss and loss density in structure parts are large and which may lead to local overheating and affect performance of the transformer. The magnetic shields are used to reduce the stray loss and loss density of power transformer. Effects of these shields on stray loss and loss density of structure parts are discussed. The results show that stray loss and local overheating can be reduced and eliminated effectively by adding magnetic shields. It provides some references for the analysis of stray loss and optimization design in transformer.展开更多
文摘Theoretical derivation of local resistance coefficient of sudden expansion tube is presented. Several assumptions are analyzed in the theoretical derivation. That the head loss shall be neglected is affirmed. Experimental data proves that the pressure before and after sudden expansion section is basically the same. That the friction force on the side face of control body is neglected is denied and it is pointed out that such neglect is the main cause for error between theoretical calculation and actual measurement. Experimental device for measuring local resistance coefficient is designed in combination with theoretical derivation process. Optimal gradually varied flow section is selected after sudden expansion pipe in Bernoulli equation based on variation of piezometer tube head. It is pointed out in accordance with experimental data analysis that the value of local resistance coefficient of sudden expansion tube determined through experimental data is closer to the actual situation during pipeline design.
基金Supported by the National Key Laboratory Foundation of China (9140C6601010804)Sichuan Provincial Key Laboratory for Applied Nuclear Technology in Geology Foundation (27-7).
文摘We present the electronic structure and electron energy loss spectroscopy (EELS) for uranium, niobium and U3Nb in which uranium is substituted by niobium. Comparing the electronic structures and optical properties for uranium, niobium and U3Nb, we found that when niobium atom replaces uranium atom in the center lattice, density of state (DOS) of U3Nb shifts downward to low energy. Niobium affects DOS for f and d electrons more than that for p and s electrons. U3Nb is similar to uranium for the electronic energy loss spectra.
文摘In order to analyze the leakage magnetic field and stray loss in power transformer, leakage magnetic field and stray loss in structure parts of a power transformer are calculated by three-dimensional (3-D) non-linear time harmonic finite element method (FEM). The results show that stray loss and loss density in structure parts are large and which may lead to local overheating and affect performance of the transformer. The magnetic shields are used to reduce the stray loss and loss density of power transformer. Effects of these shields on stray loss and loss density of structure parts are discussed. The results show that stray loss and local overheating can be reduced and eliminated effectively by adding magnetic shields. It provides some references for the analysis of stray loss and optimization design in transformer.